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Mortality Regimes and Pricing 
 

 

Abstract 

Mortality dynamics are characterized by changes in mortality regimes. This paper 

describes a Markov regime switching model which incorporates mortality state 

switches into mortality dynamics. Using the 1901-2005 US population mortality 

data, we illustrate that regime switching models can perform better than well-known 

models in the literature. Furthermore, we extend the Lee-Carter (1992) model in such 

a way that the time-series common risk factor to all cohorts has distinct mortality 

regimes with different means and volatilities.  Finally, we show how to price 

mortality securities with this model. 

 

Keywords: Lee-Cater model, regime switching mortality model, mortality-linked securities 
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1. Introduction 

 Various exogenous factors influence mortality rates over time. We usually think that 

severe, short-termed events such as pandemics, food contamination, and tsunamis underlie 

mortality risk. Mortality risk is the risk of having more deaths than expected, which may imply 

higher death probabilities across many age cohorts. On the other hand, longevity risk is the risk 

of more lives surviving than expected or observed death rates being lower than expected. Usually 

longevity risk is realized over a long period. Various medical advances and health technologies 

tend to reduce the number of deaths. Moreover, political transformations can create incentives 

for population mobility, which could introduce (positive or negative) jumps in mortality with 

lasting effects. These factors could affect mortality for specific age groups or the whole 

population.  

The future mortality process is affected by both mortality risk and longevity risk. In 

modeling future mortality or longevity risk, the literature considers different scenarios and uses 

various stochastic processes to model mortality and/or longevity risk (e.g. Milevsky and 

Promislow 2001; Dahl 2004; Ballotta and Haberman 2006; Cairns et al. 2006; Cox et al. 2006; 

Dahl and Møller 2006; Gründl et al. 2006; Lin and Cox 2008; Kogure and Kurachi 2010; Wills 

and Sherris 2010; Yang et al. 2010). What distinguishes the approach in this paper and in the 

literature on mortality risk modeling is that it explicitly delineates the pattern of changes in 

mortality rates in various states via regime switching techniques.  

Regime switching (RS) models were introduced by Goldfeld and Quandt (1973) and later 

improved by Hamilton (1989) who used RS models to describe structural changes in economic 

nonstationary time series data. Hamilton and Susmel (1994) extend the model into multiple 

regimes with autoregressive coefficients. Since introduced, various RS models have been used in 

the actuarial and insurance literature to capture non-normality characteristics present in asset 

prices (Hardy 2001), asset allocation (Boyle and Liew 2007), options (Naik 1993; Bollen 1998; 

Boyle and Draviam 2007; among others), credit risk (Siu, Erlwein and Mamon 2008) equity 

prices in response to information about changes in credit ratings (Milidonis and Wang 2007), 

pricing investment guarantees (Lin, Tan and Yang 2009; Boudreault and Panneton 2009) among 

other topics of interest. . 
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We argue that RS models can be applied to mortality risk modeling: RS models have some 

desirable features that allow them to capture some major characteristics of the current mortality 

universe. First, RS models can describe mortality changes through different means and 

volatilities in the various switching states. Also, they can identify the time at which a shock 

arrives to the underlying mortality variable. These properties allow for a more flexible model 

which can accommodate jumps and changes in volatility in the mortality index.  

Second, RS models can reflect different natures of mortality evolutions: either a temporary 

mortality shock or permanent mortality improvement. The annual conditional probability of 

being in each implied regime provides an attractive feature as it essentially provides a 

probabilistic propagation of the mortality trend among the assigned regimes. Transition 

probabilities between different regimes ijp (regimes i, j) are the parameter estimates resulting 

from the conditional regime probability. The higher ijp , the faster the shock effect will die out. 

Therefore, RS models allow the user to observe the deterioration of mortality jumps or a longer-

lasting longevity effect and provide the user a more in-depth view of the trend underlying 

mortality. Many mortality jump models do not have this valuable feature. Furthermore, 

depending on anticipated changes in mortality risk associated with an insurance company’s 

portfolio, RS parameters can be altered to include higher/lower jumps, longer/ shorter duration of 

regimes and higher/lower volatility per regime.  

Third, RS models can accommodate non-normality features, such as multi-modality, 

skewness and excess kurtosis, in an underlying loss distribution. Existing models (e.g. Lee-

Carter 1992) usually assume normality in the error term of the common time-series risk factor 

that affects all age cohorts across years. However, the normality assumption may not hold in 

some cases.  

Given the attractive properties and flexibility of RS models, this paper proposes how RS 

models can be constructed and used to describe the dynamics of population mortality indices. At 

first we show that RS models can perform better than the existing models in the literature, using 

the 1901-2005 US population mortality index as an example.  The second application relates to 

the error term from the time-series common risk factor to all cohorts in the Lee-Carter (1992) 

model. We extend the Lee-Carter (1992) model by allowing the time-series common risk factor 
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to all cohorts to move between regimes.  To our knowledge, this paper is the first in the actuarial 

science literature to apply RS models to model mortality dynamics. Finally, we show how to 

forecast and use the forecasted mortality rates obtained from the RS technique for longevity 

security pricing. 

 

2. General Form of RS Estimation without Distribution Restriction 

Future mortality is affected by both mortality and longevity shocks. RS models are flexible 

enough to accommodate a range of distributions on the underlying mortality hidden states. Non-

normal observations in the underlying mortality index distribution may be introduced by sudden 

mortality spikes due to catastrophe death events or excess mortality improvements over an 

extended period through the advancement of medical technology or the adoption of healthier 

lifestyles. The beauty of RS models is that any (e.g. short-lived) structural changes that might 

appear in the evolution of mortality indices are isolated in a new (e.g. short-lived) regime. 

Moreover, the model has the flexibility to choose through the maximum likelihood, the 

switching time, the duration as well as the value of the parameter estimates. Finally the average 

duration of each regime can be easily estimated from the probability transition matrix of the 

Markov chain. All these attractive properties of RS models provide us a fresh look at the 

dynamics of mortality indices.  

As the first step, we present the general case of the two-state RS model without specifying 

the underlying loss distribution at each state. In Section 3 and Section 4, we state our 

distributional and parametric assumptions that customize a RS model to each of the two time-

series datasets analyzed in this paper. 

Suppose that we have an annual index tS , whose log change rate for yeart is tY :   

   ( )1log −= ttt SSY .       (2.1) 

Assume tY is governed by an unobserved Markov process with two regimes: .2or  1=tρ Each 

regime is represented by a loss distribution, ( )yftρ . More specifically, the process can be 

summarized by: 
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In equation (2.2), tYtρ characterizes the process in regime tρ between time periods )1,[ +tt . If tY 's 

are conditionally independent, the Markovian probability transition matrix that describes the 

random switching between the two regimes is:  
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where [ ]jkp ttjk === + ρρ |Pr 1  is the probability that the annual log change rate process will 

switch from regime j  at time t to regime k at time 1+t , where 2,1( =j and )2,1=k . We let Θ

represent the set of parameters of the RS model, which is estimated using numerical optimization 

techniques to maximize the log-likelihood function. The log-likelihood function of the RS model 

is defined by 

( )[ ] ( )[ ]∑
=

−Θ=Θ
n

t
tt yyyyyfLLog

1
1321 ,...,,,|log      (2.4) 

where f is the probability density function of y and n is the total number of annual log change 

rates. In Appendix A we explain the recursive estimation of RS models where numerical 

optimization is employed to estimate Θ . 

