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Valuation of Guaranteed Annuity Options using a
Stochastic Volatility Model for Equity Prices

Alexander van Haastrecht1 2, Richard Plat3 4 and Antoon Pelsser5

Abstract

Guaranteed Annuity Options are options providing the right to convert a policyholder’s accu-
mulated funds to a life annuity at a fixed rate when the policy matures. These options were a
common feature in UK retirement savings contracts issued in the 1970’s and 1980’s when interest
rates were high, but caused problems for insurers as the interest rates began to fall in the 1990’s.
Currently, these options are frequently sold in the U.S. and Japan as part of variable annuity prod-
ucts. The last decade the literature on pricing and risk management of these options evolved.
Until now, for pricing these options generally a geometric Brownian motion for equity prices is
assumed. However, given the long maturities of the insurance contracts a stochastic volatility
model for equity prices would be more suitable. In this paper closed form expressions are derived
for prices of guaranteed annuity options assuming stochastic volatility for equity prices and either
a 1-factor or 2-factor Gaussian interest rate model. The results indicate that the impact of ignoring
stochastic volatility can be significant.

Keywords: Guaranteed Annuity Option (GAO), Guaranteed Minimum Income Benefit
(GMIB), Stochastic Volatility, Stochastic Interest Rates, Variable Annuities.

1 Introduction

Life insurers often include embedded options in the terms of their products. One of the most familiar
embedded options is the Guaranteed Annuity Option (GAO). A GAO provides the right to convert
a policyholder’s accumulated funds to a life annuity at a fixed rate when the policy matures. These
options were a common feature in retirement savings contracts issued in the 1970’s and 1980’s in the
United Kingdom (UK). According to Bolton et al. (1997) the most popular guaranteed conversion
rate was about 11%. Due to the high interest rates at that time, the GAOs were far out of the
money. However, as the interest rate levels decreased in the 1990’s and the (expected) mortality
rates improved, the value of the GAOs increased rapidly and amongst others led to the downfall of
Equitable Life in 2000. Currently, similar options are frequently sold under the name Guaranteed
Minimum Income Benefit (GMIB) in the U.S. and Japan as part of variable annuity products. The
markets for variable annuities in the U.S. and Japan have grown explosively over the past years, and
a growth in Europe is also expected, see Wyman (2007).
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The last decade the literature on pricing and risk management of these options evolved. Approaches
for risk management and hedging of GAOs were described in Dunbar (1999), Yang (2001), Wilkie
et al. (2003) and Pelsser (2003). The pricing of GAOs and GMIBs has been described by several
authors, for example van Bezooyen et al. (1998), Boyle and Hardy (2001), Ballotta and Haberman
(2003), Boyle and Hardy (2003), Biffis and Millossovich (2006), Chu and Kwok (2007), Bauer et al.
(2008) and Marshall et al. (2009). In most of these papers, the focus is on unit linked deferred annuity
contracts purchased originally by a single premium. Generally a standard geometric Brownian
motion is assumed for equity prices. However, Ballotta and Haberman (2003) and Chu and Kwok
(2007) noted that, given the long maturities of the insurance contracts, a stochastic volatility model
for equity prices would be more suitable.

In this paper closed form expressions are derived for prices of GAOs, assuming stochastic volatility
for equity prices and (of course) stochastic interest rates. The model used for this is the Schöbel-Zhu
Hull-White (SZHW) model, introduced in van Haastrecht et al. (2008). The model combines the
stochastic volatility model of Schöbel and Zhu (1999) with the 1-factor Gaussian interest rate model
of Hull and White (1993), taking the correlation structure between those processes explicitly into
account. Furthermore, this is extended to the case of a 2-factor Gaussian interest rate model.

The remainder of the paper is organized as follows. First, in Section 2 the characteristics of the GAO
are given. Section 3 describes the SZHW model to be used for the pricing of the GAO. In Section
4 closed-form pricing formulas are derived for the GAOs given an underlying SZHW model. These
results are extended to a 2-factor Hull-White model in Section 5. In Section 6 two numerical example
are worked out: the first shows the impact of stochastic volatility on the pricing of the GAO, whilst the
second example deals with a comparison of the efficiency of our closed-form formula for the 2-factor
model with existing methods in the literature. Conclusions are given in Section 7.

2 Guaranteed Annuity Contract

A GAO gives the holder the right to receive at the retirement data T either a cash payment equal to
the investment in the equity fund S (T ) or a life annuity of this investment against the guaranteed rate
g. A rational policy holder would choose the greater of the two assets. In other words, if at inception,
the policy holder is aged x and the normal retirement date is at time T , then the guaranteed annuity
pays off at maturity

H(T ) :=
(
gS (T )

n∑
i=0

ciP(T, ti) − S (T )
)+

, (1)

provided that the policy holder is still alive at that time. Here g is the guaranteed rate, P(T, ti) the
zero-coupon bond at time T maturing at ti and ci the insurance amounts for time i multiplied by the
probability of survival from time T until time ti for the policyholder. Without loss of generality, we
will use unit insured amounts in the remainder of this paper. Furthermore, we assume that the survival
probabilities are independent of the equity prices and interest rates. Note that

