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Abstract

As the field of modelling mortality has grown in recent years, the
number and importance of identifiability issues within mortality mod-
els has grown in parallel. This has led both to robustness problems
and to difficulties in making projections of future mortality rates. In
this paper, we present a comprehensive analysis of the identifiabil-
ity issues in age/period mortality models in order to first understand
them better and then to resolve them. To achieve this, we discuss how
these identification issues arise, how to choose identification schemes
which aid our demographic interpretation of the models and how to
project the models so that our forecasts of the future do not depend
upon the arbitrary choices used to identify the historical parameters
estimated from historical data.
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1 Introduction

As the field of modelling mortality has grown in recent years, the models
proposed and used have grown ever more complicated. This has had the ef-
fect of increasing the number and importance of identifiability issues within
the models, which can lead both to robustness problems when fitting the
models to data and difficulties when projecting them. As the demands of
modern longevity-risk management techniques require sophisticated mod-
els capable of capturing complex and subtle relationships between mortality
rates across different ages and in different populations, unresolved identifi-
ability issues have important practical consequences. We therefore believe
that the time has come for a holistic and comprehensive analysis of the class
of age/period/cohort (APC) mortality models and the identifiability issues
within them.

In Hunt and Blake (2015c), we analysed the structure of APC mortality
models and proposed a way of classifying the models proposed to date. This
gave us a general framework in which our study of identifiability issues op-
erates. The existence of identifiability issues means that there are certain
features of the parameters in a model which are not defined by the data.
Instead, these features are only determined by the arbitrary identifiability
constraints we impose upon the model when fitting it to data and, therefore,
have no independent meaning. Consequently, we must be careful to ensure
that our results from using mortality models do not depend upon these fea-
tures of the parameters. In the context of the age/period (AP) mortality
models discussed in this study, we find that features such as the levels of
and correlations between the period terms, and the scale of the age functions
are unidentified by the models. These features therefore do not possess any
meaning other than that imposed by our arbitrary identifiability constraints.

Identifiability issues arise in these mortality models because there exist
different sets of parameters which will give the same fitted mortality rates.
These identifiability issues can lead to models which lack robustness when fit-
ted to data, cause us to draw faulty and erroneous conclusions when analysing
the historical data and can bias our projected mortality rates in future. It is
essential that we understand and resolve these issues when fitting models to
data, as well as comprehend the impact these issues have on our analysis of
past and future mortality rates.
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Identifiability in mortality models is, therefore, a very important issue.
While there are principles which are common to the vast majority of mor-
tality models, the impact and implications of these issues vary consider-
ably depending on the specifics of the model being used. To demonstrate
these principles in action, we consider a number of simple models based on
the classic and widely used models proposed in Lee and Carter (1992) and
Cairns et al. (2006a), both of which are members of the class of AP models.
In the particular cases chosen, the identifiability issues can appear trivial,
and their impact on our analysis of historical and projected mortality rates
relatively minor. However, we believe that it is vital to understand these
issues fully in the context of simple models, since they become considerably
more important in more sophisticated models, such as those constructed us-
ing the “general procedure” of Hunt and Blake (2014).

In addition, due to the scale of the topic, this study deals only with the
identifiability of AP mortality models. We leave the additional issues caused
by the inclusion of a cohort term to Hunt and Blake (2015b). Allowing for
the dependence of mortality on year of birth in a model often creates new
identifiability issues, which are fundamentally different to those affecting sim-
pler AP models and which require a radically different approach to analyse.

We begin, in Section 2, by revisiting the general structure of AP models
and how identifiability issues arise in them. We then discuss, in Section 3,
how these issues were dealt with in the model of Lee and Carter (1992), and
how this has influenced their treatment in more complex models. The mathe-
matical structure of identifiability issues in the context of these more complex
mortality models is investigated in Section 4. We then consider how these
general issues relate to specific models which are more typical of those used
in practice. Section 5 discusses the application of the identifiability issues
in the context of an extension to the Lee-Carter model. Section 6 examines
the general issues in models where the form of the age functions has been
chosen a priori. Section 7 then considers models which mix age functions of
different types.

Identifiability issues in AP mortality models also affect their use in mea-
suring risk and uncertainty in mortality rates. In Section 8, we discuss the
impact the identifiability issues have on measuring the uncertainty in param-

3



eter estimates and on hypothesis testing on the historical parameters. Section
9 considers the implications of identifiability issues for projection, and the
importance of ensuring that constraints imposed to identify historical param-
eters uniquely do not impact the projected mortality rates in future. Finally,
Section 10 concludes.

2 Structure and identifiability in age/period

mortality models

2.1 Structure of age/period mortality models

An AP mortality model in discrete time is one which assumes that mortality
rates can be modelled as a series of terms involving functions of age, x, and
period, t.1 In the notation of Hunt and Blake (2015c), this can be written as

ηx,t = αx +
N
∑

i=1

β(i)
x κ

(i)
t (1)

where ηx,t is a link function transforming the raw data, αx is a static function

of age,2 κ
(i)
t are N period functions governing the evolution of mortality with

time and β
(i)
x are age functions modulating the impact of this change over

the age range. This structure does not include any allowance for the lifelong
effects of different birth years (called cohort effects) on mortality.

The structure in Equation 1 as it is currently written does not require
any of the functions to be known in advance of fitting the model to data.
As such, it has what we refer to as a “non-parametric” structure. We con-
sider this as the most general form of an AP mortality model and discuss
its identifiability issues in Section 4. We will also consider the “parametric”
case where β

(i)
x is a parametric function of age, β

(i)
x = f (i)(x; θ(i)), in Section

6, and models which mix parametric and non-parametric age functions in
Section 7. Whether β

(i)
x is parametric or non-parametric will affect the in-

terpretation of the model, as discussed in Hunt and Blake (2015c), and also

1In this paper, for generality we assume that x ∈ [1, X ] and t ∈ [1, T ]. In practice, the
ranges of x and t will be given by the range of the data being used.

2 Identification issues in models without a static age function, αx, are discussed in
Appendix A.

4



lead to subtly different identification issues.

The form given in Equation 1 is widely used and lends itself naturally to
interpreting the parameters as measuring either an age or a period feature
of mortality rates. Alternatively, when analysing this structure, we may find
it useful to consider the static age function, αx, and the age functions, β

(i)
x ,

as being column vectors in R
X instead of functions of age, and the period

functions, κ
(i)
t , as row vectors in R

T , rather than a time series. Considering
the parameters in this context, it is natural to define inner products, < ., . >

on R
X and R

T , respectively, and use these to compare the different functions.
For instance, we could define the “scale” of an age function by taking

‖β(i)
x ‖ =< β(i)

x , β(i)
x >

or the “angle”, θ, between age functions as

cos θ =
< β

(i)
x , β

(j)
x >

√

‖β
(i)
x ‖‖β

(j)
x ‖

We can think of the inner products being the standard Euclidean inner prod-
ucts, i.e. that < β

(i)
x , β

(j)
x >=

∑

x β
(i)
x β

(j)
x and < κ

(i)
t , κ

(j)
t >=

∑

t κ
(i)
t κ

(j)
t .

If the period parameters, κ
(i)
t , are interpreted as random variables then

we also see that this standard Euclidean inner product can be interpreted in
terms of their sample mean and sample variance

κ̄(i) =
1

T

∑

t

κ
(i)
t =

1

T
< κ

(i)
t , 1 >

σ2
κ(i) =

1

T

∑

t

(

κ
(i)
t − κ̄(i)

)2

=
1

T
< κ

(i)
t − κ̄(i), κ

(i)
t − κ̄(i) >

=
1

T
‖κ

(i)
t − κ̄(i)‖

Similarly, we see that the sample correlation between two period functions is
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given by the angle between them

Corr(κ(i)
, κ

(j)
t ) =

∑

t

(

κ
(i)
t − κ̄(i)

)(

κ
(j)
t − κ̄(j)

)

√

σ2
κ(i)σ

2
κ(j)

=
< κ

(i)
t − κ̄(i), κ

(j)
t − κ̄(j) >

√

‖κ
(i)
t − κ̄(i)‖‖κ

(j)
t − κ̄(j)‖

= cos θκ−κ̄

Consequently, the standard Euclidean inner product has a number of helpful
interpretations and is widely used.3 However, we could equally reasonably
choose other inner products on R

X and R
T if these are more convenient.4

When projecting the period functions using multivariate time series pro-
cesses, it is helpful to define vectors

κt =
(

κ
(1)
t , . . . κ

(N)
t

)⊤

βx =
(

β
(1)
x , . . . β

(N)
x

)⊤

The model therefore has the vector structure

ηx,t = αx + β⊤
xκt (2)

In order to project the model, the vector κt can be modelled using VARIMA
processes. This is considered further in Section 9.

We can also construct matrices for the age and period functions as β =
{β

(1)
x β

(2)
x . . . β

(N)
x } and κ = {κ

(1)
t ; κ

(2)
t ; . . . ; κ

(N)
t } and therefore re-write Equa-

tion 1 in matrix form

H = α1⊤ + βκ (3)

where

3For example, it is common to impose κ̄
(i)
t = 1

T
< κ

(i)
t , 1 >= 1

T

∑

t κ
(i)
t = 0 as an

identifiability constraint, as discussed below.
4For instance, in Hunt and Blake (2014), we use the standard L(2) inner product to

define orthogonality between age and period functions, but use the L(1) norm to define a
normalisation scheme.
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• H is the (X × T ) matrix of transformed data (i.e., H = {ηx,t}),

• α is a (X × 1) matrix of the static age function,

• 1 is a (T × 1) matrix of ones, and

• β and κ are the (X×N) matrix and (N ×T ) matrix of age and period
functions constructed above, respectively.

When expressed in this form, AP models can be analysed through the prism
of matrix algebra and linear mathematics. Specifically, we can see that an
AP mortality model is a mapping, Θ, from the space of parameters to the
model space, M, of fitted mortality rates.

Θ(αx, β
(i)
x , κ

(i)
t ) : RX × R

NX × R
NT → M ⊂ R

X×T (4)

Analysing AP mortality models as linear transformations can be very useful,
and is pursued in Sections 2.2 and 4 and in Appendix B. However, whilst such
an abstraction can be useful for some purposes, it is important to remember
that the parameters in the model have specific interpretations, for instance,
that the period functions are ordered chronologically, and so the problem of
identifiability should not be seen purely as an exercise in linear mathematics.

2.2 Identifiability in age/period models

An AP mortality model cannot, in general, be estimated as it stands. This
is because any parameter estimates would not be unique, since Equation 3
is not, in general, fully identifiable.

A model is fully identified when all the parameters in it can be uniquely
determined by reference to the available data. In contrast, most mortality
models are not fully identified - there exist different sets of parameters which
will give the same fitted mortality rates and consequently the same goodness
of fit. Although this phenomenon is not unique to mortality models, it is very
widespread in mortality modelling and has significant implications when we
come to project these models.

The models are not fully identifiable because the space of the parameters
for the model, RX × R

NX × R
NT has a higher dimension than that of the

model space, M, as we show later. Therefore, the mapping Θ in Equation
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4 cannot be injective,5 since we cannot find a one-to-one mapping from a
higher dimension space to a lower one. In practice, this means that we can
find transformations of the parameters

{αx, β
(i)
x , κ

(i)
t } → {α̂x, β̂

(i)
x , κ̂

(i)
t } (5)

such that

Θ(αx, β
(i)
x , κ

(i)
t ) = Θ(α̂x, β̂

(i)
x , κ̂

(i)
t ) (6)

We call the transformations of the parameters which satisfy Equation 6 “in-
variant”, because the fitted mortality rates do not change when they are ap-
plied to the parameters. The additional degrees of freedom in these invariant
transformations correspond to the additional dimensions of the parameter
space compared with the model space.

Because {αx, β
(i)
x , κ

(i)
t } and {α̂x, β̂

(i)
x , κ̂

(i)
t } give identical fitted mortality

rates and therefore fit observed data equally well, there is no statistical rea-
son to choose between them. In practice, in order to specify a unique set
of parameters, constraints independent of the data are imposed - so called
“identifiability constraints”. This has the effect of reducing the number of
degrees of freedom from the number of parameters. Mathematically, impos-
ing constraints restricts the original parameter space, RX × R

NX × R
NT , to

a subspace, P, which has fewer dimensions. The aim is to select a subspace,
P, which has the same dimension as the model space, M, which allows for
a one-to-one mapping between the reduced parameter space and the model
space. Reducing the dimension of the parameter space can also be achieved
by reparameterising the model in a “maximally invariant” form, as discussed
in Appendix B.

It is important to know the number of dimensions of the model space,
not only to ensure that our model is uniquely estimated, but also because
this value is used to penalise the likelihood or deviance functions in measures
of the goodness of fit, such as the Bayes Information Criterion. A failure to
correctly determine the number of free parameters in a model may therefore
distort tests of the goodness of fit, such as those performed in Cairns et al.

5A transformation, Θ, which maps set A to set B is injective if ∀a1, a2 ∈ A, Θ(a1) =
Θ(a2) ⇔ a1 = a2 (which implies that different points get mapped to different points).
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(2009) and Haberman and Renshaw (2011), and potentially leads to an incor-
rect assessment about which model gives a superior fit to data. One specific
example of this is discussed in Appendix A.