 

3. RS-GBM model for US population mortality index 

To apply RS models in mortality risk modeling, we show how to describe the US 

population mortality index with a RS model between two geometric Brownian motions (RS-

GBM). The RS-GBM model allows jumps to take place in any direction and we do not impose 

any constraints on the value of our parameters. 
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3.1 Data 

The data for our estimation come from two databases: the 1901-1999 US population 

mortality tables are downloaded from the Human Life Table Database1 and the 2000-2005 tables 

are from the Human Mortality Database2. Specifically, the age range is x = 0, 1, 2, . . . , 100 for 

the US population and the time period is t = 0, 1, 2, . . . , 104 representing calendar years 1901, 

1902, 1903,..., 2005. They provide a total of 10,605 cells. To calculate the US population 

mortality index or population death rate in year t, tq , we first sum up the total number of deaths 

across different ages of the US population (including both males and females) during that year 

and then divide it by the population size at the beginning of year t. Accordingly, we obtain a time 

series of tq  where t = 0, 1, 2, . . . , 104, which is illustrated in Figure 1 over time.  

Figure 1 
US population mortality index from 1901 to 2005 

 

 
                                                            
1 Data source: Human Life Table Database. Max Planck Institute for Demographic Research (Germany), University 
of California, Berkeley (USA) and the Institut national détudes démographiques (France). Available at 
www.lifetable.de (data downloaded on June 8, 2008). 
2 Data source: Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for 
Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data downloaded 
on June 8, 2008). 
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The y-axis in Figure 1 represents the US population mortality index tq , and the x-axis is 

the year from 1901 to 2005, denoted t = 0, 1, 2, . . . , 104. We observe a downward trend, 

implying the US population mortality, in general, improved overtime. Meanwhile, during our 

observation period, there were variations around this trend, reflecting different natures of 

mortality shocks, either permanent or temporary. For some periods such as the period between 

1935 and 1950, the mortality improved at a much higher rate (i.e. a steeper slope) with a long 

duration but a low volatility. However, in a few periods, notably in the period around 1918 

(because of the 1918 worldwide flu), the mortality deteriorated dramatically but temporarily and 

had a much higher volatility than most of the periods. Such similar changes in various mortality 

regimes in the future will affect the whole population mortality differently and have important 

implications for mortality modeling and forecasting.3 

3.2 RS-GBM model for US Population Mortality Index    

The RS-GBM model follows the general model in Section 2, with the following 

specifications: we replace the annual index tS  in equation (2.1) with the US population mortality 

index tq . Hence, the mortality log change rate, ( )1log −= ttt qqY . Table 1 presents the 

descriptive statistics of tY based on the US population mortality index tq . 

Table 1 
Descriptive Statistics of the U.S. population ( )1log −= ttt qqY  

 
Descriptive Statistics ( )1log −= ttt qqY
Mean -0.0106
Standard error 0.0037
Median -0.0102
Standard deviation 0.0378
Sample variance 0.0014
Kurtosis 7.4885
Skewness -1.1321
Range 0.3219
Minimum -0.2114

                                                            
3In Figure 1, the mortality trend based on the RS-GBM model represents the population mortality evolution over all 
age groups but the same technique can be applied to a different age group of interest. For instance, in pricing defined 
benefit plans and annuities, researchers and professionals focus on older age groups. The RS-GBM model can easily 
fit these groups' mortality experience if data are available. We thank the referee for this insight. 
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Maximum 0.1104
Number of observations 105

 

Table 1 highlights the non-normality feature of tY , illustrated by the large kurtosis (7.4885) 

and negative skewness (-1.1321). A RS-GBM model can nicely fit to this situation. Specifically, 

at each Markov state for the log change rate process tY , we attach a normal distribution such that 

tt WtY 11
1 σμ += and tt WtY 22

2 σμ += . We call this the model "RS-GBM". This implies the 

mortality index switches between two geometric Brownian motions, which are characterized by 

a different mean and volatility that allow log change rates of the mortality index to deviate away 

from the normality assumption and thus potentially attain fatter tails, higher kurtosis and bi-

modality. In the case of normality, our model would simplify to the case of one regime. In 

summary, even though our model can accommodate non-normality features, at the same time it 

can be reduced down to a single geometric Brownian motion in the case that tY  falls within the 

boundaries of normality.  

3.3 Lin and Cox (2008)'s Model for US Population Mortality Index  

 As part of our estimation we compare RS-GBM to other mortality models such as Lin 

and Cox (2008)'s model. Lin and Cox (2008) propose an approach to model the dynamics of the 

US population mortality index. Their method combines a geometric Brownian motion (GBM) 

and a discrete Markov chain. The GBM describes the US population mortality index tq if no 

one-time catastrophe death event (e.g. the 1918 worldwide flu) occurs, 

   tttt Wqtqq ddd σα += ,               (3.1) 

whereα is the drift of tq and σ is the instantaneous volatility given no jumps. tW is a standard 

Brownian motion with mean 0 and variance t. The temporary mortality shocks are described by a 

discrete Markov chain which counts the number of jumps tN up to year t = 0, 1, 2, . . . , 104. 

Given 00 =N , the transition 

   
.

1yprobabilitwith 
yprobabilitwith 1

1
⎩
⎨
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pN

N
t

t
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The probability of having a mortality jump during the period [t, t+1] is p. If a jump occurs in [t, 

t+1], the percentage change in the mortality index due to the jump is denoted by 1−tR . Lin and 

Cox (2008) assume tR is log-normally distributed with parameters 1r and 2r , 

tVrr
t eR 21 += ,             

where tV is a standard normal variable. The process of the US mortality index tq  is a 

combination of equations (3.1) and (3.2), 

.
1yprobabilitwith 

yprobabilitwith 

⎩
⎨
⎧

=
-pq

pRq
q

t

tt
t       (3.3) 

If no jump occurs during [t, t+1], 1=tR . So tt qq = . Otherwise, there is a temporary jump effect 

of tR on tq , leading to ttt Rqq = .  

3.4 Results 

Based on the US population mortality index tq  from 1901 to 2005, Table 2 reports our 

maximum likelihood estimation results for the GBM-only model without the jump process as 

equation (3.1), Lin and Cox (2008)'s model, and RS-GBM model. 

Starting with the GBM-only model, we observe that the drift α and volatility σ are in line 

with the descriptive statistics of the log change rate tY in Table 1. From Lin and Cox (2008)'s 

model we obtain -0.0094=α . The negative sign of α  implies the improvement of US 

population mortality during this period. The instantaneous volatility of the mortality index, 

conditional on no jumps, σ , equals 0.0299. The probability of a jump event each year is equal to 

0.0121, so we expect about one jump per one hundred years. The log-likelihood value of the 

model equals 207.15, which is higher than that of the GMB-only model, 195.48. It means Lin 

and Cox (2008)'s model has a better fit of data than GMB-only. 
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Table 2 
Maximum Likelihood Parameter Estimates of Competing Models Based on the Annual US 

Population Mortality Index from 1901 to 2005 
 

Statistics GBM-only Lin & Cox (2008) RS-GBM 
Log-likelihood  195.48 207.15 219.02 

α  -0.0106 -0.0094  
σ   0.0376 0.0299  
p  0.0121  
r1 o0.1395 0.1395  
r2  0.0477  

 

1μ  
 

 -0.0101 
2μ    -0.0109 
1σ   0.0540 
2σ    0.0183 

p12   0.0129 
p21     0.0105 

 

The RS-GBM model catches the improvement in mortality over time (negative means for 

both regimes) while all the non-normal deviation in the US mortality log change rates is captured 

through two distinct regimes of varying volatility ( )1 20.0540, 0.0183σ σ= = which are almost 

equally persistent ( )1 20.449, 0.551π π= = .4 The lower log-likelihood value 207.15 of Lin and 