H(T ) = gS (T )
( n∑

i=0

ciP(T, ti) − K
)+

, (2)

where K := 1/g and (x)+ := max(x, 0). This last equality shows that one can interpret the guaranteed

annuity option as a quanto call option with strike K on the zero-coupon bond portfolio
n∑

i=0
ciP(T, ti)
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which is payed out using the exchange rate/currency S (T ), e.g. see Boyle and Hardy (2003). Under
the risk-neutral measure Q, which uses the money market account B(T ),

B(T ) := exp
(∫ T

0
r(u)du

)
(3)

as numeraire, the price of this option can be expressed as

C(T ) = x pr IEQ
[
exp

(
−

∫ T

0
r(u)du

)
gS (T )

( n∑
i=0

ciP(T, ti) − K
)+]
, (4)

where x pr denotes the probability that the policy holder aged x survives until retirement age r at time
T . To derive a closed-form expression for the GAO of (4), it is more convenient to measure payments
in terms of units of stock instead of money market values. Mathematically, we can establish this by
using the equity price S (T ) as numeraire and changing from the risk-neutral measure to the equity-
price measure QS , see Geman et al. (1996). Under the equity-price measure QS , the GAO price is
then given by

C(T ) = x pr gS (0)IEQ
S
[( n∑

i=0

ciP(T, ti) − K
)+]
. (5)

To evaluate this expectation we need to take into account the dynamics of the zero-coupon bonds
prices P(T, ti) under the equity price measure.

Apart from the guaranteed rate, the drivers of the GAO price are the interest rates, the equity prices,
the correlation between those, and the survival probabilities. The combined model for interest rates
and equity prices is explained in Section 3. This model needs an assumption for the correlation, which
could be derived from historical data. Note that if it is assumed that equity prices and interest rates
are independent, expression (4) can be simplified to:

C(T ) = x pr IE
[
S (T )

]
IEQ

[
exp

(
−

∫ T

0
r(u)du

)
g
( n∑

i=0

ciP(T, ti) − K
)+]
. (6)

This means that under the assumption of independence between interest rates and equity prices, it does
not matter which model is assumed for equity prices.6 Both from historical data as well from market
quotes, one however rarely finds that the equity prices and interest rates behave in an independent
fashion. As this dependency structure is one of the main driver for the GAO price and its sensitivities,
a non-trivial structure therefore has to be taken into account for a proper pricing and risk management
of these derivative, e.g. see Boyle and Hardy (2003), Ballotta and Haberman (2003) or Baur (2009).

6Explicit pricing formulas, for this case, under one and two-factor Gaussian interest rates are provided in appendix C.
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3 The Schöbel-Zhu-Hull-White model

The model used in this paper is the Schöbel-Zhu Hull-White (SZHW) model, introduced in van Haas-
trecht et al. (2008). The model combines the stochastic volatility model of Schöbel and Zhu (1999)
with the 1-factor Gaussian interest rate model of Hull and White (1993), taking explicitly into account
the correlation between those processes. In the SZHW model, the process for equity price S (t) under
the risk-neutral measure Q is:

dS (t)
S (t)

= r(t)dt + ν(t)dWQS (t), S (0) = S 0, (7)

ν(t) = κ
(
ψ − ν(t)

)
dt + τdWQν (t), ν(0) = ν0, (8)

Here ν(t), which follows an Ornstein-Uhlenbeck process, is the (instantaneous) stochastic volatility
of the equity S (t). The parameters of the volatility process are the positive constants κ (mean rever-
sion), ν(0) (short-term mean), ψ (long-term mean) and τ (volatility of the volatility). We assume the
interest rates are given by a one-factor Hull and White (1993) model, whose dynamics under Q can
be parameterized by

r(t) = α(t) + x(t), r(0) = r0, (9)

dx(t) = −ax(t)dt + σdWQx (t), x(0) = 0. (10)

Here a (mean reversion) and σ (volatility) are the positive parameters of the model, and where α(t)
can be used to fit the current term structure of interest rates exactly, e.g. see Pelsser (2000) or Brigo
and Mercurio (2006). Under the above dynamics for the equity, volatility and interest rates there exist
closed-form calibration formulas for the prices of European equity options, e.g. see van Haastrecht
et al. (2008). Moreover the model allows for a general correlation structure, i.e.

dWQν (t)dWQS (t) = ρνS dt, dWQx (t)dWQS (t) = ρxS dt, dWQx (t)dWQν (t) = ρxνdt, (11)

where ρνS , ρxS and ρxν are the instantaneous correlation parameters between the Brownian motions
of the equity price, the stochastic volatility and the interest rate. Having the flexibility to correlate the
equity price with both stochastic volatility and stochastic interest rates yields a realistic model, which
is of practical importance for the pricing and hedging of options with long-term exposures such as
guaranteed annuities, e.g. see Boyle and Hardy (2003).