3 Identifiability in the Lee-Carter model

This general lack of identifiability in mortality models has been recognised
for a long time. One of the first and most significant AP mortality models
was introduced in Lee and Carter (1992) (referred to as the LC model). This
has a single age/period term (i.e., N = 1 in Equation 1) and can be written
as

ln(µx,t) = αx + βxκt (7)

The study of Lee and Carter (1992) was aware that these parameters are not
unique as they can be transformed in the following two ways

{α̂x, β̂x, κ̂t} =

{

αx,
1

a
βx, aκt

}

(8)

{α̂x, β̂x, κ̂t} = {αx − bβx, βx, κt + b} (9)

and the fitted mortality rates will be unchanged. The existence of invariant
transformations means that the model possesses identifiability issues, since
no one set of parameters is determined uniquely from the data.

We can see that Equation 8 implies that the “scales” of βx and κt are
unidentified since ‖βx‖ 6= ‖β̂x‖ and similarly for κt. In addition, we can
say that Equation 9 implies that the “location” of κt is unidentified.6 The
locations and scales of the age and period terms in the LC model therefore
have no independent significance, because different sets of parameters, with

6Scale and location have their intuitive meanings that the “scale” of a set of parameters
relates to how spread out they are, whilst “location” refers to their position (i.e., what
numerical values they take). More precisely for βx, we could define the scale of a parameter

set as S = max(βx) − min(βx) and the location, L =
∑

x
βx

XS
, where X is the number of

ages in the range of x, with similar definitions for κt. However, these formal definitions
provide little by way of additional meaning.
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different locations and scales, will give exactly the same observable quanti-
ties, such as fitted mortality rates.

To overcome this lack of identifiability, Lee and Carter (1992) imposed
additional constraints on the parameters which are unrelated to the underly-
ing data.7 As Equations 8 and 9 have two free parameters, a and b, we require
an additional two arbitrary identifiability constraints to uniquely specify the
model. Lee and Carter (1992) imposed

∑

x βx = 1 and
∑

t κt = 0. These
identifiability constraints have subsequently become widely adopted by most
model users. A general set of LC parameters (found from the data via some
estimation method) can be transformed into the constrained parameter set
using the transformation in Equation 8 and choosing a =

∑

x βx and then by
using the transformation in Equation 9 with b = − 1

T

∑

t κt.

We can see that imposing any set of identifiability constraints is achieved
by using these transformations with specific values of the free parameters
a and b. Intuitively, we might think of the imposition of the identifiability
constraints as reducing the number of effective parameters in the LC model.
The LC model has 2X + T parameters. However, the invariant transforma-
tions of the model show that two of these degrees of freedom do not have
any impact on the fit to data. Imposing the identifiability constraints in-
volves transforming an arbitrary set of parameters to our chosen set by using
the transformations with specific values of these parameters and so can be
thought of as “using up” the degrees of freedom in a way that does not af-
fect the fitted mortality rates. We will therefore have a total of 2X + T − 2
parameters which are determined by the data when fitting the model, and
another two which are determined by imposing the identifiability constraints.

In the terminology of Section 2.2, the unconstrained parameter space of
the LC model has dimension 2X+T , but the model space, M, has dimension
2X + T − 2. The identifiability constraints therefore restrict the parameters
to the 2X + T − 2 dimensional subspace, P, of the full parameter space,
R

X × R
NX × R

NT , allowing for an injective mapping between the restricted
parameter space, P, and the model space, M ⊂ R

X×T .

7We say that the transformations in Equations 8 and 9 cause issues with the iden-
tifiability of the model. Identification of the model is accomplished by imposing a set
of identifiability constraints and using the invariant transformations to satisfy these con-
straints.
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We interpret the constraints used in Lee and Carter (1992) as setting first
the “normalisation” of βx in order to identify its scale and second the “level”
of κt to be centred on zero to identify its location. However, the location and
scale chosen still do not possess any independent meaning, since they are
wholly dependent upon the identifiability constraints chosen. Because they
do not depend upon the data, these additional identifiability constraints are
arbitrary. While they might allow us to interpret the parameters in terms
of their demographic significance,8 this interpretation nevertheless depends
entirely on the user’s judgement, rather than on the underlying data.

For instance, the constraint that
∑

t κt = 0 in the Lee-Carter model allows
us to interpret κt as representing deviations away from an “average” level of
the fitted mortality rates across the historical period of interest, since it has
the consequence that

αx =
1

T

∑

t

ηx,t (10)

The constraint
∑

t κt = 0, therefore, means that αx can be interpreted as the
average mortality rate at each age over the period of the data.9

However, the constraint κ1 = 0 is just as reasonably imposed in Renshaw and Haberman
(2003c), with the interpretation that the period functions represent the falls
in mortality from an initial level.10 Imposing this constraint means that
αx = ln(µx,1), i.e., it has the demographic significance that it is the first year
of the fitted mortality surface. Accordingly, model users must be careful not

8Demographic significance is defined in Hunt and Blake (2015c) as the interpretation
of the components of a mortality model in terms of the underlying biological, medical or
socio-economic causes of changes in mortality rates which generate them.

9If ordinary least squares is used to estimate the parameters in the model, the estimator

for αx is 1
T

∑

t ln
(

dx,t

Ec
x,t

)

, i.e., the unweighted average of observed mortality rates. However,

this will not be true if other estimation methods are used, where αx will be a weighted
average, where the weights are related to the exposure to risk over the period. Imposing

αx = 1
T

∑

t ln
(

dx,t

Ec
x,t

)

a priori onto a model will therefore reduce the goodness of fit to the

data if alternative fitting procedures are used. The impact of this is discussed further in
Appendix A.

10This would involve applying the transformation in Equation 9 with b = −κ1.
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to rely on a particular interpretation for the parameters when making math-
ematical statements about the model or when projecting it. For instance,
we should not directly compare values of κt for different populations, since
different arbitrary identifiability constraints can result in very different esti-
mated values of the parameters.

The use of arbitrary identification constraints has become almost univer-
sal amongst users of the LC model. An alternative approach, proposed by
Nielsen and Nielsen (2014), is to reparameterise the model to give a set of
maximally invariant parameters. These will be chosen to avoid any identifi-
cation issues, but convey the same information and achieve the same fit to
data. This approach and its drawbacks are discussed in Appendix B.

4 Identifiability in models with non-parametric

age functions

We define models with non-parametric age functions in Hunt and Blake (2015c)

as those where the values of the age functions β
(i)
x at different ages x are fitted

without any a priori shape across ages. Age is treated as an unknown factor
in the model rather than as a regressor with a known form.11 It is important
to recognise that this usage differs from other definitions of “non-parametric”
employed in statistics and actuarial science. For the avoidance of doubt, we
specifically use the term to refer to whether we assume a specific shape for
the age functions in Equation 1 a priori.

All AP mortality models with non-parametric age functions are extensions
of the LC model, as discussed in Booth et al. (2002) and Renshaw and Haberman
(2003b). The number of age/period terms in the model is usually found by
maximising the fit to data, whilst their shape can be found through princi-
pal component analysis using singular value decomposition, as in Booth et al.
(2002), Renshaw and Haberman (2003b), Hatzopoulos and Haberman (2009)
and Yang et al. (2010).

We can see for consideration of Equation 3 that models with non-parametric

11For this reason, we could alternatively refer to non-parametric age functions as “fac-
torial” age functions.
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age/period terms are not fully identified, since we can transform them using

{α̂, β̂, κ̂} = {α, βA−1, Aκ} (11)

{α̂, β̂, κ̂} = {α− βB, β, κ+B1⊤} (12)

where A is an (N × N) matrix whose only constraint is that it needs to be
invertible, and B is a (N × 1) matrix.

Theorem 1 The transformations in Equations 11 and 12 are the only in-

variant transformations for the model in Equation 3.

Sketch of Proof Assume, without loss of generality, that the matrix β

has full column rank N and κ is of full row rank N . If not, the model is
poorly chosen and we could use a model with fewer age/period terms and
achieve the same fit to data.

Further, assume that we have two sets of parameters giving the same
fitted mortality rates. Then

α1⊤ + βκ = α̂1⊤ + β̂κ̂

βκ− β̂κ̂ = (α̂− α)1⊤

= C1⊤

for C some arbitrary (X × 1) matrix. From this, we can multiply both sides
by β̂⊤

β̂⊤βκ− β̂⊤β̂κ̂ = β̂⊤C1⊤

and, as β̂ is of full column rank, β̂⊤β̂ is invertible and so

κ̂ = (β̂⊤β̂)−1β̂⊤βκ− (β̂⊤β̂)−1β̂⊤C1⊤

Defining A = (β̂⊤β̂)−1β̂⊤β and B = (β̂⊤β̂)−1β⊤C, we see this is of the same
form as the composition of the transformations in Equations 11 and 12 on κ,
with the forms of β̂ and α̂ following directly from this.

By analogy with the LC model, it should be clear that these transforma-
tions represent the generalisation of Equations 8 and 9 for models with more
than one non-parametric age/period term. These are the general invariant
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transformations of the model. Again, we can see that the existence of these
invariant transformations means that the scales and angles of the age and
period functions are not identifiable by the model (i.e., not defined by the
data), since

‖β̂(i)
x ‖ = ‖β(i)

x A−1‖ 6= ‖β(i)
x ‖

< β̂(i)
x , β̂(j)

x >=< β(i)
x A−1, β(j)

x A−1 > 6=< β(i)
x , β(j)

x >

i.e., different sets of identifiability constraints will give different scales and
angles between the age/period terms. In addition, from Equation 12 we see

that the locations of the κ
(i)
t ’s are unidentified in the same way as in the

LC model. Since the scales, angles and locations of the parameters are not
defined by the data, we are free to impose them through our choice of iden-
tifiability constraints.

This also has consequences for any graphs of the different parameters,
with some aspects of any graph not being meaningful, since they depend
purely on the arbitrary choice of identifiability constraint. For example, in
a graph of κ

(i)
t vs.t, the lack of identifiability in the levels of κ

(i)
t due to be

Equation 12 means that the position of the x-axis is not meaningful, since
it is just a consequence of an identifiability constraint on the level of κ

(i)
t .

Similarly, the scale on the y-axis is not meaningful, since it depends on the
normalisation scheme chosen.

By interpreting the angle between different period functions as their cor-
relation, as discussed in Section 2, we also see that the lack of identifiability
issues in AP mortality model means that correlations between different pe-
riod functions are also not meaningful, since they too depend upon the ar-
bitrary identifiability constraints. More generally, the behaviour of any one
period function has no objective meaning unless it is also true of any linear
combination of all of the period functions. This has important consequences
when performing graphical checks on the fitted parameters, and also when
we come to project a model, as discussed in Section 9.

In the terminology of Section 2.2, we see that a general AP model of the
form in Equation 3 has X +N(X +T ) parameters, i.e., the parameter space
has dimension X + N(X + T ). However, the invariant transformations in
Equations 11 and 12 have N(N + 1) parameters which implies that we need
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to impose N(N + 1) identifiability constraints in order to specify a unique
set of parameters. This means that the restricted parameter space, P, is
an X +N(X + T )− N(N + 1) dimensional subspace of RX × R

NX × R
NT ,

and, correspondingly, the model space M is an X +N(X + T )−N(N + 1)
dimensional subspace of RX×T .

The N(N+1) constraints imposed will still be arbitrary in the sense that
they are entirely the choice of the model user. It is impossible to choose
between models with the same structure in Equation 1 and the same fit-
ting procedure but different identifiability constraints by statistical meth-
ods. However, the different terms in them may have different subjective
demographic significance depending upon the identifiability constraints im-
posed.

5 Identifiability in the LC2 model

In Section 3, we saw how the different identifiability issues were solved in
the simplest and most commonly used AP mortality model. We now take
the intuition derived from that model and also the theory discussed in Sec-
tion 4 and apply them to the next simplest AP mortality model with non-
parametric age functions. The two-term model in Renshaw and Haberman
(2003b) (which we shall refer to as the LC2 model) is usually written as

ln(µx,t) = αx + β(1)
x κ

(1)
t + β(2)

x κ
(2)
t (13)

The LC2 model applies the same normalisation scheme to the age functions
to set their scale and the same level for the period functions to set their
location as in the original LC model. Doing so, however, can lead to identi-
fiability issues in this more complicated model as we now show.

5.1 Location

Because the location of the period functions is not identifiable, Renshaw and Haberman
(2003b) set their level by imposing

∑

t κ
(i)
t = 0 for i = 1, 2. As with the LC

model, this gives the static age function the demographic significance of rep-
resenting “average” mortality rates across the period range of the data. This
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does not cause any additional issues for the LC2 model, so long as it is im-
posed via an identifiability constraint on κt and not by imposing the form of
αx (as discussed in Appendix A).

5.2 Scale

To set the scale of the age/period terms, Renshaw and Haberman (2003b)

imposed the constraint
∑

x β
(i)
x = 1 for i = 1, 2, again, in order to be con-

sistent with the convention established by Lee and Carter (1992). However,
the justification for this normalisation scheme makes most sense under the
assumption that β

(i)
x ≥ 0 for all x - indeed, this is imposed on the LC model

in Haberman and Renshaw (2009) at the expense of goodness of fit to the

data. If β
(i)
x ≥ 0, then

∑

x β
(i)
x = 1 constrains the age function to be in the

range [0, 1]. The values of β
(i)
x therefore can be felt to represent a proportion

of the factor κ
(i)
t impacting mortality at age x. In general, however, it may

be the case that β
(i)
x < 0 at some ages, especially in models with multiple

age/period terms. If so, the interpretation of the age functions as measuring
the proportion of the change is no longer applicable.