Cox (2008)'s model implies the RS-GBM model (log-likelihood = 219.02) provides a better fit 

for the data.5 

                                                            
4 The initial values for our regime switching model estimation are based on the parameters estimates of the GBM-
only model. Specifically, 1 2 1 20.0106, 2 2 0.0376 0.0752,  0.5 0.5 0.0376 0.0188,μ μ α σ σ σ σ= = = − = = × = = = × =  
p12 = p12=0.5. We also try many other initial values for these six parameters of the RS-GBM model to make sure 
that the log-likelihood is maximized. 
5 Although Lin and Cox (2008)’s model and the RS-GBM model are not embedded, the log-likelihood values and 
likelihood ratio test can still be used for model selection even if the Chi-square distribution in this case is only an 
approximation (Hardy, 2001). 
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Our likelihood-ratio (LR) test in Table 3 confirms the superiority of the RS-GBM model 

over the other two models at the significance level of 0.1%. The Schwartz-Bayes and Akaike 

Information Criteria also show support for the RS-GBM model.6 

Table 3 
Goodness of Fit Tests of Competing Models 

 
Panel A - Goodness of Fit between GBM and RS-GBM 
 
 Akaike IC Schwartz Bayes IC LL* 
GBM       193.48                190.83        195.48  
RS-GBM 213.02                205.06       219.02  
LR Test**         47.08  
p-value <0.001  
Better Model  RS-GBM RS-GBM RS-GBM 
    
Panel B - Goodness of Fit between Cox and Lin (2008) and RS-GBM 
 
 Akaike IC Schwartz Bayes LL* 
Cox & Lin (2008) 202.15                195.51 207.15  
RS-GBM 213.02               205.06 219.02  
LR Test** 23.74  
p-value <0.001  
Better Model RS-GBM RS-GBM RS-GBM 

* Log-likelihood value; **Likelihood-ratio test. 

One additional demonstration that lends support to the RS-GBM model is the probabilistic 

classification of the U.S. mortality index between the two regimes over time, as that is shown in 

Figure 2. The left y-axis shows the number of deaths per 100,000 U.S. population lives each year 

from 1901 to 2005 (x-axis). The right y-axis represents the magnitude of the annual conditional 

probability of being classified in the high volatility regime. For example if a process is classified 

in regime 1 which is the high volatility regime with 054.0,0101.0 11 =−= σμ (such as the 1918 

influenza), its probability will be very close to 1. Other observations in the low volatility regime 

(e.g. post Second World War period) score about 0% on the right y-axis. The two distinct 

                                                            
6 We also tried other regime switching variations. For example, we constructed a regime switching model between 
two beta distributions (RS-beta). But its goodness of fit was not better than that of RS-GBM in Table 3. To conserve 
space, the results based on RS-beta are not shown in the paper. 
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regimes are evident in Figure 2 along with their parameter estimates. The volatility in mortality 

rates plays a large role in separating the two regimes. For example in the case of Lin and Cox 

(2008)`s model r1 effectively captures large jumps (for example in 1918), however any volatility 

in mortality is averaged out by the parameterσ . Furthermore, in the case of the GBM-only 

model, any changes in the mean and volatility are captured by the respective drift and volatility 

parameters, thus disallowing for non-normality features in log-mortality rates. 

Figure 2 
Conditional Probability of US Population Mortality Index Classified in High Volatility Regime 

 

 
 

3.5 Is Modeling Changes in Mortality Regimes Important? 

 To prove that modeling changes in mortality regimes with the RS-GBM method is 

important in pricing mortality securities, we compare the market price of risk based on the RS-

GBM model and Lin and Cox (2008)'s model. 

Lin and Cox (2008) price the mortality securities with their proposed mortality stochastic 

model (see equation (2.18)) and the Wang transform. Wang (1996, 2000, 2001) develops an 

incomplete market pricing method that integrates financial and insurance pricing theories to 
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value property catastrophe bonds. Specifically, Wang defines a probability distortion operator, 

now known as the Wang transform, as follows:  

]))(([)( 1* λλ −Φ= − xFGxF , 

where )(xF  is the cumulative distribution function of a given asset X and )(⋅Φ  is the standard 

normal cumulative distribution function. In Wang (2004), the functionG is the Student’s t-

distribution with six degrees of freedom to account for the model uncertainty. The parameter λ  

reflects the level of systematic risk and measures the market price of risk. 

As an example, we now show how the 2005 Swiss Re Vita II mortality bond price differs 

based on the RS-GBM model and Lin and Cox (2008)'s model. Swiss Re issued its second life 

catastrophe bond and obtained $362 million of mortality risk coverage through the Vita Capital 

II in 2005 (Swiss Re 2005). Vita II is a five-year bond with three tranches: Class B, Class C and 

Class D. The expected maturity is in 2010. The mortality risk is defined in terms of a combined 

mortality index (CMI), tq , which is a weighted average of annual population death rates in the 

United States (62.5%), United Kingdom (17.5%), Germany (7.5%), Japan (7.5%) and Canada 

(5%). Specifically, the payments of different tranches in year t are determined by the value of an 

index, ti , in year t(t=2006, 2007,..., 2010): 

1

2003 2002

( ) / 2 ,
( ) / 2

t t
t

q qi
q q

−+
=

+
 

where ( ) 2/1−+ tt qq  is the actual average mortality experience in years t and t-1, and 

( ) 2/20022003 qq + is the base level equal to the average of the 2002 and 2003 CMIs. The investors 

will have a reduced principal in year t if, during a measurement period of any two consecutive 

years within the risk coverage period, the actual index ti  exceeds the trigger level (120% for 

Class B, 115% for Class C, 110% for Class D). When ti exceeds the exhaustion level, the 

investors will lose the whole principal. Among three classes, Class D is exposed to the highest 

catastrophe mortality risk given the lowest attachment and detachment levels while Class B has 

the highest seniority due to the highest trigger (or attachment) and exhaustion (or detachment) 

levels. 
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There are four possible risk periods over the term of Vita II. However, a year can only 

count once toward a loss event. Because of the restriction on a year counting toward more than 

one loss event, there are only two possible events over the period.  For example, if 2006-2007 

resulted in a loss then the only other loss would be 2008-2009.  No loss would be possible in 

2007-2008 since 2007 was already considered. Furthermore, the coupon is based on the 

outstanding principal, not the original principal, so it reflects principal reductions. The details of 

the issuance are summarized in Table 4. 

Table 4 
Summary of the 2005 Swiss Re Vita II Mortality Bond 

 
 Class B Class C Class D 
Class size $62 million $200 million $100 million 
Trigger level 120% 115% 110% 
Exhaustion level 125% 120% 115% 
Coupon (bps) LIBOR + 90 LIBOR + 140 LIBOR + 190 

 

The percentage loss of the principal in year t, tloss , is determined as follows, 

⎭
⎬
⎫

⎩
⎨
⎧

−
−

= %100  ,min
ad
ailoss t

t , 

where a is the trigger level and d is the exhaustion level. Therefore, the payment at maturity of 

each class equals 

,
%100if0

%100if%100
  size  Class  maturityat Payment  2010

2006

2010

2006

2010

2006

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

<−
×=

∑

∑ ∑

=

= =

t
t

t t
tt

ii

loss

lossloss
 

where i= B, C, or D.  