It is hardly necessary to motivate the inclusion of stochastic volatility in a long-term derivative pricing
model. First, compared to constant volatility models, stochastic volatility models are significantly bet-
ter able to fit the market’s option data, e.g. see Andreasen (2006) or Andersen and Brotherton-Ratcliffe
(2001). Secondly, as stochastic interest rates and stochastic volatility are empirical phenomena, the
addition of these factors yields a more realistic model, which becomes important for the pricing and
especially the hedging of long-term derivatives. The addition of stochastic volatility and stochastic
interest rates as stochastic factors is important when considering long-maturity equity derivatives and
has been the subject of empirical investigations most notably by Bakshi et al. (2000). These authors
show that the hedging performance of delta hedging strategies of long-maturity options improves
when stochastic volatility and stochastic interest rates into account.
Stochastic volatility models have been described by several others, for example Stein and Stein (1991),
Heston (1993), Schöbel and Zhu (1999), Duffie et al. (2000), Duffie et al. (2003), van der Ploeg (2006)
and van Haastrecht et al. (2008). Also regime-switching models are suggested in the literature for the
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pricing of equity-linked insurance policies, e.g. see Hardy (2001) and Brigo and Mercurio (2006). In
the limit of an infinite number of regimes these models again converge to a continuous-time stochastic
volatility model, however in discrete time they can benefit from a greater analytical tractability. A
proper model assessment, greatly depends on the properties of the embedded options in the insurance
contract. To investigate the impact of using a stochastic volatility model on the pricing of GAOs,
note that the GAO directly depends on the stochastic interest rates, the underlying equity fund and
the correlation between the rates and the equity. For the pricing of GAOs we therefore choose to use
the SZHW model over other stochastic volatility models, as this model distinguishes itself models by
an explicit incorporation of the correlation between underlying equity fund and the term structure of
interest rates, whilst maintaining a high degree of analytical tractability.

3.1 Calibration of the SZHW and BSHW model

In Section 6 the impact of stochastic volatility on the pricing of GAOs is analyzed. That is, we
compare the pricing of GAOs in the SZHW stochastic volatility model with the Black-Scholes Hull-
White (BSHW) constant volatility model. This section is devoted to introduction of the BSHW model,
the calibration of these models and a short analysis of these calibration results.
The BSHW process for equity prices S (t) under the risk neutral measure Q is:

dS (t)
S (t)

= r(t)dt + σS dWQS (t), S (0) = S 0, (12)

where the interest rate r(t) follows Hull and White (1993) dynamics as in (9) and with the instanta-
neous correlation between Brownian motions of the interest rate and the equity price equal to

dWQS (t)dWxQ(t) = ρxS dt. (13)

To come up with a fair analysis of the impact of stochastic volatility on the pricing of GAOs, we
first calibrate the BSHW and SZHW model to market’s option data per end July 2007. First the
Hull and White (1993) interest rate models are calibrated respectively calibrated to the EU and U.S.
swaption markets. Secondly for calibration of the equity price specific model parameters, data on
the Eurostoxx50 index (EU) and the S&P500 (U.S.) is used. The effective (10 years) correlation
between the stock and the interest rates in the BSHW process, was hereby determined using time
series analysis of the interest rates and the Eurostoxx50 (EU) and S&P500 (U.S.) index over the
period from February 2002 to July 2007. For the EU and the U.S. we respectively found a correlation
coefficient of 34.65% and 14.64% between the interest rates and the equity price. Note that for the
aid of a fair comparison between the models, the SZHW model is calibrated in such a way that the
effective correlation between interest rates and equity prices is equal to that of the BSHW process.
Finally, as the considered GAO in Section 6 has a 10 year maturity, we need to calibrate the equity
specific to the terminal distributions of the equity price at that time. To this end, we calibrate the equity
models to market’s options maturing in 10 years time. The calibration results to the Eurostoxx50 and
S&P500 can be found in Table 1 below.
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strike Market SZHW BSHW
80 27.8% 27.9% 26.4%
90 27.1% 27.1% 26.4%
95 26.7% 26.7% 26.4%
100 26.4% 26.4% 26.4%
105 26.0% 26.0% 26.4%
110 25.7% 25.7% 26.4%
120 25.1% 25.1% 26.4%

Implied volatility, 10-year call options, EU.

strike Market SZHW BSHW
80 27.5% 27.5% 25.8%
90 26.6% 26.6% 25.8%
95 26.2% 26.2% 25.8%
100 25.8% 25.8% 25.8%
105 25.4% 25.4% 25.8%
110 25.0% 25.0% 25.8%
120 24.3% 24.4% 25.8%

Implied volatility, 10-year call options, US

Table 1: Comparison of the calibration results for the SZHW and BSHW model for 10-year call
options with different strikes. Calibrations are performed on market data for options of major indices
at the end of July 2007: for EU index the EuroStoxx50 is used, whereas for US index this is the
S&P500.

Notice from the tables we can see that SZHW is significantly better in capturing the market’s implied
volatility structure and provides an extremely good fit. The fits of the BSHW model are relatively
poor. Furthermore, a direct consequence of the log-normal distribution of the BSHW model, it that
the asset returns have thin tails, which does not correspond to historical data nor to the market’s view
on long-term asset returns. In this way, the SZHW model provides a more realistic picture on the
market’s view on long-term asset returns as it can incorporate heavy-tailed returns. The latter can be
made especially clear by looking at the risk-neutral densities of the log-asset price of the SZHW and
BSHW model. These are plotted in Figure 1 below for the BSHW and SZHW model, calibrated to
EU option prices.