Figure 1 shows the age functions from the LC2 model fitted to data for
men in the UK12 with the constraint

∑

x β
(i)
x = 1 for i = 1, 2. We see that

if β
(i)
x ≤ 0 for some x, as is the case for the second age function, then the

identifiability constraint on the age function no longer limits it to a partic-
ular range of values. Indeed, β

(i)
x1 can take arbitrarily high values, as long

as there exists a correspondingly low β
(i)
x2 to compensate. This is in contrast

to β
(1)
x , which is greater than zero for all ages, and hence is comparatively

close to zero across the whole age range.13 This undermines the rationale for
selecting a common normalisation scheme for the age functions, which was to
aid comparisons of the relative importance of the different age/period terms.

The identifiability constraint
∑

x β
(i)
x = 1 can also, theoretically, lead to

numerical problems when fitting the model to data. In practice, the con-
straint is imposed by taking the set of parameters generated by the fitting

12Data for men aged 50 to 100 in the UK from 1950 to 2011 from the Human Mortality
Database (Human Mortality Database (2014)).

13In Figure 1, 0.003 ≥ β
(1)
x ≥ 0.024, while −1.58 ≥ β

(2)
x ≥ 1.46, i.e., roughly two orders

of magnitude difference, with a corresponding impact on the period functions.

16



0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Age

 

 

β(1)
x

β(2)
x

Figure 1: LC2 age functions with
∑

x β
(i)
x = 1

algorithm (which do not have any identifiability constraints imposed) and us-

ing the transformation in Equation 8 with b =
∑

x β
(i)
x , i.e., β̂

(i)
x = 1

∑
ξ β

(i)
ξ

β
(i)
x .

This gives an equivalent set of parameters (with the same fit to the data),

but where
∑

x β̂
(i)
x = 1 by construction. If, however,

∑

x β
(i)
x = 0 for what-

ever reason, this procedure will fail as applying the transformation involves
dividing by zero, even if the age function fitted originally by the algorithm
is reasonable. While this is unlikely, it is far more common that we find
∑

x β
(i)
x ≈ 0, which will then lead to the revised parameters (with the con-

straint imposed) being infeasibly large, and which may, in turn, generate
problems with the fitting algorithm.

Both of these problems with the normalisation scheme are caused because
simple summation over x is not a true norm. A true norm, ‖v‖, for a vector
space, V, of a vector, v, is defined by the properties

1. ‖v‖ ≥ 0 ∀v ∈ V;

2. ‖v‖ = 0 ⇐⇒ v = 0;

3. ‖av‖ = |a|‖v‖ ∀a ∈ R; and
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4. ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖.

These properties mean that we can use a true norm to define distances and
scales within the vector space and therefore make them useful when specify-
ing a normalisation scheme. However, we see that

∑

x β
(i)
x is not a true norm

in R
X , since we can have

∑

x β
(i)
x < 0 and

∑

x β
(i)
x = 0 does not mean that

β
(i)
x = 0 ∀x. Therefore, we are not able to use this normalisation scheme to

compare scales for the age functions, and cannot assume that
∑

x β
(i)
x > 0 in

our fitting algorithms when we come to impose the identifiability constraints.

Normalisation schemes using true norms on R
X , such as

∑

x |β
(i)
x | = 1 or

∑

x(β
(i)
x )2 = 1, will not suffer from these issues. When it comes to normalising

the fitted age function, a procedure using a true norm for the normalisation
scheme will never involve division by zero if the transformation in Equation 8
is used with any non-trivial age functions. Therefore, in most circumstances,
normalisation schemes based on true norms will be preferable.14

However, we note that normalisation schemes based on true norms are
not perfectly identified, since the transformation

{β̂(i)
x , κ̂

(i)
t } = {−β(i)

x ,−κ
(i)
t } (14)

is an invariant transformation of the parameters where the new parameters
still satisfy the identifiability constraints. In principle, we could solve this by
choosing alternative sets of normalisation constraints, for instance

sign

(

∑

x

β(i)
x

)

∑

x

(

β(i)
x

)2
= 1

which are still based on using true norms but are not invariant to changing
the sign of the age function. However, the specific transformation causing
this problem has few practical consequences when fitting the model, since the
transformation is not continuous. When fitting the LC or LC2 models using

14An obvious choice would be a normalisation scheme that is consistent with the stan-
dard Euclidean inner product, i.e., the Euclidean norm on R

X , ‖β
(i)
x ‖ =

∑

x(β
(i)
x )2 = 1.

However, this is not essential and an alternative normalisation scheme based on another
true norm of RX may be preferred if it is more convenient, as it is in Hunt and Blake
(2014).
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Figure 2: LC2 age functions with
∑

x |β
(i)
x | = 1

maximum likelihood techniques, for instance, we make small adjustments to
the parameters at each iteration and so it is not possible to move smoothly
from one set of acceptable parameters to another when fitting the model.
In addition, the transformation in Equation 14 can be applied to any set of
parameters after fitting the model and, hence, can be used to select the sign
of the age function based on the judgement of the user when reviewing the
fitted parameters.

To illustrate this, consider the age functions shown in Figure 2 which
fit the LC2 model to the same data as in Figure 1 with the normalisation
scheme

∑

x |β
(i)
x | = 1. This normalisation scheme gives a model with ex-

actly the same fit to the data, but the estimated parameters for the age
and period functions are now of the same order of magnitude,15 which may
make this model easier to project. We also avoid the possibility of any com-
putational problems when imposing the identifiability constraint, since the
divisor,

∑

x |β
(i)
x |, will not be zero for any non-trivial age function.

15In Figure 1, 0.003 ≥ β
(1)
x ≥ 0.024, while −0.024 ≥ β

(2)
x ≥ 0.026, i.e., the same order

of magnitude.
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5.3 Rotation

We established in Section 4 that N(N + 1) constraints were necessary to re-
strict the parameters in a general AP mortality model with non-parametric
age functions, due to the number of free parameters in the transformations
in Equations 11 and 12. In the context of the LC2 model, this means that we
would require six identifiability constraints. However, only four identifiability
constraints (two on the level of the two period functions, two on the normal-
isation of the two age functions) were described in Renshaw and Haberman
(2003b). We, therefore, have an additional two invariant transformations
of the parameters which give the same fit to data and which satisfy the
constraints already explicitly imposed by Renshaw and Haberman (2003b).
These can be written as

(

β̂
(1)
x

β̂
(2)
x

)

=

(

θ 1− θ

0 1

)

(

β
(1)
x

β
(2)
x

)

(

κ̂
(1)
t

κ̂
(2)
t

)

=
1

θ

(

1 θ − 1
0 θ

)

(

κ
(1)
t

κ
(2)
t

)

(15)

and
(

β̂
(1)
x

β̂
(2)
x

)

=

(

1 0
1− φ φ

)

(

β
(1)
x

β
(2)
x

)

(

κ̂
(1)
t

κ̂
(2)
t

)

=
1

φ

(

φ 0
φ− 1 1

)

(

κ
(1)
t

κ
(2)
t

)

(16)

These transformations can be thought of as “rotations” of the age/period
functions, because they change the angle between age and period functions,
but the normalisation scheme

∑

x β̂
(i)
x = 1 still holds.16 They also clearly

illustrate that we have an additional two degrees of freedom, given by the
free parameters θ and φ, which do not change the fitted mortality rates but
which should be used to impose two more identifiability constraints on the
model.

16In some respects, Equations 15 and 16 are more similar to shears than rotations.
However, we find that thinking of them as rotations with respect to the original set of
parameters is conceptually more helpful.
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This does not necessarily mean that the model in Renshaw and Haberman
(2003b) was poorly identified, however. Although the authors did not explic-
itly acknowledge the existence of these additional identifiability constraints,
their use of singular value decomposition to fit the model imposed them im-
plicitly. By taking singular values (or equivalently, principal components),

age and period functions are selected so that
∑

t κ
(i)
t κ

(j)
t = 0 and

∑

x β
(i)
x β

(j)
x =

0 for i 6= j. We call such age and period functions “orthogonal” to each other
as the angle between them defined earlier using the standard inner product
will be π

2
. This implicit imposition of additional identifiability constraints

leads to a fully identified model.

If alternative fitting methods are used, such as maximum likelihood (e.g.,
in Brouhns et al. (2002a)) or minimal deviance (e.g., in Renshaw and Haberman
(2003a)), then these constraints must be imposed explicitly in order to obtain
a fully identified model. To impose these orthogonality constraints for a gen-
eral set of LC2 parameters, we would therefore need to solve

∑

t κ̂
(i)
t κ̂

(j)
t = 0

and
∑

x β̂
(i)
x β̂

(j)
x = 0 with the transformed parameters defined by Equations

15 and 16 in order to find θ and φ.

We also note the special case where A =

(

0 1
1 0

)

(i.e., θ = φ = 1 when

Equations 15 and 16 are composed), which relates to the transformation

{β̂(1)
x , κ̂

(1)
t , β̂(2)

x , κ̂
(2)
t } = {β(2)

x , κ
(2)
t , β(1)

x , κ
(1)
t } (17)

This is an invariant transformation of the parameters where the new pa-
rameters still satisfy the identifiability constraints. However, it amounts to
simply re-labelling the age/period terms and arises because the identifiabil-
ity constraints are the same for all age/period terms. Similar to the case in
Equation 14, this situation could, in principle, be solved by using different
identifiability constraints for the different age/period terms, for instance

∑

x

|β(1)
x | = 1

∑

x

(

β(2)
x

)2
= 1

which breaks the symmetry between the different age/period terms and, thus,
prevents them being relabelled. However, as with Equation 14, the transfor-
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mation in Equation 17 has few practical consequences, since it is not contin-
uous and so it is not possible to move smoothly from one set of acceptable
parameters to another when fitting the model. Furthermore, using different
identifiability constraints for the different age/period terms conflicts with a
desire for their scale to be comparable with each other and, hence, we do not
believe that this issue is important in practice.

If maximum likelihood methods are used to estimate the parameters in
a model, it is useful that these estimators are independent of each other.
This helps to give more efficient fitting algorithms for estimation and is
also useful when allowing for parameter uncertainty using the technique of
Brouhns et al. (2002b) discussed in Section 8. Assuming the canonical link
function is used as discussed in Hunt and Blake (2015c), the independence
of the estimators can be assessed by consideration of the information matrix
for the different parameters

I(β(i)
x , β(j)

x ) = E

[

∂2L

∂β
(i)
x ∂β

(j)
x

]

= −
∑

t

Var(Dx,t)κ
(i)
t κ

(j)
t

I(κ
(i)
t , κ

(j)
t ) = E

[

∂2L

∂κ
(i)
t ∂κ

(j)
t

]

= −
∑

x

Var(Dx,t)β
(i)
x β(j)

x

Therefore, we see that orthogonal age and period functions are independent
of each other if Var(Dx,t) is constant across ages and years. This assump-
tion is implicitly made when using singular value decomposition or principal
components analysis to estimate parameters. However, the assumption is
not consistent with the use of the Poisson or binomial distribution for death
counts, as discussed in Hunt and Blake (2015c). Under these distributions,
the variance of death counts depends upon the exposure to risk at different
ages, which changes considerably over different ages and years and is more
realistic in practice.

In principle, we could impose independent parameter estimates using the
transformations in Equations 15 and 16 with carefully selected values of θ
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and φ to obtain an equivalent set of parameters. Doing so would simply be
choosing an alternative (but equally valid) set of identifiability constraints.
However, in practice, this would mean constraints that are both more difficult
to impose than the traditional orthogonality constraints using the Euclidean
inner product, and which lose the connection between the inner product
and the sample moments of κ

(i)
t . In practice, imposing

∑

t κ
(i)
t κ

(j)
t = 0 and

∑

x β
(i)
x β

(j)
x = 0 for i 6= j to obtain orthogonal age and period functions is a

convenient and useful set of identifiability constraints.

Whichever set of constraints is imposed on the angles between different
period functions, the most important thing is, however, to impose some form
of constraint. A failure to do so may result in the fitting routine failing to con-
verge or, alternatively, the fitting routine may give model parameters which
depend upon the initial parameter estimates used in the algorithm. Similarly,
the angles between different age functions must also be constrained in order
to fully identify the model. This has implications for estimated parameter
uncertainty, as discussed in Section 8.

We noted in Section 2 that the correlation between two different period
functions depends on the angle between them. This means that we see that
the correlations we find between period functions from our fitted parame-
ters depends only on the identifiability constraints chosen, and so are not
meaningful. For instance, the constraint

∑

t κ
(i)
t κ

(j)
t = 0 imposes indepen-

dence on the period functions over the historical range of the data when they
are considered as time series. Figure 3 shows period functions for the LC2
model fitted to the same data as above, but with two different constraints on
the angles between them. In Figure 3a, the period functions are orthogonal
whereas, in Figure 3b, they have a correlation of -75%.17 However, both
sets of parameters give identical fits to the historical data. This will have
important consequences when we come to project the model in Section 9.