Following Lin and Cox (2008), we apply the Wang transform to price mortality securities 

and create the transformed loss distribution based on the US population mortality index:7 

                                                            
7 Our estimation serves as the upper bound on the market price of risk λ for the 2005 Swiss Re Vita II mortality 
bond. This arises from the fact that we use the US population index as the benchmark in this example while the 
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]))(([)( 1* λλ −Φ= −
ii LFGLF ,                           (3.4) 

where iL is the percentage loss of coupon and principal of class i. To estimate the market price of 

risk λ , we first simulate tq with 10,000 trials based on the RS-GBM model and Lin and Cox 

(2008)'s model (3.3) respectively and then we calculate iL . Based on equation (3.4), the coupon 

rates of different classes, the US population mortality index from 1901 to 2005 and the US 

Treasury rate term structure on December 28, 2005, our estimated market prices of risk of the 

Swiss Re Vita II are shown in Table 5. 

Table 5 
Market Price of Risk Based on the RS-GBM Model and Lin and Cox (2008)'s Model 

 
Market Price of Risk λ  Class B Class C Class D 
RS-GBM Model 0.8504 0.7796 0.5564 
Lin and Cox (2008)'s Model 1.5343 1.3996 1.0884 

 

In both models, the tranche with a higher trigger level has a higherλ  than that with a lower 

one. This is consistent with the findings of Froot and O’Connell (2008). The higher layer of 

mortality catastrophe risk is more difficult to predict. Froot and O’Connell (2008) state that 

higher uncertainty and opacity require a greater return (or higher λ ) for bearing such risk.  

Furthermore, Lin and Cox (2008)'s model has higher λ 's than the RS-GBM model for all 

tranches. This can be explained by the shortcoming of the Lin and Cox (2008) model: 

underestimating the magnitude and the volatility of mortality risk. In the Lin and Cox (2008) 

model, each jump event is a one-time event that only lasts for one year. It means the mortality 

curve after the jump will go back to the original level and "is independent of that [mortality rate] 

during the shock" (Lin and Cox 2008). Although their method proposes a novel way to model 

unanticipated temporary death shock, it cannot capture mortality jumps that span more than a 

year. Accordingly, it underestimates the magnitude of those events and causes a lower expected 

non-transformed loss. Given the par spread of each tranche, it implies a notably higher market 

                                                                                                                                                                                                
Swiss Re deal is based on the weighted average of five developed countries. If we use the weighted index, we expect 
that our calculated λ will be lower than the one in this example because of the diversification effect of mortality 
risks among these five countries. 
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price of risk λ . That is, its transformed probability of iL when 0>iL is higher. Take, as an 

example, Figure 3 shows the transformed loss distribution of class D when 0>DL . 

Figure 3 
Transformed Loss Distributions of Class D 

 

The horizontal axis in Figure 3 represents the loss of coupons and principal of Class D in 

millions of dollars and the vertical axis is the probability. The broken line (called "f*(Loss Class 

D) RS") denotes the transformed probability density function (PDF) of the loss with 5564.0=λ  

by using the RS-GBM model and the two-factor Wang transform (3.4). Figure 3 illustrates that 

the Lin and Cox (2008) model, given the observed par spread of 190 bps of Class D, 

overestimates the probability of having a catastrophe death event since its transformed 

probability distribution shown as the dotted line called "f*(Loss Class D) LC" is above that based 

on the RS-GBM model. It is equivalent to say that the calculated risk premium of Class D will be 

lower for the Lin and Cox (2008) model because it underestimates loss magnitude and volatility.  

As a robustness check, we price the 2003 Swiss Re Vita I mortality bond, the first mortality 

bond, using both methods.8 Vita I is a three-year bond issued in 2003 by the Swiss Re Company. 

If the mortality index from 2004 to 2006 exceeds 130% of the actual 2002 level, then the 

investors will have a reduced principal payment. We reach the same pattern as that of the 2005 
                                                            
8 For the details of 2003 Swiss Re Vita I mortality bond structure, see Lin and Cox (2008). 
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Swiss Re Vita II. Given the par spread 135 bps of Vita I, the market price of risk, again, is higher 

with the Lin and Cox (2008) model ( λ =1.9220) than the RS-GBM model ( λ =1.5525) based on 

the two-factor Wang transform, the US population mortality index from 1901 to 2002 and the US 

Treasury yield curve on December 30, 2003. Failure to model different regimes leads to a 

notable deviation from the right market price of risk and the correct transformed distribution. We 

conclude that modeling changes in mortality regimes plays an important role in the mortality 

securitization modeling. 

It is interesting to point out that although three tranches of Vita II all have lower trigger 

levels (120% for Class B, 115% for Class C, 110% for Class D) than that of Vita I single tranche 

(130%), the par spread of Vita II (135 bps) exceeds that of Vita II Class B (90 bps). According to 

Morgan Stanley, the first mortality bond, Vita I, overcompensated the investors for their taking 

catastrophe mortality risk, so “the appetite for this security [the 2003 Swiss Re Vita I bond] from 

investors was strong”. After the market got acquainted with this new type of security, the risk 

premia go down as shown in the reduced par spreads of Vita II. Furthermore, our pricing results, 

either based on the RS-GBM model or Lin and Cox (2008)'s model, confirm that the market 

price of risk λ of each tranche of Vita II is lower than that of Vita I. 

3.6 Different Opinions on Future Mortality Evolution 

 Given the assumption that future mortality rates will follow trends captured in the period 

1901 to 2005, the rates can be simulated from the distribution based on the RS-GBM model in 

Section 3.5. However, future mortality rates may deviate from what the US population mortality 

data from 1901 to 2005 suggest. Researchers may have conflicting opinions about future 

mortality evolution, in which case they can apply our RS-GBM model in Section 3.2 on a dataset 

that better reflects their expectations of future mortality (i.e. add/remove extreme events, or 

extend periods of high/low volatility). For instance, population mortality rates fluctuate more 

significantly before 1950 because of infectious diseases such as respiratory diseases. Similar 

scares have surfaced in the news over the past few years.9 To illustrate future possible mortality 

evolution, in Table 6 we provide parameter values of the RS-GBM and GBM models estimated 

over the period 1901-1950, 1901-1960, 1901-1970 and 1901-1980 respectively.  

                                                            
9 Examples are the SARS outbreak in 2003 and H1N1 flu in 2009.  
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 Table 6 
 Parameter Estimation and Out-of-Sample Forecasting of the RS-GBM and GBM Models Based 

on the Annual US Population Mortality Index from 1901 to 1950, 1960, 1970 and 1980 
Respectively. 

 

 

Statistics 
 

1901-1950 
(1) 

1901-1960 
(2) 

1901-1970 
(3) 

1901-1980 
(4) 

RSGBM  

    1μ  
 

-0.0212 -0.0158 -0.0093 -0.0076 
2μ  -0.0099 -0.0099 -0.0105 -0.0118 
1σ  0.1104 0.1018 0.0862 0.0795 
2σ  0.0381 0.0348 0.0316 0.0293 

p12 0.2818 0.2181 0.1336 0.1051 
p21 0.0309 0.0251 0.0216 0.0196 

Log Likelihood 83.04 105.18 127.43 139.16 
  

GBM  

   α  
 

-0.0111 -0.0105 -0.0103 -0.0111 
σ  0.0510 0.0473 0.0446 0.0425 

Log Likelihood 77.88 97.98 118.34 150.28 
  

Better Model Based on  

Likelihood Ratio Test RSGBM RSGBM RSGBM RSGBM 
  

Out of Sample Forecasting  
Mean Absolute Error 
(Average Percentage 

Deviation from 2005 Actual 
Observation) 

 

 
RSGBM 

 

 
203.10 

(24.49%) 

 
170.02 

(20.50%) 

 
139.89 

(16.87%) 

 
97.21 

(11.72%) 
GBM 

 
214.28 

(25.84%) 
181.73 

(21.91%) 
156.46 

(18.87%) 
105.24 

(12.69%) 
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Figure 4 
Estimation of the RSGBM Model on the Annual US Population Mortality Index for Periods 

1901-1950, 1901-1960, 1901-1970 & 1901-1980. 
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The RSGBM model provides better fitness when estimating the model from 1901 to 1950 

and its goodness of fit further improves as more observations with structurally different 

characteristics are included in the sample (Table 6). The volatility 1 0.1104σ = (or 2 0.0381σ = ) 

in column (1) of Table 6 is higher than that in Table 2 and in columns (2), (3), (4) of Table 6 

since more extreme changes in mortality rates are reported in the first fifty years.  Specifically, 

the period around 1918 is captured in a high volatility regime whose duration depends on the 

sample period. As more observations of low volatility enter the data, the duration of the high-

volatility regime around 1918 and the relative difference in volatility parameters of the two 

regimes varies (see Table 6 and Figure 4).  