0

0.1
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0.3

0.4

0.5

0.6

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Schöbel-Zhu-Hull-White

Black-Scholes-Hull-White

Figure 1: Risk-neutral density of the log-asset price for the SZHW and BSHW model, calibrated to
EU market option data.

Clearly, the SZHW incorporates the skewness and heavy-tails seen in option markets (e.g. see Bakshi
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et al. (1997)) a lot more realistically than the BSHW model. The effects of these log-asset price
distributions on the pricing of GAOs, combined with correlated interest rates, are extensively analyzed
in Section 6.

4 Pricing the Guaranteed Annuity Option under stochastic volatility
and stochastic interest rates

For the pricing of the GAO in the SZHW model, i.e. the evaluation of (5), we need to consider the
pricing of a zero-coupon bonds in the Gaussian rate model. In the Hull and White (1993) model, one
has the following expression for the time-T price of a zero-coupon bond P(T, ti) maturing at time ti:

P(T, ti) = A(T, ti)e−B(T,ti)x(T ), (14)

where

A(T, ti) =
PM(0, ti)
PM(0,T )

exp
[1
2

(
V(T, ti) − V(0, ti) + V(0,T )

)]
(15)

B(T, ti) =
1 − e−a(ti−T )

a
(16)

V(T, ti) =
σ2

a2

(
(ti − T ) +

2
a

e−a(ti−T ) −
1
2a

e−2a(ti−T ) −
3
2a

)
, (17)

and with PM(0, s) denoting the market’s time zero discount factor maturing at time s. Using (14), we
have for the GAO price (5) under the equity price measure QS :

C(T ) = x pr gS (0)IEQ
S
[( n∑

i=0

ciA(T, ti)e−B(T,ti)x(T ) − K
)+]
. (18)

To further evaluate this expression, we first have to consider the dynamics of x(T ) under the equity
price measure QS in the SZHW model..

4.1 Taking the equity price as numeraire

To change the money market account numeraire into the equity price numeraire, we need to calculate
the corresponding Radon-Nikodým derivative (e.g. see Geman et al. (1996)), which is given by

dQS

dQ
=

S (T )B(0)
S (0)B(T )

= exp
[
−

1
2

∫ T

0
ν2(u)du +

∫ T

0
ν(u)dWQS (u)

]
. (19)

The multi-dimensional version of Girsanov’s theorem hence implies that

dWQ
S

S (t) 7→ dWQS (t) − ν(t)dt, (20)

dWQ
S

x (t) 7→ dWQx (t) − ρxS ν(t)dt, (21)

dWQ
S

ν (t) 7→ dWQν (t) − ρνS ν(t)dt, (22)

are QS Brownian motions. Hence under QS one has the following model dynamics for the volatility
and interest rate process

dx(t) = −ax(t)dt + ρxSσν(t)dt + σdWQ
S

x (t), x(0) = 0, (23)

dν(t) = κ
(
ψ − ν(t)

)
dt + ρνS τν(t)dt + τdWQ

S

ν (t),

= κ̃
(
ψ̃ − ν(t)

)
dt + τdWQ

S

ν (t), ν(0) = ν0, (24)
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where κ̃ := κ − ρνS τ, ψ̃ := κψ
κ̃

. After some calculations, conditional on the current time filtration F0,
one can show that:

ν(T ) = ψ̃ +
(
ν(0) − ψ̃

)
e−̃κT + τ

T∫
0

e−̃κ(T−u)dWQ
S

ν (u), (25)

x(T ) = ρxSσ
( ψ̃

a
[
1 − e−aT ]

+
ν(0) − ψ̃

a − κ̃
[
e−̃κT − e−aT ])

(26)

+
ρxSστ

(a − κ̃)

T∫
0

[
e−̃κ(T−u) − e−a(T−u)]dWQ

S

ν (u) + σ

T∫
0

e−a(T−u)dWQ
S

x (u).

Using Ito’s isometry and Fubini’s theorem, we have that x(T ) (conditional on F0) is normally dis-
tributed with mean µx and variance σ2

x given by

µx = ρxSσ
( ψ̃

a
[
1 − e−aT ]

+
ν(0) − ψ̃
(a − κ̃)

[
e−̃κT − e−aT ])

, (27)

σ2
x = σ2

1 + σ2
2 + 2ρ12σ1σ2. (28)

where

σ1 = σ

√
1 − e−2aT

2a
, (29)

σ2 =
ρxSστ

a − κ̃

√
1
2̃κ

+
1
2a
−

2
(̃κ + a)

−
e−2̃κT

2̃κ
−

e−2aT

2a
+

2e−(̃κ+a)T

(̃κ + a)
, (30)

ρ12 = ρxν
σ2ρxS τ

σ1σ2(a − κ̃)

[1 − e−(a+̃κ)T

(a + κ̃)
−

1 − e−2aT

2a

]
. (31)

4.2 Closed-form formula for the GAO price

Using the results from the previous paragraph, we can now further evaluate the expression (18) for the
GAO price in the SZHW model: as the zero-coupon bond price is a monotone function of one state
variable, x(T ), one can use the Jamshidian (1989) result and write the call option (18) on the sum of
zero-coupon bonds as a sum of zero-coupon bond call options: let x∗ solve

n∑
i=0

ciA(T, ti)e−B(T,ti)x∗ = K, (32)

and let
Ki := A(T, ti)e−B(T,ti)x∗ . (33)

Using Jamshidian (1989), we can then write GAO as a sum of zero-coupon bond options, i.e.