In situations such as Renshaw and Haberman (2003b), where orthogo-
nality constraints on the age/period terms have been imposed implicitly by
the fitting mechanism, we believe that it is important to recognise and state
them clearly. Not only will this clarify which features of graphs of the age

17Although the period functions in Figures 3a and 3b are very similar, the relative large

negative correlation is due to the fact that κ
(1)
t is strongly trending over the period.
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Figure 3: Period functions from the LC2 model

and period terms are meaningful, it also ensures that we assess the dimension
of P (i.e., the number of degrees of freedom in the model) correctly. This is
important when assessing the goodness of fit for the model.

As an example of this, in Haberman and Renshaw (2011), the LC2 model
is compared against other mortality models using various measures including
the Akaike Information Criterion, Bayes Information Criterion, and Hannan-
Quinn Criterion. All of these measures use the number of degrees of freedom
(i.e., dim(P)) of the model to penalise the log-likelihood. By failing to explic-
itly state the orthogonality constraints placed on the age/period terms in the
LC2 model and, therefore, failing to include them in the count of restrictions
placed upon the model parameters, the study overestimates the number of
degrees of freedom in the model. This excessively penalises the LC2 model
relative to its comparators.

Using the invariant transformations to impose orthogonality on the age
and period functions generalises naturally to more complicated models with
N > 2. Identifiability in-sample in a model with non-parametric age/period
terms is therefore not problematic if fitting methods based on singular value
decomposition or principal component analysis are used (except for setting

the locations of the κ
(i)
t and the scale for the β

(i)
x by imposing an appropriate

normalisation scheme).
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6 Identifiability in models with parametric

age functions

In contrast to the non-parametric age functions considered above, we define
a “parametric” age function to be one which takes a specific functional form
that is defined by an algebraic formula, i.e., β

(i)
x = f (i)(x; θ(i)).18 In order to

specify a mortality model with parametric age functions, we need to define
these formulae. Mathematically, AP mortality models with parametric age
functions are similar to their non-parametric counterparts, except that the
age functions are fixed or selected from a family with a small number of free
parameters rather than being allowed to vary freely across R

X . This has
important consequences for the identifiability issues in the model.

To illustrate, let us consider the following two pedagogical mortality mod-
els

ηx,t = αx + κ
(1)
t + (x− x̄)κ

(2)
t (18)

ηx,t = αx + κ
(1)
t + e−λxκ

(2)
t (19)

where x̄ = 0.5(X+1). The first of these is similar to the widely used Cairns-
Blake-Dowd (CBD) model of Cairns et al. (2006a), but with the inclusion
of an explicit static age function, and therefore we refer to it as the CBDX
model. The second model, which we refer to as the exponential model, uses
an exponentially decreasing function of age as the second age function, with
the parameter λ being a free parameter of the model determined by the data.
Such a model has not been proposed to date, but similar terms have been
used within the “general procedure” of Hunt and Blake (2014).

We say that the formulae used for the age functions in Equations 18 and
19 “define” these models. Different definitions for the age functions give dif-
ferent models. However, we also define the concept of “equivalence” between
models with parametric age functions. Two models are equivalent in this
sense if they have different definitions for the age functions, but still give the
same fitted mortality rates and hence the same fit to data.

We note that the CBDX model is linear in its parameters, and so can be
fitted using generalised linear models, as discussed in McCullagh and Nelder

18For this reason, these age functions could also be called “formulaic”.
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(1983) and Currie (2014). However, since λ is a free parameter of the model,
the second age/period term in the exponential model is non-linear in the
sense of McCullagh and Nelder (1983, Chapter 11), and so more complicated
methods for fitting the model are necessary. Therefore, using parametric age
functions is not equivalent to using a linear model except in a few simple
cases. We will see below that it is these non-linear cases which tend to have
more complicated identifiability issues.

Mathematically, we can see that both models in Equations 18 and 19 are
similar to the LC2 model, but with specific parametric functions for β

(1)
x and

β
(2)
x . One might be tempted to believe that they have exactly the same iden-

tifiability issues as those in the LC2 model discussed in Section 5. However,
the imposition of specific functional forms for the age functions has changed
whether the invariant transformations of the LC2 model can be applied in
practice.

Because the form of the age functions defines the model being used,
these forms cannot change under invariant transformations, otherwise we
would obtain a different model. Therefore, we require that any invariant
transformations of the model also leave the age functions unchanged, i.e.,
f̂ (i)(x; θ(i)) = f (i)(x; θ(i)). This restriction reduces the number of invariant
transformations, and therefore the number of identifiability constraints which
need to be imposed when fitting the model to data. We discuss the implica-
tions of this on the different identifiability issues below.

6.1 Location

We noted in Section 4 that the transformation in Equation 12 does not change
the form of the age functions. Accordingly, it can still be applied to change
the levels of the period parameters in exactly the same manner as described
in Section 4, whilst leaving the fitted mortality rates and the functional forms
of the age functions unchanged. The period functions in models with para-
metric age functions therefore still have unidentified locations, and so we still
need to impose levels on the period parameters in exactly the same manner
as we did in Section 5. Most users of such models impose

∑

t κ
(i)
t = 0, consis-

tent with the choice made for models with non-parametric age functions and
with a similar interpretation. However, for models which have a specific form
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of the static age function imposed a priori, this is not necessary, as discussed
in Appendix A.

6.2 Scale

We see that the transformation in Equation 11 takes linear combinations of
the old age and period functions in order to create new age/period terms.
Therefore, these transformations will change the form of the age functions in
a model with parametric age functions. Since the form of the age functions
defines the model being used, the transformations in Equation 11 cannot be
used in models with parametric age functions.

In Section 5, we saw that these transformations were useful in models
with non-parametric age functions when it came to imposing a normalisation
scheme on the age functions and orthogonalising them with respect to each
other. This was beneficial as it enabled comparability and near-independence
between different age/period terms. It is therefore desirable to also achieve
the same properties for models with parametric age functions.

We also see that although using the transformations in Equation 11 in
models with parametric age functions gives different age functions (and there-
fore different models), they do not affect the fitted mortality rates: all the
models obtained by using these transformations are equivalent in the sense
defined above. It therefore makes sense to choose, from the set of models
equivalent to the one we are interested in, a model with age functions which
have the desirable properties of possessing a standard normalisation scheme
and being orthogonal. We discuss how this can be done in this section and
Section 6.3, respectively.

Most mortality models with parametric age functions have the age func-
tions defined in their simplest and most natural form. However, choosing
definitions for their simplicity rather than for desirable statistical properties,
such as having a common normalisation scheme, can lead to issues when
comparing age and period terms within the same model and between differ-
ent models. We show this below for the CBDX and exponential models in
Equations 18 and 19, respectively. However, for each of these models we also
show how this issue can be resolved by using alternative definitions of the
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age functions to give models which have far more comparable age and period
terms.

First, let us consider how a common normalisation scheme for the age
functions can be achieved in the CBDX model in Equation 18. In the LC2
model, Renshaw and Haberman (2003b) imposed the normalisation scheme
∑

x β
(i)
x = 1 on the age functions in the model, using the transformations

in Equation 11. In contrast, the age functions in Equation 18 already have
defined scales, i.e.,

∑

x f
(1)(x) =

∑

x 1 = X and
∑

x f
(2)(x) =

∑

x(x−x̄) = 0.

However, these defined scales cause problems when it comes to compar-
ing the age/period terms. The most important of these issues is that the
scale of f (2)(x) is zero, which is not sensible for a functions which is not
identically equal to zero. This is a consequence of using a normalisation
scheme which is not based on using a true norm. In Section 5, we saw that
a more sensible choice of normalisation scheme was to use

∑

x |β
(i)
x | to define

the scales of the age functions. Using this for the CBDX model, we find
∑

x |f
(1)(x)| =

∑

x 1 = X and
∑

x |f
(2)(x)| =

∑

x |(x− x̄)| = 0.25X2 if X is
even or 0.25(X − 1)(X + 1) if X is odd.

However, this fails to resolve the second problem, which is that differ-
ent scales are defined for each of the age/period terms, i.e., the scale of
the first age function is proportional to the number of ages, X , whilst the
scale of the second in proportional to X2. This makes comparisons difficult,
both between the CBDX and LC2 models and between the first and second
age/period terms within the CBDX model. The differing scales of the corre-
sponding period functions can also lead to numerical problems when we try
to project them using multivariate methods, as discussed in Section 9.

To ensure that the age functions have the same scale, we need to define
a model equivalent to that in Equation 18 where the age functions have this
property. Trivially, we see that the model

ηx,t = αx +
1

X
κ
(1)
t +

4(x− x̄)

X2
κ
(2)
t (20)

(assuming X is even) is equivalent to the model in Equation 18.19 All that
differs between the models in Equations 18 and 20 is the precise definition

19We can think of this model being obtained by using the transformation in Equation
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of the age functions, although the age functions in both models have the
same functional form (i.e., a constant and a linear function of age, x). In
addition, we see that in the model in Equation 20,

∑

x |f
(i)(x)| = 1 for both

age functions. In particular, this has the advantage of greater comparability
between the age/period terms.

To illustrate the impact of ensuring that the age functions have a com-
mon normalisation scheme, Figure 4 shows the period functions from the two
CBDX models in Equations 18 and 20, fitted to the same data as used for the
LC2 model in Section 5, with both the original and the revised normalisation
schemes. We see that the magnitude of the different period functions fitted
with the original model in Equation 18 differs enormously.20 This can be a
problem as most numerical algorithms for analysing time series are optimised
to work best on series of comparable orders of magnitude. In contrast, the
revised CBDX model in Equation 20 gives period functions of comparable
magnitude.21 The common scale also means that it is easier to compare these
period functions with those in Figure 3 from the LC2 model.

Turning now to the exponential model in Equation 19, we find similar
issues for the normalisation scheme of the age functions. In the exponential
model,

∑

x |f
(1)(x)| = X as before for the CBDX model, which can be dealt

with in exactly the same manner. In addition,
∑

x |f
(2)(x;λ)| =

∑

x e
−λx =

e−λ(1−e−λ(X+1))
1−e−λ ≈ e−λ

1−e−λ for the second age function. Not only will this be dif-
ferent from the scale of the first age/period term, but the scale is a function
of the free parameter λ. Since λ varies during the fitting process, this will
alter the scale of f (2)(x;λ). Hence, λ will be trying to fulfil two purposes
simultaneously: first, describing the shape of the age function and second,
determining its scale, i.e., the relative importance of the age/period term.
This confusion of different purposes can cause numerical instability in most
fitting algorithms, which may be one reason why age functions with free pa-
rameters have not been commonly used in practice.

11 on the model in Equation 18 with A =

(

X 0
0 1

4X
2

)

.

20−0.70 ≥ κ
(1)
t ≤ 0.48 and−0.01 ≥ κ

(2)
t ≤ 0.05, i.e. they differ by an order of magnitude.

21−70.5 ≥ κ
(1)
t ≤ 48.1 and −19.1 ≥ κ

(2)
t ≤ 11.5, i.e., they are the same order of

magnitude.
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Figure 4: Period functions from the CBDX model

For the CBDX model, we obtained a common normalisation scheme for
the age functions by choosing slightly different definitions for the age func-
tions, i.e., we defined alternative age functions which were equal to the orig-
inal ones, but rescaled by

∑

x |f
(i)(x)|. For the exponential model we do the

same thing, to obtain

ηx,t = αx +
1

X
κ
(1)
t +

1− e−λ

e−λ(1− e−λ(X+1))
e−λxκ

(2)
t (21)

The only difference in this case is that the second age function is rescaled
by a function of the free parameter, λ, rather than a constant in the case
of the CBDX model. Again, we see that the age functions have the same
functional forms (a constant and an exponential function of age) as before,
but with the normalisation scheme

∑

x |f
(2)(x;λ)| = 1 ∀λ as λ is varied when

fitting the model. This contrasts with the model in Equation 19, and ensures
that both age functions have the same normalisation scheme and so are more
comparable.

We call age functions such as the revised f (2)(x;λ) in Equation 21 “self-
normalising”, as they have the property that our desired normalisation scheme
is imposed automatically for all values of the free parameters in the age func-
tion (i.e.,

∑

x |f
(i)(x; θ(i))| = 1 ∀θ(i)). Self-normalisation is an important and
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useful property. Most importantly, the common normalisation scheme al-
lows for comparability between different age functions (potentially with very
different functional forms) in a model, independent of their shape. Further-
more, by allowing the value of the free parameter to describe the shape of
the age function, without impacting the scale of the age/period term, we
find that self-normalising age functions are considerably more robust (in the
sense of being likely to converge) and stable to small changes in the data.
For this reason, the age functions used in the “toolkit” in the Appendix of
Hunt and Blake (2014) are all self-normalising with respect to the normalisa-
tion scheme |f (i)(x; θ(i))| = 1.22 However, the trade-off is that the numerical
routines are significantly more complicated to implement and may need to
be written specially for the specific circumstances, rather than adapted from
“off-the-shelf” statistical packages.23

In summary, we see that, when the age functions in a mortality model are
defined parametrically, a common normalisation scheme for all of them can
be achieved by defining the age functions carefully. For more sophisticated
age functions involving free parameters estimated from the data, this means
defining age functions which are self-normalising, so that the normalisation
scheme holds for all values of these parameters as they are varied during the
fitting procedure.