 We also conduct different out-of-sample forecasting for the RSGBM model based on 

each of the four sets of parameter estimates in Table 6.10 For each of the four sample periods, we 

produce forecasts for the number of deaths per 100,000 U.S. population each year from year t+1 

to 2005 for both of the RSGBM and the GBM models where t is the last year of the estimation 

sample period (i.e. t = 1950, 1960, 1970, or 1980). We simulate 10,000 paths of the mortality 

index and measure the mean absolute error and the average percentage deviation from the 2005 

actual mortality index (in parentheses) across all years and paths. The results are reported at the 

bottom section of Table 6. The RSGBM model consistently has a lower mean absolute error and 

average percentage deviation in all specifications, which suggests that it has a better forecasting 

power than the GBM model.  

 

4. Improving Lee-Carter Model with RS Model 

The Lee-Carter (1992) model assumes normality in the error term of the mortality common 

risk factor affecting all age cohorts across years. In the following, we improve the Lee-Carter 

(1992) model with the RS technique to allow for non-normality features such as multi-modality, 

skewness and excess kurtosis. 

4.1 Lee-Carter (1992) model  

                                                            
10 We would like to thank the referee for this suggestion.  
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Lee and Carter (1992) develop a model which captures the evolution of mortality in 

mutually exclusive age cohorts, while at the same time a time-series common risk factor, tk , 

links all cohorts together. Let txq ,  denote the one-year death rate for age x  at time t which is 

modeled as the following exponential relationship:11 

    qx,t = Exp ax + bxkt + ε x,t[ ]   (4.1) 

or in logarithmic form:  

    ( ) txtxxtx kbaq ,,ln ε++= .   (4.2) 

Parameters xa  and xb  are age-specific while tk is time varying and tx ,ε  is a zero mean 

disturbance term. Model (4.2) is not unique hence two constraints are imposed to ease the 

estimation: 1=∑
x

xb  and 0=∑
t

tk . The second constraint implies that xa  simplifies to the 

empirical average of age x  over time:    

( )
( ). ˆln

ln ,

x
t

tx

x q
t

q
a ==

∑
     (4.3) 

Therefore, equation (4.2) can be re-written in terms of the mean log-mortality rate:  

    ( ) ( ) ( )xtxtx qqq ˆlnln~ln ,, −=      (4.4) 

with a zero-mean error term tx ,ε , i.e.: 

    ( ) ( )2
,, ,~~ln σμ txtx Nq , and ( )2

, ,0~ σε Ntx    (4.5) 

which can be simplified to:   

E ln ˜ q x ,t( )[ ]= μ x ,t = bxkt .     (4.6) 

One-year death rates in equation (4.4) are shown below in matrix form where time 

( ),...,,2,1,0, Ttt =  is represented in columns while age ( ),...,,2,1, ω=xx  is represented in rows:  
                                                            
11 Lee and Carter (1992) model the central death rate txm , . In most cases, the one-year death rate txq , is very close to 

txm , . The main reason why we use txq , instead of txm , is that later when we price longevity securities, we use txq , to 

calculate the security payoffs. If we used txm ,  to estimate the Lee-Carter model, we had to make the distribution 

assumption to convert txm ,  to txq , for pricing. To minimize the assumptions, we use txq ,  throughout the paper. 
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The estimation is completed in two steps according to Lee and Carter (1992). In the first 

step singular value decomposition of the matrix is used to obtain estimates for ( ),,...,2,1, ω=xbx  

and ( )Ttkt ,...,2,1, = . In the second step the time-series evolution of tk is recalculated based on 

the actual number of deaths in year t. For mortality projection, tk is assumed to follow a random 

walk with drift  

    ttt egkk ++= −1 ,      (4.7) 

where g  is a constant and te is a normally distributed error term with zero mean. Lee and Carter 

(1992) also include a dummy variable in their estimation to capture the one-time flu event of 

1918 (not shown in equation (4.7)).  

In our model, instead, we investigate the evolution of the error term in equation (4.7) as a 

RS process. We show that te  escapes normality boundaries and therefore biases future forecasts 

of tk . RS models allow a great deal of flexibility in defining the distribution attached to each 

state, a feature that we will explore next. Given the attractive features of RS models we will 

show how the RS model improves the fitness and forecasting power of tk . 

4.2 Modeling the Time-Series Common Risk Factor of the Lee-Carter (1992) Model as a RS 

Process 

We first estimate the Lee and Carter (1992) model to obtain the xx ba ,  and tk . Second, we 

model the time series evolution of mortality common factor, tk , following equation (4.7). After 

running the model, we obtain 

   , 2032.0
)064.0(

1 ttt ekk +−= −       (4.8) 
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with the standard error shown in parenthesis. Model (4.8) means that the mortality common 

factor tk , on average, decreases by g = -0.2032 per year. Lee (2000) ignores the error term when 

forecasting tk . However, we believe that it might be more appropriate to have a closer look at its 

distribution.  

Table 7 
Descriptive Statistics of Residual Error Term from   

Descriptive Statistics Error  te
Mean        0.0000  
Standard Error        0.0640  
Median -0.0377  
Standard Deviation        0.6522  
Sample Variance        0.4254  
Kurtosis        8.5164  
Skewness -1.3093  
Range        5.7403  
Minimum -3.5551  
Maximum        2.1852  
Number of observations    104

 

This is evident from Table 7 where the summary statistics for the error term te from the model 

(4.8) are reported. The kurtosis of te  is 8.516 while its skewness is negative, implying the error 

te  may be deviating from normality. Therefore our next step is to test for non-normality 

deviations in the time-series common risk factor using RS model (2.2).  

The first step in fitting a RS model is to rearrange equation (4.7) such that the first 

difference, tkΔ , of the time-series common risk factor becomes: 

   tttt egkkk +=−=Δ −1       (4.9) 
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which is subsequently assumed to switch between two regimes after de-trending the series by the 

constant g:12 

    , 
2
1

2

1

⎩
⎨
⎧

=
=

=−Δ
tt

tt
t ife

ife
gk

ρ
ρ

                                                (4.10) 

where  

    tt Wte 11
1 σμ += and .22

2
tt Wte σμ +=    (4.11) 

Our model of choice shows that the means of the two regimes can be set equal to each 

other ( )21 μμ =  as the improvement in goodness of fit tests from the equal-mean model to the 

unequal-mean model does not justify the use of separate means. In Panel A of Table 8 we present 

the maximum likelihood estimates of the two models: the normal error term as assumed by Lee 

and Carter (1992) and the RS-normal error term as proposed by our model. The goodness of fit 

tests in Panel B show overwhelming support for the RS-normal error model where its overall 

error mean is positive and the volatility in the high-volatility regime is much higher (1.8873) 

than that in the normal error model (0.6491) and in the low-volatility regime (0.4889). 