C(T ) = x pr gS (0)IEQ
S
[ n∑

i=0

ci

(
A(T, ti)e−B(T,ti)x(T ) − Ki

)+]
. (34)

As x(T ) is normally distributed, we have that P(T, ti) = A(T, ti)e−B(T,ti)x(T ) is log-normally distributed.
Provided that we know the mean Mi and variance Vi of ln P(T, ti) under QS , one can directly express
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the above expectation in terms of the Black and Scholes (1973) formula, i.e.

C(T ) = x pr gS (0)
n∑

i=0

ci

[
FiN

(
di

1
)
− KiN

(
di

2
)]
, (35)

Fi = eMi+
1
2 Vi , (36)

d1
i =

ln
(
Fi/Ki

)
+ 1

2 Vi
√

Vi
, (37)

d2
i = d1

i −
√

Vi . (38)

To determine Mi and Vi, recall from (27) and (28) that x(T ) is normally distributed with mean µx and
variance σx. Hence with P(T, ti) = A(T, ti)e−B(T,ti)x(T ), one can directly obtain that the mean Mi and
variance Vi of ln P(T, ti) are given by

Mi = ln A(T, ti) − B(T, ti)µx, (39)

Vi = B2(T, ti)σ2
x. (40)

Hence under the SZHW dynamics (7)-(10), we have derived the closed-form formula (35) for the
price of a GAO under stochastic volatility and correlated stochastic interest rates. With this result, we
are able to investigate the impact of stochastic volatility on the pricing of GAOs, which will be the
subject of Section 6.1.
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5 Extension to two-factor interest rates

In this section, we generalize the setting of the previous section from one to two-factor Gaussian
interest rates. That is under the risk-neutral measure Q, we assume the following dynamics for the
short interest rate:

r(t) = ϕ(t) + x(t) + y(t), r(0) = r0, (41)

dx(t) = −ax(t)dt + σdWQx (t), x(0) = 0, (42)

dy(t) = −by(t)dt + ηdWQy (t), y(0) = 0, (43)

dWQx (t)dWQy (t) = ρxydt (44)

Here a, b (mean reversion) and σ, η (volatility) are the positive parameters of the model and |ρxy| ≤ 1,
and ϕ(t) can be used to exactly fit the current term structure of interest rates, e.g. see Brigo and
Mercurio (2006). Much of the analytical structure of the one-factor Gaussian is preserved in this
two-factor setting. For example time T zero-coupon bond prices maturity at time ti by

P(T, ti) = A(T, ti)e−B(a,T,ti)x(T )−B(b,T,ti)y(T ), (45)

where

A(T, ti) =
PM(0, ti)
PM(0,T )

exp
[1
2

(
V(T, ti) − V(0, ti) + V(0,T )

)]
(46)

B(z,T, ti) =
1 − e−z(ti−T )

z
(47)

V(T, ti) =
σ2

a2

[
(ti − T ) +

2
a

e−a(ti−T ) −
1

2a
e−2a(ti−T ) −

3
2a

]
(48)

+
η2

b2

[
(ti − T ) +

2
b

e−b(ti−T ) −
1
2b

e−2b(ti−T ) −
3
2b

]
+2ρxy

ση

ab

[
(ti − T ) +

e−a(ti−T ) − 1
a

+
e−b(ti−T ) − 1

b
−

e−(a+b)(ti−T ) − 1
a + b

]
.

Substituting the zero-coupon bond expression (45) into the pricing equation (5) and evaluating this
expectation, results in the following closed-form expression for the GAO price:

C(T ) = x pr gS (0)

∞∫
−∞

e−
1
2

( x−µx
σx

)2

σx
√

2π

[
Fi(x)N

(
h2(x)

)
− KN

(
h1(x)

)]
dx (49)

where N denotes the cumulative standard normal distribution function and with

h1(x) :=
y∗ − µy

σy

√
1 − ρ2

xy

−
ρxy(x − µx)

σx
√

1 − ρ2
, (50)

h2(x) := h1(x) + B(b,T, ti)σy

√
1 − ρ2

xy , (51)

λi(x) := ciA(T, ti)e−B(a,T,ti)x, (52)

κi(x) := −B(b,T, ti)
[
µy −

1
2
σ2

y(1 − ρ2
xy)B(b,T, ti) + ρxyσy

(x − µx)
σx

,
]

(53)

Fi(x) :=
n∑

i=0

λi(x)eκi(x) (54)
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and with y∗ the unique solution of

n∑
i=0

λi(x)e−B(b,T,ti)y∗ = K. (55)

The proof of (49) is given in appendix A.