6.3 Rotation

In Section 6.2, we saw that for models with parametric age functions, we
could ensure that the age functions had the same normalisation scheme by
carefully defining them to have this property when we specified the model.
The same is also true if we want our age functions to be orthogonal to each

22We note that, for many age functions, it is considerably simpler to find and use self-
normalisation age functions when using the L1 normalisation scheme,

∑

x |f
(i)(x; θ(i))| = 1,

than the alternative L2 normalisation scheme,
∑

x

(

f (i)(x; θ(i))
)2

= 1. This is why the
L1 normalisation scheme was selected for use in the general procedure in Hunt and Blake
(2014).

23In practice, there are many age functions where
∑

x |f
(i)(x; θ(i))| cannot be found

in closed form, but can be approximated by
∫

|f (i)(x; θ(i))|dx. In such circumstances,
improvements in the stability of the numerical optimisation routine can still be found

through approximate normalisation by setting f̂ (i)(x; θ(i)) = f(i)(x;θ(i))∫
|f(i)(x;θ(i))|dx

and then im-

posing
∑

x |f
(i)(x; θ(i))| = 1 again directly using Equation 8 with a = 1∑

x
|f(i)(x;θ(i))|

.
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other.

Again, similar to Section 6.2, we start from the fact that most mortal-
ity models have their age functions defined in the simplest form, such as in
Equations 18 and 19. These simple forms are not, necessarily, orthogonal.
However, we can define equivalent models where the age functions are orthog-
onal. Unlike the case of ensuring a common normalisation scheme, however,
we will see that orthogonality between age functions is not always a desirable
property and may conflict with other desirable properties, such as the terms
in the model having distinct demographic significance. Therefore, the choice
of whether to define orthogonal age functions or not will depend upon the
model in question and the aims of the model user.

For example, consider the CBDX model of Equation 18 before normalisa-
tion. The model already has orthogonal age functions, since

∑

x f
(1)(x)f (2)(x) =

∑

x(x− x̄) = 0. However, we could also consider an equivalent model, with
simpler definitions of the age functions of the form

ηx,t = αx + κ
(1)
t + xκ

(2)
t (22)

This model is more similar to the form of the original CBD model proposed
in Cairns et al. (2006a). However, we observe that the age functions are not
orthogonal, i.e.,

∑

x f
(1)(x)f (2)(x) =

∑

x x = 1
2
X(X + 1). It is easy to see

that models in Equations 18 and 22 are equivalent, in that they give the same
fitted mortality rates and are linked through a transformation of the form in
Equation 11. The form of the age functions in Equation 18 was introduced
in Cairns et al. (2009) and, in practice, has proved far more popular than the
simpler age functions in Equation 22, in part because it is more robust to fit
to data due to the parameter estimates for the period functions being nearly
independent of each other. Consequently, we see that defining orthogonal
age functions can be desirable, even if it comes at the expense of a slightly
more complicated definition of the age functions.

The age functions in the CBDX model are of constant and linear form,
i.e., polynomials of order zero and one, respectively. Defining orthogonal age
functions, as in Equation 18, has not changed this form, merely selected the
first two members of the orthogonal family of polynomials, i.e., the Legendre

32



polynomials.24 The orthogonal age functions in Equation 18 have the same
demographic significance as the simpler age functions in Equation 22, but
the additional desirable property of orthogonality. Generalising this, we see
that choosing orthogonal age functions does not change their form and hence
does not affect their demographic significance when the age functions come
from the same functional family (e.g., polynomials).

However, this is not the case when the age functions come from different
functional families. We see this by considering the exponential model once
more. To define orthogonal age functions for this model, we could select
a model equivalent to that in Equation 19 with orthogonal age functions,
namely

f (2)(x;λ) = e−λx −
e−λ(1− e−λ(X+1))

1− e−λ

We see that the age functions in this model are orthogonal as
∑

x f
(1)(x)f (2)(x;λ) =

0 ∀λ. This revised model is equivalent to that in Equation 19, as it gives the
same fitted mortality rates and the two models are linked by a transforma-
tion of the form of that in Equation 11.

However, it is likely that we originally selected an exponential function for
its demographic significance (e.g., a mortality effect which decreases rapidly
with age, such as that associated with the relatively high rate of infant mor-
tality). The redefined f (2)(x;λ) will not possess this demographic signifi-
cance, as it will start positive and then tend rapidly to a negative constant.
This lack of demographic significance is unlikely to be desirable. Therefore,
orthogonal age functions can conflict with a desire for each age/period term
to have distinct demographic significance for models with parametric age
functions coming from different functional families.

In summary, we find that orthogonality between age functions makes
most sense when the age functions come from the same family, such as poly-
nomials, and therefore can be orthogonalised easily. For models with very

24The Legendre polynomials have a long pedigree, first in mathematical physics, but
more recently in the graduation of mortality rates (for instance in Renshaw et al. (1996)
and Sithole et al. (2000)). We also note that the third (quadratic) Legendre polynomial is
used as an age function in one of the extensions to the CBD model in Cairns et al. (2009).
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different functional forms for the age functions, orthogonalisation is unlikely
to be desirable as it will conflict with a desire to give each age/period term
distinct demographic significance.

7 Identifiability in mixed models

Some AP mortality models have mixed parametric and non-parametric age
functions, such as the model of Wilmoth (1990) (excluding the cohort term)
and the models used to explore the data in Hunt and Blake (2014). Other
studies, such as Reichmuth and Sarferaz (2008), have proposed extending the
LC model with exogenous variables, such as economic or health indicators,
which take the form of period functions with a prescribed form. The identi-
fiability issues in such mixed models, however, are similar to those addressed
in Sections 5 and 4 above.

As with models with purely parametric age functions, in mixed models,
the prescribed form of the age or period functions means that we must restrict
the transformations in Equations 12 and 11 so that they remain unchanged.
For instance, consider the model

ηx,t = αx + f(x)κ
(1)
t + βxκ

(2)
t (23)

This model has one parametric age function, f(x), and one non-parametric
age function, βx, while the two period functions are freely varying. We see
that the transformation in Equation 12 is still applicable, as it will not change
the form of f(x) and therefore we still need to define the location of the pe-
riod functions via an identifiability constraint.

However, we see that the transformation

{f̂(x), κ̂
(1)
t , β̂x, κ̂

(2)
t } =

{

f(x), κ
(1)
t + abκ

(2)
t ,

1

a
βx − bf(x), aκ

(2)
t

}

(24)

is an invariant transformation of the model in Equation 23 and avoids chang-
ing the form of f(x). This is a special case of the general transformation in

Equation 11, with the matrix, A, taking the restricted form A =

(

1 ab

0 a

)

.
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We can see that this transformation corresponds to a reduced set of invariant
transformations compared with the LC2 model, since it only has two degrees
of freedom, compared with the four in the unrestricted matrix, A.

The form of the restrictions on A means that only the scale of βx (set by
a) and the angle between βx and f(x) (set by b) are undefined. In such a
model, it therefore makes sense to impose a standard normalisation scheme
on βx, for example,

∑

x |βx| = 1, and an orthogonality constraint between βx

and f(x), i.e.,
∑

x βxf(x) = 0.

Next, consider the alternative model

ηx,t = αx + β(1)
x K(t) + β(2)

x κt (25)

where K(t) is either a deterministic function, such as in Callot et al. (2014),
or an exogenous variable such as real GDP or an indicator variable to account
for an epidemic, such as in Liu and Li (2015), or a war. We also note that
this type of model is common in multi-population models where the period
function in one population is required to be the same as that in another,
for instance, those of Carter and Lee (1992) and Li and Lee (2005). In this
case, we see that we can no longer use the unrestricted transformation in
Equation 12, since the location of K(t) is set a priori. Therefore, we only
need to impose a constraint on the level of the remaining period function,
such as

∑

t κt = 0.

As with the model in Equation 23, we also have a restricted set of trans-
formations of the form in Equation 11 in order to avoid changing K(t) in the
transformation. In this case, the transformation of the parameters is

{β̂(1)
x , K̂(t), β̂(2)

x , κ̂t} =

{

β(1)
x +

b

a
β(2)
x , K(t),

1

a
β(2)
x , aκt − bK(t)

}

(26)

which leaves K(t) unchanged. In this case, the restricted form of the matrix,

A, in Equation 11 is A =

(

1 0
−b a

)

, which can be compared to the restricted

form for the model in Equation 23.

Similarly, these restricted transformations mean that only the scale of β
(2)
x

(set by a) and the angle between K(t) and κt (set by b) are undefined. Con-
sequently, this transformation can be used to impose a normalisation scheme
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on β
(2)
x and orthogonalise K(t) and κt by means of additional identifiability

constraints. In this case, the orthogonalisation of the period functions has
the clear interpretation that κt explains that part of the variation that is
independent of the factor K(t). However, this was not done in Liu and Li
(2015), which, in the context of that study, made it difficult to interpret the
meaning of κt for years when there was an epidemic.

Hence, we see that mixed models act to impose restrictions on the more
general set of invariant transformations present in a model with fully non-
parametric age functions. These restrictions are specific to different models,
and depend upon the specification of the model in question. This is espe-
cially common in many multi-population mortality models, such as some of
those discussed in Villegas and Haberman (2014), which can be interpreted
as mixed models where the form of different age and period functions is com-
mon to different populations and hence restricted. Consequently, we must
analyse each individual model in order to determine which identifiability is-
sues it possesses and, hence, a suitable set of identifiability constraints to
impose.

8 Parameter uncertainty and hypothesis test-

ing

8.1 Parameter uncertainty

Having obtained a set of parameters by fitting a model to data with some set
of arbitrary identifiability constraints, it is common to investigate the degree
of uncertainty associated with these estimated parameters. A number of
techniques have been developed to do this, for instance

• using the asymptotic normality of parameters estimated by maximum
likelihood methods, as in Brouhns et al. (2002b);

• using a “semi-parametric” bootstrap based on Poisson (or binomial)
death counts, as in Brouhns et al. (2005);

• using a residual bootstrapping method, such as that developed in Koissi et al.
(2006) or the more complicated techniques discussed in D’Amato et al.
(2011) and Debón et al. (2008, 2010), and
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• using Bayesian Markov chain Monte Carlo (MCMC) methods, as in
Czado et al. (2005).

All of these techniques were developed for the LC model, as the simplest and
most widely used mortality model. In the following section, we follow this
convention and implicitly assume that we are dealing with the LC model.
However, in principle, they could all be used with any other AP mortality
model.

The first three of these methods have been tested and compared in Renshaw and Haberman
(2008) and all four were compared in Li (2014). It is important that any con-
clusions drawn from them do not depend upon the arbitrary identifiability
constraints imposed in the model. Since the fitted mortality rates do not
change under the invariant transformations of the model, their variability
due to parameter uncertainty should not depend on the identifiability con-
straints imposed either. Appropriate methods for determining parameter
uncertainty should ensure this. Two users of a mortality model, using the
same data and method for investigating parameter uncertainty, but using
different (but equally valid) identifiability constraints should find the same
degree of variability of mortality rates under parameter uncertainty.

It is therefore desirable to start from the difference between the observed
and fitted mortality rates, since this will be independent of the identifia-
bility constraints chosen from them model and ensure that our results are
consistent with observations. For instance, in Brouhns et al. (2005), Poisson-
distributed random death counts were generated at each age and year.25 The
distribution of the bootstrapped death counts is therefore unaffected by which
identifiability constraints are imposed. Likewise, the fitting residuals used in
Koissi et al. (2006) depend only on the actual and fitted death counts and
thus not on the identifiability constraints used in fitting the model. Therefore,
estimates of the impact of parameter uncertainty on observable quantities,
such as fitted mortality rates or life expectancies, will be independent of the
arbitrary identifiability constraints.

25In Brouhns et al. (2005), it was assumed that Dx,t ∼ Po(dx,t), i.e., the random death
counts follow a Poisson distribution with mean equal to the observed death count. This
was modified in Renshaw and Haberman (2008) to Dx,t ∼ Po(Ec

x,tµx,t), i.e., mean equal
to the fitted death counts, which is more consistent with other bootstrapping techniques.
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However, estimates for the variability of the model parameters will still
only be valid conditional on the chosen set of identifiability constraints. For
instance, imposing the constraint κ

(i)
1 = 0 in a model will mean that κ

(i)
1

will trivially not show any variability using the Brouhns et al. (2005) or
Koissi et al. (2006) methods, but this will not be the case for other choices of
constraints. Therefore, the observed parameter uncertainty should be seen
only in the context of the identifiability constraints applied.

It is also important to ensure that the model is fully identified when using
these bootstrapping approaches. If the model is not fully identified, we may
observe spurious variation in the parameters which does not lead to real vari-
ability in the fitted mortality rates. This is of most practical relevance with
the orthogonality constraints for models such as the LC2 model in Equation
13, as these are often overlooked if maximum likelihood or minimum deviance
techniques are used to fit the model.

The alternative approach to starting from the difference between observed
and expected mortality rates is to consider the distribution of the model pa-
rameters directly. However, methods which generate new samples of parame-
ters directly, such as the asymptotic method of Brouhns et al. (2002b) or the
Bayesian techniques of Czado et al. (2005), must be used with considerably
more care.