 

Table 8 
Maximum Likelihood Parameter Estimates of Competing Models 

 
Panel A - Parameter Estimates 

Estimates Normal te  RS-normal te  

1μ   0.0000 0.0126 
2μ   0.0126 
1σ  0.6491  0.4889 
2σ   1.8873 

p12  0.0156 
p21  0.2790 

Log-likelihood -102.62 -86.32 
 
 
 
 

                                                            
12 The estimation of parameter g and the parameters of the Regime Switching model is done simultaneously. The 
estimated value of g in equation (4.10) is the same as that estimated from equations (4.8). 
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Panel B - Goodness of Fit Tests for Competing Error Models 
 Akaike IC Schwartz Bayes LL* 
Normal te  -104.62 -107.27 -102.62  
RS-Normal te  -92.32 -100.26 -86.32  
LR Test**         32.60  
p-value <0.001  
Better Model    RS-normal RS-normal RS-normal 

* Log-likelihood value; **Likelihood-ratio test. 

Figure 5 shows the time-series propagation of the error and the annual conditional 

probability of the error term being categorized in regime 1 (low volatility regime). It is evident 

from the chart that the influenza period introduced disturbances in the error term that have been 

isolated by the RS-normal model in a new short lived state of higher volatility. The short 

duration of this regime is evident from the probability transition matrix which implies a long-

term probability of the process being in regime 2 is only 5.29% ( )( )2112122 ppp +=π . 

Figure 5 
Conditional Probability of Error Term te  Classified in Low Volatility Regime 
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In addition, it is important to note that a flu dummy may not be sufficient to capture the 

extreme impact of the respective event since there is a lasting effect beyond the time period that 

the flu effect was introduced in 1918. We observe that even though the event was short-lived, the 

resulting disturbance in volatility lasted for about 5 years. It implies that, in addition to the jump 

probability, we should also consider the evolution of mortality volatilities in an extreme event. 

 

5. Pricing Longevity Securities with RS Models 

Insurers and pension plans manage mortality/longevity risk for various reasons. For 

example, mortality/longevity risk management reduces the expected cost of financial distress, 

reduces the expected tax payments when the insurers face a convex tax function, and reduces the 

probability of costly external financing if the catastrophe mortality/longevity events exhaust the 

insurers' internal funds. The traditional way for the insurers to hedge mortality risk is to purchase 

reinsurance. Compared with the reinsurance markets, the capital markets have a much bigger 

capacity to pay potential catastrophe losses (Lin and Cox 2005). As such, insurance–linked 

securitization, as an alternative risk management method, has gained more and more attention 

from both scholars and practitioners. Since 2003, the life insurers have successfully transferred 

catastrophe mortality risk to the capital market by issuing several death-linked securities. The 

market appetite for those death-linked securities is strong (Lin and Cox, 2008). The success of 

death-linked securities, at least, is attributed to attractive security designs. But the market for 

longevity securities has not developed. A market for longevity securities will develop if their 

designs and prices are attractive to potential buyers and sellers. In this section, we first introduce 

a feasible design for longevity options that aim at covering unexpected dramatic mortality 

improvement risk based on a population index, and then show how our mortality RS model can 

be used in this longevity security pricing. In Section 3, we have shown how to incorporate the 

RS model to the Wang transform to price the Swiss Re Vita I and Vita II mortality bonds. The 

RS model can nicely fit other pricing approaches. To illustrate this, in the following discussion, 

we price longevity options with another pricing method, the Esscher transform, based on the 

mortality dynamics forecasted by the RS model. 
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5.1 Longevity Options 

Most of the payoffs of the existing death-linked securities are based on the indices 

calculated from publicly available mortality data. For instance, the principals and/or coupons of 

three series of Swiss Re mortality bonds (Vita I in 2003, II in 2005 and III in 2006) depend on 

the population mortality experiences of five countries.13 Class B ($80 million) of the Tartan 

Capital Ltd. death-linked notes is based on the US population mortality index, which is defined 

as the weighted average of death rates of different population age groups reported by the Centers 

for Disease Control and Prevention (CDC). The advantage of using population mortality indices 

is that they are transparent to investors and hedgers, thus reducing moral hazard problems and 

increasing liquidity. 

Using population mortality indices as the underlying for death-linked securities seems well-

received in the market. We expect they will also work for potential longevity securities. As such, 

the longevity options discussed in this paper are based on the population longevity indices 

proposed by Cox et al. (2008), which can be easily calculated from the publicly available 

databases, such as the Human Mortality Database. 

Longevity risk has a less dramatic process but its effect lasts a much longer period than that 

of mortality risk. For annuity insurers or pension plans, they are more concerned about the 

accumulation effect of longevity risk in the long run since they can predict the number of 

survivors with high accuracy in the short term, say in the next five or ten years. Furthermore, the 

annuity insurers and pension plans may be interested in hedging longevity risk associated with 

given cohorts. To illustrate, consider the following example. 

At time 0, an annuity insurer, called XYZ Insurance Company, has a cohort of N annuitants 

all aged x = 65. XYZ promises to pay a survival benefit B per annuitant as long as the annuitant 

is alive at the end of year t (t =1, 2, 3, ...). Accordingly, given the information 0ℜ  up to time 0, 

XYZ expects to pay the survival benefit tP  

   ]|~[E]E[P 065 ℜ××= pBN tt  

                                                            
13 Those population mortality data are available on the website, www.mortality.org. 
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in year t. The t -year survival rate  

   ,~~~~~
,1651,2652,661,6565 ttttt ppppp −+−−+ ××××= L  

where ttp ,165
~

−+ represents the annuitant's one-year survival rate in year t given he/she survives 1−t

years. 

XYZ is concerned that the realized 65
~pt in year t is much higher than its expectation 

]|~[E 065 ℜpt  at t = 0, so it is interested in managing longevity risk of this 65-year old cohort. If 

XYZ is worried about, for example, the risk that the realized 65
~pt  is higher than two standard 

deviations above ]|~[E 065 ℜpt , it can purchase a longevity option similar to that in Cox et al. 

(2008). 

In Cox et al. (2008), the underlying of the t-year European longevity call option is t-year 

survivor rate for age x, xt p~ . If the realized xt p~ , denoted xt p , in year t is higher than the strike 

level xt p , the call owner will get a positive payoff. Otherwise the value of the call is zero. More 

specifically, given a notional amount NA, the payoffs to the call owner in year t are: 

   
.

0
NA,

⎩
⎨
⎧

≤
>−

×=
xtxt

xtxtxtxt
tx ppif

ppifpp
V

     (5.1)
 

The potential buyers of the longevity call option could be annuity insurers and pension 

plans. When the covered cohorts experience an unexpected mortality improvement, the annuity 

insurers or pension plans will be forced to pay much higher survival benefits. If they purchase 

longevity call options, the longevity event will trigger the payments of the calls. The positive 

payoffs from the options will offset the excess payments to the annuitants, thus hedging 

longevity risk. To reduce moral hazard and increase liquidity, the underlying mortality index 

should be based on relatively frequent mortality studies or assessments of a reference population, 

such as the Human Mortality Database. From those widely accepted sources, we can obtain all 

realized values of 

    ttxttxxx pppp ,11,22,11,
~,~,,~,~

−+−−++ L  
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as time passes by. At the end of the tth year, xt p will be calculated from the following expression 

    ,,11,22,11, ttxttxxxxt ppppp −+−−++ ××××= L  

where ttxp ,1−+ is the realized one-year survival rate for age 1−+ tx  based on the tth year mortality 

table.14 

We can set a reasonable strike level based on our current expectation, ]|~[E 0ℜxt p . 