In the pricing formula (49 it remains to determine the first two moments of x(T ) and y(T ) and the
(terminal) correlation between x(T ) and y(T ), under the equity price measure QS . These are given in
appendix B. Note that in the pricing formula (49), one is integration a Gaussian probability density
function against a bounded function. Because the Gaussian density functions decays very rapidly7,
one can therefore truncate the integration domain in an implementation of (49) to a suitable number
of standard deviations σx around the mean µx.

6 Numerical examples

In this section two numerical examples are given. In paragraph 6.1 the values of the GAO using
the stochastic volatility model described in Section 3 are compared with values that result when a
geometric Brownian motion is assumed for equity prices. In paragraph 6.2 our approach for two-
factor interest rate models is compared with the methods described in Chu and Kwok (2007).

6.1 Comparison results SZHW model and Black-Scholes Hull-White model

In this section the impact of stochastic volatility of equity prices is shown for an example policy.
The results for the SZHW model given in (7)-(10) are compared with a model that combines a
Black-Scholes process for equity prices with a one-factor Hull White model for interest rates, the
so-called Black-Scholes-Hull-White (BSHW) model given in (12) - (13). The SZHW and BSHW
models are both calibrated to market information (implied volatilities and interest rates) per end July
2007, see Section 3.1.

In the example, the policyholder is 55 years old, the retirement age is 65, giving the maturity T of the
GAO option of 10 years. Furthermore, S (0) is assumed to be 100. The survival rates are based on the
PNMA00 table of the Continuous Mortality Investigation (CMI) for male pensioners8.

In Table 2 the prices for the GAO are given for different guaranteed rates g for both models. The
results for the SZHW model are obtained using the closed form expression given in (35) - (40). The
pricing formula for the BSHW is a special case of this, and is also derived in Ballotta and Haberman
(2003). The results are determined for EU data and U.S. data with an equity-interest rate correlation
of respectively 0.347 and 0.146 (see Section 2). The table presents the total value of the GAO as well
as the time value. While the total value gives the impact on the total prices, the time value gives more
insight in the relative impact of the models (since those only have impact the time value). Also, the
time value of the GAO is often reported separately, for example within Embedded Value reporting of
insurers.

7For instance, 99.9999% of the probability mass of a Gaussian density function lies within five standard deviations
around its mean.

8This table is available at: http://www.actuaries.org.uk/knowledge/cmi/cmi_tables/00_
series_tables
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strike g SZHW BSHW Rel. Diff
8.23% 3.82 3.07 + 24.5%
7% 0.59 0.39 + 50.7%
8% 2.89 2.26 +28.0%
9% 8.40 7.25 +15.8%
10% 17.02 15.53 +9.6%
11% 27.37 25.69 +6.5%
12% 38.30 36.47 +5.0%
13% 49.35 47.37 +4.2%

Total value, EU.

strike g SZHW BSHW Rel. Diff
8.23% 3.82 3.07 +24.5%
7% 0.59 0.39 +50.7%
8% 2.89 2.26 +28.0%
9% 2.43 1.29 +88.9%
10% -0.11 -1.60 -93.0%
11% -0.93 -2.60 -64.4%
12% -1.17 -2.99 -61.0%
13% -1.28 -3.26 -60.7%

Time value, EU.

strike g SZHW BSHW Rel. Diff
8.44% 6.51 5.84 +11.4%
7% 1.35 1.16 +17.1%
8% 4.34 3.84 +12.9%
9% 9.98 9.09 +9.8%
10% 18.13 16.8 +7.4%
11% 27.97 26.43 +5.8%
12% 38.63 36.88 +4.7%
13% 49.61 47.69 +4.0%

Total value, U.S.

strike g SZHW BSHW Rel. Diff
8.44% 6.51 5.84 +11.4%
7% 1.35 1.16 +17.1%
8% 4.34 3.84 +12.9%
9% 6.60 5.71 +15.5%
10% 3.87 2.61 +48.1%
11% 2.82 1.28 +120.0%
12% 2.61 0.86 +203.4%
13% 2.70 0.79 +243.9%

Time value, U.S.

Table 2: Comparison of GAO total values and time values of the SZHW and BSHW model for dif-
ferent guaranteed rates g. In the examples: at-the-money guaranteed rate g is 8.21% (EU) and 8.44%
(U.S.), effective correlation between the stock price and the interest rates is 37.3% (EU) and 25.7%
(U.S.).

The table shows that the use of a stochastic volatility model such as the SZHW model has a significant
impact on the total value of the GAO. The value increases with 4% - 50% for a EU data and 4% -
17% for a U.S. data, depending on the level of the guarantee.