First, consider the asymptotic method of Brouhns et al. (2002b). This
assumes that the variation of the maximum likelihood parameters is given
by the information matrix (i.e., the second derivative of the log-likelihood,
L) with respect to the model parameters evaluated at the selected parameter
estimates). The first thing to note here is that, in order to identify the model,
the likelihood being maximised is the constrained likelihood. Starting from
the forms of the likelihood function in Hunt and Blake (2015c), this means
that we use Lagrangian multipliers to impose the constraints. For example,
to impose the Lee and Carter (1992) model constraints involves adjusting
the likelihood function by

L(dx,t; {α, β, κ}) → L(dx,t; {α, β, κ})− λ1

∑

t

κt − λ2

(

1−
∑

x

βx

)
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Therefore, the information matrix is explicitly dependent upon the identifi-
ability constraints imposed. For instance, we can see this by considering the
second derivative of the likelihood with respect to the age function βx

∂2L

∂(βx)2
= −

∑

t

Var(Dx,t)(κt)
2

if we use the canonical link function, as discussed in Hunt and Blake (2015c).
If we apply the transformation in Equation 9, βx is unchanged. However, we
have

∂2L

∂(β̂x)2
= −

∑

t

Var(Dx,t)(κ̂t)
2

= −
∑

t

Var(Dx,t)(κt + b)2

=
∂2L

∂(βx)2
+ 2b

∑

t

Var(Dx,t)κt − b2
∑

t

Var(Dx,t)

In this case, the form of the information matrix with respect to βx has
changed under a transformation which did not change βx itself. This needs
to be taken into consideration carefully, and may explain the variation in the
uncertainty in the fitted mortality rates observed in Renshaw and Haberman
(2008) when the identifiability constraints are altered.

Next, we consider Bayesian techniques, such as MCMC. As discussed
in Nielsen and Nielsen (2014), these can often appear to solve identifiability
issues but in fact confuse and disguise them. The use of Bayesian methods
often involves consideration of the posterior distribution, π, of the parameters
given by

ln(π({α, β, κ})) = L(dx,t; {α, β, κ}) + ln(φ({α, β, κ})) + constant

where φ is the prior distribution for the parameters. The log-likelihood func-
tion, L(dx,t; {α, β, κ}), is unchanged by the invariant transformations of the
model parameters and so does not depend upon the chosen identifiability
constraints. However, in general, the prior distribution φ will change un-
der these transformations, unless it is very carefully chosen. This, in turn,
means that the posterior distribution will also vary under the invariant trans-
formations of the model, and so will depend implicitly on any identifiability
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constraints imposed.

A poorly chosen set of priors implicitly imposes a set of identifiability
constraints upon the model. For example, a prior distribution that assumes
κ
(i)
t follows an AR(1) process around zero implicitly imposes a level on the

period parameters. These implicit constraints may conflict with the explicit
constraints subsequently imposed (such as a subsequent choice of the level

of κ
(i)
t ). Even when there are no conflicts, this implicit selection of identifia-

bility constraints is opaque and it is not clear which features of the posterior
distribution are meaningful and which are mere artefacts of the identifiability
scheme implicit in the prior.

We therefore recommend that the prior distribution of the model param-
eters, φ, is selected so that it is unchanged by the invariant transformations
of the model. This enables a single set of identifiability constraints to be
imposed upon the model without internal conflicts, with these constraints
being clear and transparent to all other model users, and with the posterior
distribution being independent of the arbitrary choice of identifiability con-
straints (just as the likelihood is).

8.2 Hypothesis testing

Identifiability issues also have important consequences if hypothesis testing
on the parameters is performed. In general, hypotheses cannot be tested
on the parameter values directly, since they depend upon the identifiability
constraints. For instance, testing the hypothesis κT = 0 in the LC model is
meaningless, since we can impose κT = 0 (or any other value) by our choice
of identifiability constraint. We might be tempted to find combinations of
the parameters which are invariant to the transformations of the parameters
and test hypotheses based on these. For instance, we may wish to test the
hypothesis that mortality is declining faster at age x1 than at age x2 using
the LC model. To do this, we might note that the expected value of B ≡

βx1

βx2

is invariant under the transformation in Equation 11 and so does not depend
on the identifiability constraints, making it a suitable candidate for hypothe-
sis testing. However, we would have to take care when using a statistic such
as this, since it will be undefined in the case βx2 = 0, which could not be
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known before the model is fitted to data. In general, therefore, any tests of
hypotheses should be performed on observable quantities such as the fitted
mortality rates rather than the model parameters.

Direct hypothesis testing of the parameters in an AP model is not often
performed in the literature, and therefore this discussion may appear to be of
theoretical interest only. However, it is common to use a variety of statistical
tests when determining the time series properties of the period functions.
For instance, in Lee and Carter (1992) and Cairns et al. (2011), Box-Jenkins
methods were used to determine the preferred time series process for the pe-
riod functions of different models. Based on the conclusions above, in many
cases, the results of these statistical tests will depend on arbitrary choices
made when identifying the model. The properties typically tested, such as
stationarity, lagged dependence and cross correlation, will affect our pro-
jected mortality rates and so are matters of great practical importance. We
should therefore treat with extreme caution the results of any such analysis.
This subject is dealt with further in Section 9.

In summary, not only do our estimates of the parameters of an AP model
depend on the identifiability constraints when fitting the model, so do our es-
timates of the uncertainty attached to those parameter estimates. We should
therefore avoid testing hypotheses on these parameter estimates, as our re-
sults will be dependent on the arbitrary identification scheme imposed. In
general, methods of estimating parameter uncertainty which use bootstrap-
ping techniques on the fitted mortality rates, which are independent of our
choice of identifiability constraints, are likely to be preferred over methods
which target the parameters directly. We must still ensure, however, that
our models are fully identified when testing parameter uncertainty, as the
parameters in a poorly identified model may show spurious differences in
ways which do not affect the variability of the fitted mortality rates.

9 Projection

In the preceding sections, we have seen that AP mortality models are not
uniquely identified and that we need to impose arbitrary identifiability con-
straints on the parameters in order fit them to historical data. Two different
modellers using the same data and the same model but different arbitrary
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identification constraints will, consequently, obtain different sets of parame-
ters, but these will give identical fitted mortality rates and, therefore, fits to
the data.

For the majority of practical purposes, we not only need to fit a mortality
model to historical data but also to use it to project mortality rates into the
future. In order to make projections of future mortality rates, we typically
model the period parameters as being generated by time series processes and
use these to project the parameters stochastically into the future. However,
the time series processes generating the period parameters are unknown. To
find which processes to use, we typically analyse the fitted parameters by
statistical methods, such as the Box-Jenkins procedure, to determine which
processes from the ARIMA family provide the best fit.

Nevertheless, when it comes to projecting mortality rates, we need to
recognise that there is a fundamental symmetry between the processes of
estimating a model and projecting it. The former takes observations to cali-
brate the model, whilst the latter uses this calibration to produce projected
observations of the future. Due to this symmetry, identification issues which
exist when fitting the model may also yield problems when projecting it.

We formalise this by saying that:

Two sets of model parameters, which give identical fitted mor-
tality rates for the past, should give identical projected mortality
rates when projected into the future.

We say that time series processes which satisfy this property are “well-
identified”.

In particular, the invariant transformations of the parameters of the
model which leave the fitted mortality rates unchanged should also leave the
projected mortality rates unchanged and, hence, the time series processes
used to generate the projected mortality rates unchanged. Consequently, we
should use the same time series processes for all sets of parameters from a
model which give the same fitted mortality rates. If this is not the case, dif-
ferent processes will be used for different arbitrary identifiability constraints,
giving different projected mortality rates. A well-identified time series pro-
cess should be equally appropriate for all equivalent sets of parameters. For
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example, we should use the same time series processes to project the period
parameters shown in Figure 3a for the LC2 model as those shown in Figure
3b. Similarly, we should use the time series processes to project the period
parameters in the CBDX models in Equations 18, 20 and 22, since all three
of these models are equivalent. To confirm this, we need to check that apply-
ing the invariant transformations to the parameters, which leave the fitted
mortality rates unchanged, do not also affect the time series processes used
to project the parameters.

Current practice is to:

1. fit the chosen model to data, imposing any arbitrary identifiability
constraints needed to specify the parameters uniquely;

2. select time series processes for projecting the parameters based on ei-
ther using a statistical method (such as the Box-Jenkins procedure to
select the preferred processes from the ARIMA class of models) or by
directly choosing the time series processes to ensure biologically reason-
able26 projections by making an appeal to the demographic significance
of the parameters..

However, such an approach often leads to projections of mortality rates which
are not well-identified. This is because the second step in the process assumes
that the parameters found at the first step are known, rather than merely
estimated up to an arbitrary identifiability constraint. This means that cur-
rent practice builds the arbitrary identifiability constraint into the projection
process, ensuring that the projected mortality rates are also arbitrary.

In order to obtain well-identified projections, we need to select our pro-
jection methods carefully. This means that the time series model we estimate
based on the fitted parameters and project into the future should not change
form under the transformations in Equations 11 and 12. However, we saw in
Section 4 that we cannot use the transformation in Equation 11 in models
with non-parametric age functions. Therefore our selection of well-identified
projection methods in such models has to be subtly different, as discussed

26The concept of biological reasonableness was introduced in Cairns et al. (2006b) and
defined as “a method of reasoning used to establish a causal association (or relationship)
between two factors that is consistent with existing medical knowledge”.
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below.

9.1 Models with non-parametric age functions

Consider the case of projecting an AP mortality model with non-parametric
age functions, which has been fitted using data over the period [1, T ] to give
mortality rates at time τ > T . From Equation 2, we could write this as

ηx,τ = αx + β⊤
xκτ

We can also see that the projected mortality rates for the future are un-
changed by the use of the invariant transformations of the parameters in
Equations 12 and 11, just as the fitted mortality rates were for the past, i.e.,

ηx,τ = α̂x + β̂
⊤

x κ̂τ

where

κ̂τ = Aκτ +B

β̂
⊤

x = β⊤
xA

−1

α̂x = αx − β⊤
xA

−1B

Unlike the fitted parameters, however, the projected κτ will be some
random variable, whose distribution is a function of the fitted parameters,
i.e., κτ = Pκ(τ ; {κ}). We said previously that we should use the same
method of projection for all sets of parameters as a first step in ensuring
that the projected mortality rates do not depend upon the identifiability
constraints. However, for different identifiability constraints, these processes
will be estimated from different sets of fitted parameters, e.g., if we use
Pκ(τ ; {κ}) to project the untransformed period parameters, we must use
Pκ(τ ; {κ̂}) to project the transformed period parameters. If we combine this
with the invariance of the projected mortality rates, we have

αx + β⊤
x Pκ(τ ; {κ}) = α̂x + β̂

⊤

x Pκ(τ ; {κ̂})

αx + β⊤
x Pκ(τ ; {κ}) = αx − β⊤

xA
−1B + β⊤

xA
−1Pκ(τ ; {Aκ+B})

β⊤
x Pκ(τ ; {κ}) = β⊤

xA
−1 [Pκ(τ ; {Aκ+B})− B]

Pκ(τ ; {κ}) = A−1 [Pκ(τ ; {Aκ+B})−B]

Pκ(τ ; {Aκ+B}) = APκ(τ ; {κ}) +B (27)
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for general βx, i.e., that the time series processes we use to project the pe-
riod functions are location and scale preserving. This is also discussed in
Nielsen and Nielsen (2014).

One common practice is to use univariate time series processes to project
the period functions, on the grounds that they are uncorrelated over the
historical sample. For example, in Hyndman and Ullah (2007, p. 4948),
when considering the selection of suitable time series processes for projecting
a model with non-parametric age functions, it was stated27

For N > 1 this is a multivariate time series problem. However,
because of the way the basis functions β

(i)
x have been chosen, the

coefficients κ
(i)
t and κ

(j)
t are uncorrelated for i 6= j. Therefore it

is likely that univariate methods will be adequate for forecasting
each series κ

(i)
t , for i = 1, . . . , N .

This logic was reiterated in Hyndman et al. (2013) for a related model, as

“There is no need to consider vector models because the κ
(i)
t coefficients are

all uncorrelated by construction”.

However, we saw in Section 5 that the lack of correlation between the
different period functions is a product of the choice of identifiability con-
straints, and that we could find alternative parameters which gave identical
fitted mortality rates which had non-zero correlation. Choosing univariate
time series processes will therefore not give well-identified projections, but
instead will give projected mortality rates which are dependent upon the
identifiability constraints chosen.

The first conclusion we can draw is that we should always use multivariate
processes to project mortality models with more than one age/period term.
Using a multivariate framework allows us to consider the period functions
together and so encourages a unified approach to modelling them, rather
than focusing on each period function separately. It also allows the invari-
ant transformations in Equations 11 and 12 to be applied to the time series
processes directly to check whether they are well-identified.

27Notation has been adjusted to reflect that used in the current paper.
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The use of multivariate processes means that the order of integration of
each of the time series processes should be the same. We should only consider
the stationarity of the vector process as a whole, rather than of its individual
components. It is common practice to use the highest order of integration
for any of the individual period functions (usually first order) as the order of
integration for all of them to avoid identification issues.