]|~[E 0ℜxt p can be estimated from our improved Lee-Carter model with the RS error term, 

introduced in Section 4. Then the strike level xt p could be defined as n standard deviations above 

the mean, 

,]|~[E
0|~0 ℜ×+ℜ=

xt pxtxt npp σ  

where
0|~ ℜxt pσ is the standard deviation of 0|~ ℜxt p . 

Related to the above example, if XYZ feels comfortable to take longevity risk for the first 

ten years and only worries about the uncertainties after that, it can purchase various t-year 

longevity European call options based on different 65
~pt  where t> 10, to hedge the long-term 

longevity risk associated with its aged-65 cohort. XYZ can choose the strike level 65pt based on 

its risk attitude and financial status. Firms usually set a higher strike level when they are less risk 

averse and well capitalized.  

In the above example, we assume that XYZ currently has only one cohort at the age of 65, 

so it purchases the longevity option on age 65. This example can be generalized to the situation 

where insurers have multiple-age groups. To hedge longevity risk, the insurers can purchase a 

combination of various longevity call options on different ages. Moreover, the above discussion 

is also applied to pension plans. In summary, the longevity options are flexible enough to fit the 

needs of different annuity insurers and pension plans by varying the age x, the term t, and the 

strike level xt p . 

                                                            
14 Because of lag in the availability of mortality data, the settlement year and the reference year may differ. To 
simplify our example, without loss of generality, we assume the settlement year and the reference year are the same. 
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5.2 Pricing Longevity Securities 

In addition to designing attractive longevity securities, pricing those products correctly is 

also crucial to the success of longevity securitization. In Sections 3 and 4, we have shown the 

attractive features of RS models in modeling mortality stochastic process. RS models are also 

flexible enough to fit different pricing frameworks. Here, we show how to price a longevity 

option with the RS model and a widely accepted pricing method in the insurance and actuarial 

science literature, the Esscher transform. 

5.2.1 Forecasting Mortality Rates with RS Models 

In producing forecasts for the T-year ahead mortality rates txq , (t = 1, 2, ... , T), we first 

simulate 10,000 observations of te  from the RS-normal model (4.10) each year for T years. Then 

the common risk factor tk in year t (t = 1, 2, ... , T) is predicted by adding the constant

2032.0−=g to each simulated RS-normal error term te . To compare our results to those based 

on the normal assumption, we also forecast tk  based on the 10,000 simulated normal error terms 

for year t.  

Central to the pricing of mortality and longevity securities is the simulation of survival and 

death probabilities. We assume that the one-year death probability for age x in year t can be 

approximated by txq , constructed from equation (4.1) with the estimated values of xx ba ,  and the 

time-series forecast of tk . For example, the one-year ahead one-year death rate for a 66-year old 

(x = 66 and t = 1) would be equal to: 

   q66, 1 = Exp a66 + b66 * k1[ ] 

where   101 2032.0 ekk +−=  

and 1e is a random draw from  

( )6491.0,0000.0Normal , 

if te is assumed normal, or 1e is a random draw from 
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( )2790.0,0156.0,8873.1,4889.0,0126.0,0126.0Normal-RS 21122111 ====== ppσσμμ , 

if the error term is assumed to be switching between two normal distributions, with the same 

mean and different deviation. 

5.2.2 Esscher Transform 

The Esscher transform provides an established method to derive security prices when the 

market is incomplete. In incomplete market models, there are many equivalent martingale 

measures. Among various methods, the Esscher transform is accepted as a very useful technique 

to obtain a reasonable equivalent martingale measure. 

Definition 1. Let X denote a risky asset. Then the Esscher transformed probability measure of P 

associated with the process X and a constant c given the information set ℜ is the probability 

measure Q, which is defined as 

   ]E[
|

d
d

cX

cX

e
e

P
Q

−

−

=ℜ . 

The constant c has economic meanings. If the equivalent martingale measure corresponds 

to the exponential utility function 

   
( )cye

c
yu −−= 11)( ,       (5.2) 

the parameter c is the absolute risk aversion coefficient. Suppose the current value of X is 0x . 

The parameter c must satisfy the following condition 

   ][E
][E

0 cX

cX
r

e
Xeex f

−

−
−= , 

where fr is the annual risk-free rate. Given the value of c , the price of a derivative security with 

payoff )(XV , in the sense of Bühlmann, equals 

[ ] .
][E

])([E
][E

])([E)(E 0 cX

cX

cX

cX
r

Q
r

Xe
eXVx

e
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−− ==

  (5.3)
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For t-year longevity options on age x, the underlying X is the t-year survival rate xt p~ and 

the payoff )(XV is determined by the relation between xt p~ and the strike level xt p . The value of 

)(XV  at year t, txV , , is specified in equation (5.1). 

We can use the RS-normal model (4.10) to model and simulate xt pX ~= and txV , , following 

the procedures described in Section 5.2.1. Then the risk aversion parameter c  in the exponential 

function can be estimated with the indifference pricing methods using, for example, annuity 

market quotes. Suppose the risk aversion is the same in annuity markets and in longevity security 

markets. We can use the estimated c from annuity markets to price longevity securities. 

According to the indifference pricing method, the appropriate single-premium immediate 

life annuity (SPIA) premium ξ for an insurer with the initial wealth w is the one that satisfies 

   
),(~E

0

wupvBwu
t

xt
t =⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−+ ∑

∞

=

ξ            (5.4) 

where tv is the t-year discount factor and B is the annual survival benefit. Equation (5.4) suggests 

that ξ should be set in such a level that the insurer will be indifferent between not selling this 

contract (in this case, the wealth w is certain) and selling the contract (in this case, the wealth 

∑
∞

=

−+
0

~
t

xt
t pvBw ξ is random). This is called the principle of equivalent utility (See Gerber and 

Pafumi (1998)). If the utility function of this insurer is an exponential function (5.2), we can 

obtain an explicit expression for the premiumξ as follows, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑
∞

=0

~

Eln1
t

xt
t pvcB

e
c

ξ .                      

Immediate annuity sales in the U.S. were a total of ξ = $5.3 billion in 2005 with an average 

monthly payout rate of $6.50 per premium $1,000 (Fenton and Taht 2007; Stern 2008). We 

assume the expense factor 12.25 percent and the annual interest rate of 4.5 percent. Assuming 

constant force of mortality, we can simulate xt p~12/ with the RS model. Accordingly, the average 
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risk aversion parameter c in the SPIA market is calibrated to the SPIA market price ξ from the 

following equation,  

/12
/12

0

/12
/12

0

5,300,000,0006.5
1,000

1 ln E

15,300,000,000 (1 .1225) ln E .

t
t x
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t x
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cB v p

c v p

e
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∞
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⎢ ⎥⎣ ⎦

%

%

   

(5.5) 

After simulating for 10,000 trials and solving equation (5.5), we obtain c = 2×10−8. Next, 

we price longevity call options using simulated survival rates xt p~ and the Esscher transform (5.3) 

with the estimated risk aversion c = 2×10−8. We assume that the average risk aversion in the 

longevity security market is the same as that of the US annuity market. Tables 9 and 10 show the 

prices of the 15- and 20-year longevity call options on 6515
~p  and 6520

~p respectively. The strike 

level equals two standard deviations or three standard deviations above the mean of the 

simulated 65
~pt where t = 15 or 20. To show the importance of modeling the different mortality 

states with the RS-normal model, we also report the prices based on the normal error 

distribution. 