These price differences are not caused by a volatility effect as both models are calibrated to the same
market data in Section 3. Figure 1 of Section 3, however showed that the distribution of equity
prices under a SZHW process has a heavy left tail, but also relatively more mass on the right of the
distribution compared to the BSHW process. Given a positive correlation between equity prices and
interest rates, and the fact that the GAO pays off when interest rates are low, this means that for the
SZHW model there will be some very low payoffs for equity prices in the left tail, but relatively higher
payoffs for the remaining scenarios. This is illustrated in Table 3. For the EU data and g = 8.23%, 50
000 Monte Carlo simulations are generated for both models and the discounted payoffs are segmented
in specific intervals.
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Payoff SZHW BSHW Diff
0 29173 29251 -78

(0, 1] 3727 2621 1106
(1, 10] 10983 13134 -2151

(10, 20] 3576 3390 186
(20, 30] 1347 928 419
(30, 40] 582 366 216
(40, 50] 257 154 103
(50, 60] 130 69 61
(60, 70] 92 34 58
(70, 80] 44 25 19
(80, 90] 26 12 14

(90, 100] 16 9 7
(100, 110] 14 4 10

> 110 33 3 30

Table 3: Comparison distribution of discounted payoffs for SZHW and BSHW model.

The table shows that indeed:

• SZHW has relatively much payoffs in the interval (0,1) due to the heavy left tail.

• For the remaining intervals, SZHW has more mass to the right, illustrated by the less frequent
payoffs in the interval (1, 10) and more frequent payoffs in the intervals greater than 10.

Since the models only have impact on the time value, the relative changes in time value for in-the-
money GAOs are higher, which is also illustrated in Table 2. One might wonder why the time values
for the EU data as negative for high levels of g. The reason for this is that due to the positive correlation
between interest rates and equity prices, higher equity volatility means that there is a higher chance
of lower payoffs, leading to a lower total option value compared to the intrinsic value. For the U.S.
data no negative time values are reported. Reason for this is that due to the lower correlation between
interest rates and equity prices, the effect described above is less significant than the positive impact
of interest rates on the time value.

6.2 Comparison results of the two-factor model with Chu and Kwok (2007)

A special case of our modeling framework is considered in Chu and Kwok (2007), namely a equity
model with constant volatility. Chu and Kwok (2007) argue that for a two-factor Gaussian interest
rate model no analytical pricing formulas exist. Therefore they propose three approximation methods
for the valuation of GAOs:

1. Method of minimum variance duration: This method approximates the annuity with a single
zero-coupon bond and minimizes the approximation error by choosing the maturity of the zero-
coupon bond to be equal to the stochastic duration.

2. Edgeworth expansion: This method makes use of the Edgeworth approximation of the proba-
bility distribution of the value of the annuity (see Collin-Dufresne and Goldstein (2002)).

3. Affine approximation: approach: This method approximates the conditional distributions of the
risk factors in affine diffusions.

13



In the paper the runtimes and approximation errors are compared with benchmark results using
Monte Carlo simulations and the method of minimum variance duration comes out most favorably.
The other approximation methods do have very long runtime, the Edgeworth expansion method
requires even more time then Monte Carlo simulation.

However, as we shown in Section 5, it is possible to derive a closed form expression where only a
single numerical integration is needed for the case of a two-factor Gaussian interest rate model. It
takes hardly any runtime (a couple of hundreds of seconds) to do this numerical integration, whilst
it provides exact results. The used parameter setting is the same as in Chu and Kwok (2007) and
is given in Appendix D. Table 4 shows a comparison of the results for the different methods and a
Monte Carlo simulation with 1 000 000 sample paths, whereas Table 6 of Appendix D reports the
relative differences of the various methods, compared to the exact GAO prices obtained by the closed
form expression in (49).

r0 Strike Closed-form Min. Var. Edgeworth Affine Monte Carlo
Level Exact Duration Expansion Approx.

(
±95% interval

)
0.5% 127% 11.8000∗ 11.8100∗ 11.8161∗ 11.7913∗ 11.7921

(
±0.0366

)
1.0% 123% 9.7556∗ 9.7714∗ 9.7502∗ 9.7412∗ 9.7487

(
±0.0329

)
1.5% 118% 7.8741∗ 7.8958∗ 7.8479∗ 7.8529∗ 7.8678

(
±0.0294

)
2.0% 114% 6.1690∗ 6.1946 6.1293 6.1418∗ 6.1633

(
±0.0260

)
2.5% 110% 4.6612∗ 4.6860 4.6199 4.6313 4.6555

(
±0.0226

)
3.0% 106% 3.3732∗ 3.3911 3.3408 3.3464 3.3678

(
±0.0192

)
3.5% 103% 2.3217∗ 2.3273∗ 2.2999 2.3044∗ 2.3174

(
±0.0159

)
4.0% 99% 1.5095∗ 1.5008∗ 1.4897 1.5057∗ 1.5065

(
±0.0126

)
4.5% 96% 0.9214∗ 0.9008 0.8942 0.9310 0.9198

(
±0.0097

)
5.0% 93% 0.5249∗ 0.4984 0.4922 0.5439 0.5244

(
±0.0071

)
5.5% 90% 0.2778∗ 0.2517 - - 0.2775

(
±0.0050

)
6.0% 88% 0.1360∗ 0.1150 - - 0.1354

(
±0.0033

)
6.5% 85% 0.0614∗ 0.0471 - - 0.0609

(
±0.0021

)
7.0% 83% 0.0254∗ 0.0171 - - 0.0251

(
±0.0013

)
Table 4: Comparison between the exact closed-form formula in (49), the method of minimum variance
duration, the Edgeworth expansion, the affine approximation and a Monte Carlo simulation. We
starred those values that lie within the 95% confidence interval of the Monte Carlo estimates.