We can see this by taking a general multivariate time series process for
κt from the class of VARIMA(p,d,q) processes

∆dκt = µ+

p
∑

s=1

Φs∆
dκt−s +

q
∑

r=0

Ψrǫt−r (28)

and applying the transformations in Equation 11 and 12 to give

∆dκ̂t = Aµ+∆dB −

p
∑

s=1

AΦsA
−1∆dB +

p
∑

s=1

AΦsA
−1∆dκ̂t−s +

q
∑

r=0

AΨrǫt−r

= µ̂+

p
∑

s=1

Φ̂s∆
dκ̂t−s +

q
∑

r=0

Ψ̂rǫ̂t−r

We therefore see that all general VARIMA(p,d,q) processes are location and
scale invariant in the sense of Equation 27, and so are well-identified.

However, we also see from this that any specific structure we impose a
priori on µ, Φs and Ψr will not be invariant under these transformations. Our
second conclusion is, therefore, that we should not assume any pre-specified
locations, scales or correlations between our period functions by assuming
a prior structure for the matrices governing the time series processes that
drives them.

In practice, in order to be invariant to transformations of the form in
Equation 11, we should always allow for the possibility of both cross-lags
between the time series and contemporaneous correlations between the in-
novations, even if these are not evident from inspection of the fitted time
series. In situations where our arbitrary identification constraints set some
of these time series parameters to zero, this will emerge naturally from their
estimation and do not need to be imposed by the model user.
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Finally, we observe that all VARIMA time series models are invariant
to simple rescalings of the period functions, i.e., using the transformation
in Equation 11, the matrix A being diagonal. Therefore, all time series
processes are invariant under alternative choices of normalisation scheme.
However, having a consistent scale for all period functions is desirable as it
assists with the numerical estimation of the time series parameters.

In summary, the use of multivariate time series processes means that we
should not treat the period functions differently when projecting them, as
the invariant transformation in Equation 11 means that the age/period terms
are interchangeable, which, in turn, means that we can rotate them without
changing the fit to data or the demographic significance of any of the param-
eters.

9.2 Projecting the LC2 model

As a practical example of this, consider projecting the LC2 model in Sec-
tion 5. Tests on the fitted time series processes from Figure 3a show that
they are uncorrelated, which is a direct result of the identifiability constraint
∑

t κ
(1)
t κ

(2)
t = 0. However, we saw that the model period functions given in

Figure 3b had a correlation of -75%, but gave exactly the same fitted mor-
tality rates. We should therefore use multivariate processes for both set of
parameters.

Testing these parameters for stationarity, we find that both of the period
functions in Figure 3 are non-stationary. We would therefore be justified in
using a multivariate random walk for both sets of period functions (i.e., those
from both Figure 3a and from Figure 3b).

We can see directly that this time series process is well-identified, since if

κt = κt−1 + µ+ ǫt

then

κ̂t = κ̂t−1 + Aµ+ Aǫt

after applying the transformations in Equations 12 and 11. We see that
integrated time series are unchanged by changes in the level of the period
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functions, and so are automatically invariant to the transformation in Equa-
tion 12.

At this point, it is also worth noting an important side effect of imposing
orthogonality on the period functions in the LC2 model. κ

(1)
t is usually found

to be linear to quite a good approximation; so much so that this was called
the “universal pattern of mortality decline” in Tuljapurkar et al. (2000). By

construction, therefore, κ
(2)
t cannot be roughly linear if we impose orthog-

onality, which makes projecting it trickier. We believe that this could be
one of the reasons why the LC2 model is not more widely used, despite be-
ing a natural extension of the classic LC model. Often, the second term
appears quadratic to quite a good approximation.28 Various authors (such
as Renshaw and Haberman (2003b) and Yang et al. (2010)) have suggested
using break points or “hinges” in order to continue to use linear projection
processes. However, this is a case of selecting a time series process specifically
because of a feature of the period functions that is present solely because of
the particular identifiability constraints imposed, and therefore the resulting
projections will not be well-identified.

Using a multivariate random walk with drift for the time series processes
in Figures 3a and 3b gives the projected κ

(2)
t period functions in Figure 5a.29

While these projections appear quite different, the projected mortality rates
from them at age 65, shown in Figure 5b are identical, thereby demonstrating
that we have, indeed, chosen a well-identified projection method for the LC2
model.

9.3 Models with parametric age functions

In Section 6, it was shown that models with parametric age functions have
subtly different identifiability issues when fitting them to data to those with
non-parametric age functions. This is due to the transformations in Equation
11 not being allowed, since they changed the definition of the age functions
and hence gave a different, but equivalent, model. However, we saw that this

28For instance in Renshaw and Haberman (2003b), Hatzopoulos and Haberman (2009)
and Yang et al. (2010) as well as in Figure 3a.

29As seen in Figure 3, the difference between the two κ
(1)
t parameters is very small.
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meant we could select between equivalent models, which had different defini-
tions of the age functions, but gave identical fitted mortality rates. This was
done in order to choose models with desirable properties such as a common
normalisation scheme and orthogonal age functions. These subtle differences
are also present when projecting the model.

First, the transformations in Equation 12 are used to impose a level on the
period functions through identifiability constraints in models with parametric
age functions in exactly the same manner as for models with non-parametric
age functions. Consequently, we need to ensure that the time series processes
used to project the period functions are identifiable under changes in location
in exactly the same way as described for non-parametric age/period terms
above. This means either using integrated time series processes or allowing
for mean reversion to a non-zero level.

However, the transformations in Equation 11 are not needed in models
with parametric age functions, since applying them would fundamentally
change the model. Since we cannot normalise the age functions during the
fitting process, we must instead define normalised (or self-normalising) age
functions in advance. We cannot impose orthogonality on the age functions,
although we could define orthogonal age functions a priori.

In addition, we cannot impose orthogonality on the period functions, as
was done for the LC2 model, and therefore the period functions in models
with parametric age functions will be correlated in general. This means that
it is natural to project the period functions in such models using multivariate
time series processes, just as we should in models with non-parametric age
functions. However, because the transformations in Equation 11 are not ap-
plicable in models with parametric age functions, if we use a VARIMA(p,d,q)
time series process for the period functions, as in Equation 28, we only have to
ensure that the time series process is invariant to the transformation in Equa-
tion 12. To do this, we substitute the transformed parameters, κ̂t = κy +B,
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into Equation 28 to find

∆dκ̂t = µ+∆dB −

p
∑

s=1

Φs∆
dB +

p
∑

s=1

Φs∆
dκ̂t−s +

q
∑

r=0

Ψrǫt−r

= µ̂+

p
∑

s=1

Φs∆
dκ̂t−s +

q
∑

r=0

Ψrǫt−r

Although the drift term, µ has changed as a result of this transformation,
the matrices Φs and Ψr have not. Consequently, we see that any structure
we impose a priori upon the moving average and autocorrelation of the time
series process is also unchanged by changes in the identifiability constraints
in models with parametric age functions. This means that, in theory, it is
possible to give each term distinct structure, such as different orders of inte-
gration or numbers of lags. This may be felt to be desirable if doing so gives
projections with greater demographic significance.

For example, consider the exponential model in Equation 19. In this, we
interpret κ

(2)
t as representing the component of mortality change specific to

very young ages, in excess of the changes in general mortality rates governed
by κ

(1)
t . If we had a strong prior belief that these should mean-revert to a nat-

ural level (for instance, because we believed that infants should not receive
systematically better or worse medical care than the general population), we
might chose to allow our subjective demographic significance for the term to
overrule a purely statistical evaluation of the time series process in this case.
Because we do not use the transformation in Equation 11 to enforce a con-
straint when fitting the model, we do not have to ensure that our projection
process is robust to its application when the model is projected.

We may also feel that such a restriction will give projected mortality rates
with greater biological reasonableness. For example, we may have biological
reasons for believing that infant mortality rates should always be higher than
those for young children at age five, say. However, using a non-stationary
time series process for κ

(2)
t allows there to be scenarios with non-zero proba-

bility where this is violated, and therefore we might wish to use a stationary
time series process for κ

(2)
t to avoid any scenarios felt to be biologically un-

reasonable.30

30Similar arguments were considered in Cairns et al. (2006a) and Plat (2009).
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However, such arguments ignore the fact that, for any model with para-
metric age functions, there are a range of equivalent models which give iden-
tical fitted mortality rates and so, ideally, should be projected using the same
time series processes to give identical projected mortality rates.31 There may
also be features, such as changes in trend, which are present in the period
functions for one model but absent in an equivalent model, and so are not
objective features of the data. Since these equivalent models are linked by
the transformation in Equation 11, it is still highly desirable to use general
VARIMA processes, with no a priori structure placed on them, just as for
models with non-parametric age functions.

In practice, it is not often that the demographic significance of a term in
an AP mortality model leads to specific requirements about how it should
be projected. For instance, while we may seek to rule out any possibility of
mortality rates being lower at birth than at age five in the exponential model,
this is highly unlikely to occur even if non-stationary time series processes are
used for κ

(2)
t , since it is inconsistent with the historical data. We therefore

recommend that general, well-identified, multivariate VARIMA processes are
used to project the period functions in models with parametric age functions,
unless these are shown experimentally to give biologically implausible pro-
jected mortality rates.32

9.4 Summary

In summary, we can say that in order to obtain projections which are well-
identified from an AP model, we need to work backwards from our desire for
time series processes which do not change form under the invariant trans-

31As these are distinct models, this is a weaker requirement than is necessary to be
well-identified under our definition above.

32In some circumstances, there are clear conflicts between the need for biological reason-
ableness in projected mortality rates and the desire to use the same time series processes
for all period functions and in all equivalent models. These circumstances do not often
arise in AP mortality models, but are more common in models with a cohort term which
generates additional identifiability issues, and examples of such cases are discussed in
Hunt and Blake (2015b) and Hunt and Blake (2015a). In such circumstances, it is usually
preferable to choose processes which give biologically reasonable projections rather than
identifiability under transformations which are not relevant in fitting the model.
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formations in Equations 11 and 12. This means that we should always use
multivariate time series processes, as these support a unified approach to
projection and allow us to check identifiability easily.

Identifiability also means, in general, that we should not treat the dif-
ferent period functions differently. In practice, this means assuming as little
structure a priori for the time series processes as possible and using the same
order of integration for each period function. In models with parametric age
functions, however, there may be conflicts between achieving this and the
biological reasonableness of the projected mortality rates. Treating the dif-
ferent period functions in the same manner is still highly desirable, however,
as it avoids using different processes to project equivalent models, and often
emerges naturally out of a statistical analysis of the fitted period functions.
These conclusions are summarised in Table 1 below.

Property of time series Non-parametric Parametric
process used in projection age functions age functions

Multivariate Essential Essential
Invariant to changes in scale Automatic Automatic
Invariant to changes in level

Essential Essential
(i.e., integrated or no preset level of mean reversion)

Correlation between period functions Essential Highly desirable
Have same order of integration Essential Highly desirable

Includes cross lags between period functions
Essential Highly desirable

(if autoregressive)

Table 1: Requirements for identifiable projection methods in AP mortality
models

10 Conclusions

Most AP mortality models are not fully identified, since different sets of
parameters will give identical fits to the observable data. This lack of iden-
tifiability requires us to impose additional constraints upon the parameters,
which may help us interpret them and give them demographic significance.
However, these additional constraints are chosen by the model user and there-
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fore are subjective and arbitrary.

When using mortality models, it is important to be aware of all of the
identification issues present and also how they need to be resolved. In many
cases, this is done explicitly, such as in the model of Lee and Carter (1992).
In others, it is done implicitly through the use of particular fitting proce-
dures (e.g., Renshaw and Haberman (2003b) or Yang et al. (2010)). In cases
where it is done implicitly, the identifiability constraints should still be clearly
stated. This ensures that users of the model can correctly identify features
of the fitted parameters which relate to the data (and so are worthy of inves-
tigation) and those which are merely artefacts of the identification scheme
(such as the independence of the period functions in the LC2 model) and so
are not. It also allows goodness of fit tests which use penalties based on the
number of degrees of freedom in a model to be used reliably.

In addition, in parametric models, it is often desirable to select the age
functions so that they have a consistent normalisation scheme based on a
true norm, as this will allow comparisons to be made between the different
age/period terms and will aid in the robustness of the projections. For mod-
els where the age functions have free parameters that are set with reference
to the data, it is desirable to use self-normalising age functions to improve
the stability of the numerical algorithms used to estimate the parameters
and, hence, the model’s robustness. However, these are properties of the
age functions which are selected in advance of fitting the model, rather than
being imposed during the fitting process via identifiability constraints.

These identification issues also have consequences when projecting the
models. In general, in order to obtain identifiable projections, we should
choose to project the model using multivariate processes which do not treat
the period functions differently. It is also advisable to leave any vector rep-
resentation of the time series as unstructured as possible (i.e., using general
time series parameter matrices rather than imposing any structure on them
a priori) in order for the representation to be robust across all identification
schemes. Structure imposed through the arbitrary identifiability constraints
will emerge when estimating these parameters. In models with parametric
age functions, however, the use of identifiable projection methods is often
desirable and natural, but may be subordinated to our desire for biological
reasonableness in the projections.
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In short, identification in AP mortality models is a non-trivial exercise
which requires careful consideration and has consequences when we use the
models to compare datasets or project future mortality rates. A lack of un-
derstanding of this can lead to projections which depend upon the arbitrary
decisions made by the model user rather than the data. By understanding
these issues, we can build more complex mortality models, for instance, via
the “general procedure” of Hunt and Blake (2014), and be confident that
they are founded on a secure knowledge of the underlying mathematical
structure of AP models. The subject of identifiability becomes considerably
more complicated when we move beyond the AP structure to include the
effects of year of birth (or cohort) as discussed in Hunt and Blake (2015b).