Table 9 
15-year Longevity Call Option Premiums on 6515

~p per $100,000 Notional Amount  
Strike Level  RS-Normal Premium Normal Premium 

0.6281 23.22 15.63 
0.6458 6.70 0.56 

 
Table 10 

20-year Longevity Call Option Premiums on 6520
~p per $100,000 Notional Amount 

Strike Level  RS-Normal Premium Normal Premium 
0.4650 28.97 21.49 
0.4896 8.40 1.10 

 

For example, given a notional amount (NA) of $100,000 and the strike level 6520 p equal to 

two-standard deviations above the mean of 10,000-trial simulated 6520
~p in the RS model,  
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0.4650,0246.024155.02]|~[E
06520 |~065206520 =×+=×+ℜ= ℜppp σ  

the premium of the 20-year longevity call option 20,65C on 6520
~p is $28.97 based on the RS model. 

This premium is only 0.17% of the expected survival payment in the 20th year  

65,20
20 20

20 65 0

28.970.17%  ,
NA E[ | ] (1 ) 100,000 0.4155 (1 0.045)f

C
p r − −= =

× ℜ × + × × +%
 

but it can cover the extreme longevity risk that 6520
~p improves by more than two standard 

deviations above the current expectation. As the strike level increases, the call premium falls 

(e.g. $8.40 at the strike level of 0.4896 vs. $28.97 at the strike level of 0.4650 in Table 10) 

because of a lower probability of having a larger-scale longevity event that will trigger the call 

payment. 

Furthermore, the pricing results in Tables 9 and 10 reflect the underestimation of 

catastrophic longevity risk in the model with the normal error assumption. The option premiums 

based on the normal error assumption are consistently and significantly lower than those based 

on the RS-normal model. For example, in Table 9, given the strike level 0.6281 the 15-year 

longevity call option premium on 6515
~p is $23.22 based on the RS-normal model but the option 

premium with the same strike level based on the normal error assumption is only $15.63 (33% 

lower). This pattern is enforced as the strike level increases. Take Table 10 as the example. The 

option premium based on the RS-normal model ($8.40) is 7.6 times the premium ($1.10) based 

on the model with the normal error assumption. Under-pricing of the normal model arises from 

its failure to capture the fat tail. 

Our longevity options in this paper are based on an index that is calculated from publicly 

available population mortality data. The same modeling and pricing techniques can be applied to 

other indices. The main advantage of using population mortality index is that it is more 

transparent thus reduces transaction costs and increases market liquidity. However, higher basis 

risk may arise as the hedger's business composition may differ from the population age 

composition. The basis risk from using population longevity index can be reduced by purchasing 

a combination of various longevity options with different time to maturity, cohorts and notional 
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amounts. This will allow insurers and pension plans to replicate their risk exposure using a 

bundle of longevity options that would minimize their basis risk. 

 

6. Conclusion 

In this paper we construct RS models to investigate two dynamic mortality processes: the 

population mortality index and the time-series common mortality risk factor for different ages 

from the Lee-Carter (1992) model. 

First, we looked at the US population mortality index to test for structural changes in the 

underlying death probability for all age cohorts from all death causes. We found that a RS model 

between two geometric Brownian motions (RS-GBM) not only provides a significant 

improvement over prior mortality models with jumps but has many attractive features. For 

instance, RS-GBM models provide a transparent representation of the timing of a structural 

change in death probabilities, the duration of each regime and finally paint a clear picture with 

respect to parameter estimates of the mean vs. volatility effect in aggregate mortality rates. We 

find that a high volatility regime of about three times the volatility of the low volatility regime 

(5.4% vs. 1.8%) is persistent for the first half of the century, while a lower volatility regime 

dominates after the Second World War. The overall mean-parameter of the two regimes points to 

the same direction as that of competing models. In addition to the statistical improvement 

provided by the RS-GBM model, we discover a lower implied market price of risk compared to 

that of other models when pricing the 2003 Swiss Re Vita I and the 2005 Swiss Re Vita II 

mortality bonds.  

Our second application pertains to the time-series common risk factor, tk , across all age 

cohorts in the popular model by Lee and Carter (1992). The time-series error term of tk  is once 

again modeled as a RS model, as we believe that disturbances introduced by extreme 

observations over time, force the error term to deviate from normality. We find that the error 

term is classified in a higher volatility normal regime for about 5% of the time. This takes place 

around periods of significant jumps in mortality rates (e.g. caused by the 1918 flu). During these 

periods the volatility is about quadruple the volatility value in the persistent lower volatility 
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regime. We highlight the economic significance of our model by pricing longevity options with 

the Esscher transform based on the normal error and the RS-normal error models. We find that 

the option premiums based on the RS-normal error model are consistently and substantially 

higher than those based on the normal error model, a result that follows from the fatter tail in the 

RS-normal error distribution. 

 

 

Appendix A 

In this section we describe how the log-likelihood function of the RS model 

( )[ ] ( )[ ]∑
=

−Θ=Θ
n

t
tt yyyyyfLLog

1
1321 ,...,,,|log  

can be estimated by first considering the contribution to the log-likelihood function of the tht

observation:  

   ( )[ ]Θ−−− ,,...,,|log 1321 yyyyyf tttt .                 (A.1) 

This is calculated recursively for each year: 

( ) =Θ−−−− ,,...,,|,, 13211 yyyyyf tttttt ρρ  

( ) ( ) ( )ΘΘΘ −−− ,|*,|*,,...| 1111 tttttt yfpyyp ρρρρ     (A.2) 

where the transition probability between regimes is  ( )Θ− ,| 1ttp ρρ .   (A.3) 

The probability density function of the distribution at each state of the Markov chain is 

   ( ) ( )yfyf t
tt

ρρ =Θ,|          (A.4) 

And the probability function that characterizes transitions between the two regimes (Hamilton 

and Susmel, 1994) is:  

( ) =Θ−− ,,...| 111 yyp ttρ  
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tttttttttt ρρρρ   .      (A.5) 

Finally we can calculate the value of ( )Θ−− ,...,,| 121 yyyyf ttt as the sum over the 4 

expected values under 2,1=tρ  and  .2,11 =−tρ  An important property of discrete time Markov 

chains is that the probability of a process being in a specific state at time t depends only on 

where the process was at time 1−t . To start the recursive process, we need to assign initial 

values to the parameter set Θ , and the probabilities of starting at regime 1 or 2, ( )op ρ . These 

values can be set equal to the values of the invariant probability distribution :, 21 ππ  
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    (A.6) 

which is also referred to as the unconditional probability distribution.  Given that the 

probabilities of transitioning from one regime to another should add up to unity, it is easy to 

show 12111 =+ pp and 121 =+ ππ . Consequently the entry in the first row and first column on 

the right hand side of equation (2.10) simplifies to:  

   ( )1221211 ppp +=π .       (A.7) 

Therefore given Θ , we start the recursion at 1=t with initial values 

   ( ) ( )1
1

11 *|,1 yfyf t
t

==Θ= ρπρ           (A.8) 

( ) ( )1
2

21 *|,2 yfyf t
t

==Θ= ρπρ      (A.9) 

   ( ) ( ) ( )Θ=+Θ==Θ |,2|,1| 11111 yfyfyf ρρ ,   (A.10) 

which at 2=t  gives starting values for 

   ( ) ( ) ( )ΘΘ=Θ ||,,| 11111 yfyfyp ρρ .       (A.11) 
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