A Models without a static age function

As discussed in Hunt and Blake (2015c), a number of AP mortality models
have been proposed which do not have an explicit static age function, αx.
These include the CBD model of Cairns et al. (2006a) and the model of
Aro and Pennanen (2011), along with extensions of these. In order to achieve
this, the age functions in the model must be parametric and therefore known
in advance of fitting the model to data. The structure of the AP model in
this case is therefore

H = βκ

where H = {ηx,t} as in Section 2.

In this case, we see that the identifiability issues in the model are sim-
plified relative to the full structure in Equation 3. In particular, we see that
the transformation in Equation 12 is no longer relevant and so the location
of the period functions is no longer unidentified. Instead, the locations of the
period functions are determined by the data and we no longer need to set
them through identifiability constraints. Further, in the case where the age
functions in the model are parametric, the transformation in Equation 11 is
also no longer applicable, meaning that the model is fully identified. This
is why no additional constraints are required for the models in Cairns et al.
(2006a) and Aro and Pennanen (2011).
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When projecting these models, we do not need to ensure that the time
series processes are invariant to changes in the locations of the period param-
eters. However, since the fitted period parameters will have levels set by the
data and these will typically be significantly different from zero, we need to
allow for this possibility in our choice of time series processes. Consequently,
in practice, time series processes which are either integrated or have the level
of the period functions as a free parameter are often used to project the
period functions. For instance, Cairns et al. (2006a) and Aro and Pennanen
(2011) both used multivariate random walks with drift, which are invariant
to changes in level even though this property is not strictly required.

Alternatively, some studies implicitly dispense with a static age function
by fixing it in advance. For instance, Renshaw and Haberman (2003b) im-
posed

αx =
1

T

∑

t

ln

(

dx,t

Ec
x,t

)

(29)

before estimating the other terms in the model. This sets the static age func-
tion as the average of observed mortality rates in the period. The value of
the static age function is not subsequently revised when estimating the model.

In this case, the structure of the model becomes

H̃ = βκ

where H̃ =
{

ηx,t −
1
T

∑

τ ln
(

dx,τ
Ec

x,τ

)}

.

This means that Equation 12 is not an invariant transformation of the
model and, consequently, the locations of the period functions are identifi-
able (i.e., defined by the data). Consequently, we do not need to then impose
a constraint on the level of the period functions and, indeed, cannot do so
without affecting the fitted mortality rates.

This is important when it comes to assessing the number of degrees of
freedom in the mortality model, for instance, for the purposes of comparing
the goodness of fit. For models where the level of the period functions is
set via identifiability constraints, the model has X +N(X + T ) parameters
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and impose N level constraints and N2 scale and orthogonality constraints
on the model. In contrast, for models with a fixed static age function, the
model has N(X + T ) free parameters and requires only the N2 scale and
orthogonality constraints. Therefore, models with a fixed static age function
have X − N fewer free parameters than might otherwise be expected. This
was not allowed for in Haberman and Renshaw (2011) when comparing the
goodness of fit for different models, which brings some of the conclusions of
that study into question.

We also note that, in common with most statistical models with a two-
stage estimation process (as discussed in Murphy and Topel (2002)), pa-
rameters estimated at the second stage may be biased and have distorted
asymptotic distributions, compared with those estimated by a one-stage pro-
cess. This is because of the hierarchical structure of the model: the second-
stage parameters are only estimated conditional on the estimates of the first-
stage parameters previously obtained, which are not known with certainty.
To avoid this, we must either use a one-stage estimation process or use a
bootstrapping procedure, such as those proposed in Brouhns et al. (2005) or
Koissi et al. (2006) discussed in Section 8.1. These will allow fully for the
uncertainty in both the parameters estimated at the first and second stages.

One reason for imposing the particular form of the static age function in
Equation 29 is to give it approximately the same demographic significance as
that which comes from using the constraint

∑

t κ
(i)
t = 0, i.e., that the static

age function should represent the average mortality rate at each age over the
period of the data, as shown in Equation 10. We might, therefore, expect to
find

∑

t

κ
(i)
t 6= 0

for such a model. The difference between imposing the form of the static age
function in Equation 29 and the estimate of the static age function found
by maximising the fit to data and applying the identifiability constraint will
depend on whether there are any systematic differences across periods be-
tween the fitted and observed mortality rates. We might, therefore, expect
the difference between the two to be small if the model is a good fit to the
data. Hence, for a model where the static age function is imposed, how dif-
ferent the value of

∑

t κ
(i)
t is from zero is a measure of whether there are
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systematic differences between the observed and fitted mortality rates (i.e.,
whether there is structure remaining in the residuals from the model).33 For
models which do not provide an adequate fit to the data, there are likely
to be systematic differences between the fitted and observed mortality rates
and, hence, we will observe a value of

∑

t κ
(i)
t further from zero if the static

age function is imposed.

Nevertheless, even for a well-fitting model, it should be borne in mind
that the period functions do possess an identifiable level when projecting
them, even if this is small. It is therefore recommended that a non-zero level
is allowed for in the time series processes used to project the period func-
tions. In particular, we should not assume that any of the period functions
mean-revert around zero, but, instead, allow them to mean-revert around an
unspecified level. Nevertheless, this level would probably be close to zero,
if the model is a good fit to the data, and could be tested for statistical
significance (since it does not depend on an identifiability constraint).

In summary, models which either impose the value of the static age func-
tion a priori or which do not include an explicit static age function, have
a reduced set of identifiability constraints compared with otherwise similar
AP models where the static age function is unrestricted. Such models have
levels for the period functions which are set with reference to the data rather
than via an identifiability constraint. It is therefore necessary to include the
period function levels when making projections from these models, even if
the levels that have been estimated are close to zero. In most circumstances,
they should therefore be treated in the same fashion as models with an ex-
plicit static age function. In contrast, models with no explicit age function
but with a cohort term possess different identifiability issues to comparable
models with an explicit static age function, as discussed in Hunt and Blake
(2015b).

33Indeed, if least squares methods are used to fit the model, the two are identical
since this fitting procedure assumes that the residuals are independent and identically
distributed.

58



B Maximal invariants

An alternative approach to using an arbitrary identification scheme was sug-
gested by Nielsen and Nielsen (2014). This is to change the parameterisation
of the model to an equivalent form with reduced dimensionality which does
not suffer from identifiability issues. We can think of this reparameterisation
as mapping the old parameters to a new set

g(α, β, κ) = {α̃, β̃, κ̃}

The new parameters are chosen so that the new parameter space has the
same dimension as the model space, M, and so the mapping

Θ̃(α̃, β̃, κ̃) = Θ(g(α, β, κ))

is injective (and so will not suffer from identification issues). The new pa-
rameters, {α̃, β̃, κ̃}, are known as “maximal invariant” parameters, since they
are the set with the largest number of parameters (i.e., are “maximal”), and
are injective and give the same fitted mortality rates as the original model
in Equation 1 (i.e., the reparameterisation is “invariant”).

As all of the maximally invariant parameters are freely varying (i.e., un-
constrained) and dim({α̃, β̃, κ̃}) = dim(M) = X +N(X + T )− N(N + 1),
we see that there are X+N(X+T )−N(N +1) parameters in the maximally
invariant parameterisation. We can think of this as finding a parameterisa-
tion of the model which gives the same fit to data, but where every possible
degree of freedom in the model is fully utilised in fitting the data.

Nielsen and Nielsen (2014) showed that one way that maximal invariant
parameters can be used in the LC model in order to remove the lack of iden-
tifiability under the transformation in Equation 9 is through the use of the
orthogonal complement to 1 (the T × 1 column vector of ones defined in
Section 2). This is a T × (T − 1) matrix, 1⊥, used in Section 4, where every
column is orthogonal to 1, i.e., 1⊤1⊥ = 0 .

Using the identity I = 1(1⊤1)−11⊤ + 1⊥(1
⊤
⊥1⊥)

−11⊤⊥, we can decompose
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Equation 3 as

H = α1⊤ + βκ(1(1⊤1)−11⊤ + 1⊥(1
⊤
⊥1⊥)

−11⊤⊥)

= (α + βκ1(1⊤1)−1)1⊤ + β(κ1⊥(1
⊤
⊥1⊥)

−1)1⊤⊥

= α̃1⊤ + βκ̃1⊤⊥ (30)

where κ̃ is now a N × (T − 1) matrix. We can see that if we transform the
original parameters using Equation 12 we obtain

˜̂κ = κ̂1⊥(1
⊤
⊥1⊥)

−1

= (κ+B1⊤)1⊥(1
⊤
⊥1⊥)

−1

= κ1⊥(1
⊤
⊥1⊥)

−1

= κ̃

i.e., the lack of injectivity in the model is now between the mapping from the
old parameterisation to the new, but the transformation of the new parame-
ters to the fitted mortality rates is injective. This has explicitly reduced the
number of parameters in the model from X+N(X+T ) to X+N(X+T −1)
and means that the revised κ̃ parameters have identifiable location. How-
ever, the parameters are still not fully identified under the transformations in
Equation 11, and therefore the maximally invariant reparameterisation has
not completely solved the identifiability issues in the model.

It is also apparent that this technique does not depend on the form of the
matrix β. Specifically, if we use parametric age functions, then we can still
use the same analysis to remove the lack of identifiability in the level of the
period functions.

Mathematically, the approach suggested in Nielsen and Nielsen (2014) is
very elegant. However, in practice, the approach has hidden rather than
removed the lack of identifiability to the transformations in Equation 12.
This is because 1⊥ is not unique, but can be chosen by the model user.
The model user’s choice does not have any statistical consequences and is
equivalent to choosing a basis in the (T−1) dimensional orthogonal subspace
of RT spanned by 1⊥. Nonetheless , this choice will have consequences when
we come to interpret the demographic significance and project the parameters
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in the model. For instance, we might choose

1⊥ =















−1 0 0 · · ·
1 −1 0
0 1 −1
0 0 1
...

. . .















(31)

This choice means that (κ1⊥)
(i)
t corresponds to ∆κ

(i)
t = κ

(i)
t − κ

(i)
t−1, the

first differences between successive period parameters, which is invariant to
change in the level of κ

(i)
t . This has a natural interpretation and is related to

modelling “mortality improvement rates” as was done in Haberman and Renshaw
(2012) and Mitchell et al. (2013). Alternatively, we could choose

1⊥ =















−1 −1 −1 · · ·
1 0 0
0 1 0
0 0 1
...

. . .















(32)

This choice implies that (κ1⊥)
(i)
t corresponds to κ

(i)
t − κ

(i)
1 , the changes in

the period function from its initial value. This is also invariant to change
in the level of κ

(i)
t , but will have a very different pattern from that of the

first differences used previously (and be projected using different methods).
We could consider these choices as analogous to the imposition of the iden-
tifiability constraints

∑

t κ
(i)
t = 0 and κ

(i)
1 = 0, respectively. Most statistical

packages will select a 1⊥ matrix using a numerical algorithm and so κ1⊥ will
not have a natural interpretation, limiting the demographic significance of
any maximally invariant parameters.

When we come to project the model, we will need to extend 1⊥ as well as
κ̃t. For instance, to project τ years into the future, we will need to generate
a ((T + τ)× (T + τ − 1)) matrix 1̃⊥. However, in order to be consistent with
the fitted mortality rates, we will also need to ensure that the (T × (T − 1))
upper left submatrix of 1̃⊥ is identical to the matrix 1⊥ used when fitting
the model. This may not be the case when using some common algorithms
to generate these orthogonal matrices, leading to inconsistencies between the
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fitted and projected mortality rates, and so it is important that we under-
stand the method used to generate orthogonal matrices in order to ensure
consistency.

Even more problematic, our choice of 1⊥ might not preserve the time
ordering of κt. For instance, we can re-order the columns of the 1⊥ matrix
in Equation 31, so that (κ1⊥)

(i) is still a row vector of the first differences in

κ
(i)
t but not in chronological order. Since it is the time-ordering of κ

(i)
t which

allows us to interpret it as a time series and project it into the future in order
to forecast mortality rates, this is highly undesirable.

Furthermore, we have not removed the lack of identifiability under the
transformations in Equation 11. We therefore will still need to impose a
normalisation scheme on the age/period terms and can select orthogonal age
functions using this transformation. Hence, much of the discussion in Sec-
tion 9 is still relevant, even using a choice for 1⊥ which preserves the time
ordering of κt.

In summary, the use of maximal invariants in AP mortality models has a
number of elegant mathematical properties. However, moving to this frame-
work involves losing much of the demographic significance associated with
the parameters in a standard AP mortality model and does not solve many
of the key issues with projecting such models. It is, therefore, unlikely that
such an approach will be suitable for the purposes of most users of mortality
models.
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