The results from Tables 4 and 6 show that the approximation methods considered by Chu and Kwok
(2007) break down for higher interest rates, where the guarantee is out-the-money. Note hereby that
the first moment of the underlying distribution is main driving factor for option price, while for the
price of out-of-the-money options the higher moments play a more important role, e.g. see Brigo
and Mercurio (2006). Taking into account that the mean of the underlying annuity is determined
exactly in the approximations, this implies that these methods have severe difficulties in estimating
the higher moments of the underlying distribution, resulting in poor an approximation quality of the
out-of-money GAOs, see Table 4 and 6.

The exact closed-form formula (49) does give highly accurate prices for GAOs across for all strike
levels. Differences between the Monte Carlo method and the exact formula are sampling errors as we
can see that the 95% confidence interval of the Monte Carlo method is overlapping with the price of
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the exact closed-form formula for all cases. Typically such Monte Carlo noise increases for out-of-
the-money options (e.g. see Glasserman (2003)) as can also be seen from Table 4 for the considered
GAOs. Where the Affine approximation method and the Edgeworth expansion method take require
a very long runtime (according to Chu and Kwok (2007), the runtime of the Edgeworth expansion
is even larger than of the Monte Carlo method with 100 000 sample paths), the runtime the closed-
form exact method is comparable to the method of minimum variance duration and takes only a few
hundreds of a second. The closed-form exact approach proposed in Section 5 is preferable compared
to the approaches described in Chu and Kwok (2007), as it gives exact GAO prices over all strike
levels whilst being computational very efficient.

7 Conclusion

In this paper closed-form formulas for the pricing of GAOs using a stochastic volatility model for
equity prices. The considered framework further allows for 1-factor and 2-factor Gaussian interest
rates, whilst taking the correlation between the equity, the stochastic volatility and the stochastic
interest rates explicitly into account. The basis for the closed-form formulas for GAOs lies in the fact
that under the equity price measure, the GAO can be written in terms of an option on a sum of coupon
bearing bonds: after some calculations the Jamshidian (1989) result can be used that expresses the
latter option on a sum into a sum of options which can be priced in closed-form. For 1-factor interest
rates the price of a GAO can be expressed as sum of Black and Scholes (1973) options, whereas a
closed form expression using a single integral can be established for the case of a two-factor Gaussian
interest rate model.

A special case of our modeling framework, that is a equity model with constant volatility, is
considered in Chu and Kwok (2007). These authors argue that for a two-factor Gaussian interest
rate model no analytical pricing formulas exist and propose several approximation methods for the
valuation of GAOs. In this paper we did derive an exact closed-form pricing formula in terms of
a single numerical integral, which called for a comparison between these valuation methods. The
numerical results show that the use of the exact closed-form exact approach is preferable compared to
the approaches described in Chu and Kwok (2007), as it gives exact GAO prices over all strike levels
whilst being computational very efficient to compute.

Because GAOs generally involve long-dated maturities and the annuity payoff is directly linked
to the performance of an equity fund, it is for a proper pricing and risk management of such
products important to consider realistic returns for the equity fund combined with a non-trivial
dependency structure with the underlying interest rates. Using U.S. and the EU market option data,
we investigated the effects of a stochastic volatility model for the pricing of GAOs. Time-series
analysis between the considered equity funds (S&P500 for U.S. and EuroStoxx50 for EU) and the
long term interest rates revealed a substantial positive correlation. We then calibrated the stochastic
and the constant volatility model to the market’s options and this correlation, making sure that the
implied correlation between the terminal asset price and the interest rates is equal both frameworks
for a fair comparison. For both markets, the results indicate that the impact of using a stochastic
volatility model is significant; in the considered empirical test cases we found that, the prices for the
GAOs using a stochastic volatility model for equity prices are considerably higher in comparison to
the constant volatility model, especially for GAOs with an out of the money strikes.
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A Pricing of a coupon bearing option under two-factor interest rates

Let the pair
(
x(T ), y(T )

)
follow a bivariate normal distribution, i.e. with means µx, µy, variances σ2

x, σ
2
y

and correlation ρ. The probability density function f (x, y) of
(
x(T ), y(T )

)
is hence given by

f (x, y) =

exp
{
− 1

2(1−ρ2
xy)

[( x−µx
σx

)2
− 2ρxy

(x−µx)(y−µy)
σxσy

+
( y−µy
σy

)2
]}

2πσxσy

√
1 − ρ2

xy

. (56)

Furthermore, let the time T price of the zero-coupon bond P(T, ti) maturing at time ti be given by

P(T, ti) = A(T, ti)e−B(a,T,ti)x(T )−B(b,T,ti)y(T ). (57)

We then come to the following proposition.

Proposition A.1 The expected value of the coupon-bearing option maturing at time T , paying
coupons ci at times i = 0, . . . , n and with strike K is given by a one-dimensional integral, i.e.

IE
{( n∑

i=0

ciP(T, ti) − K
)+}

=

∞∫
−∞

∞∫
−∞

( n∑
i=0

ciA(T, ti)e−B(a,T,ti)x(T )−B(b,T,ti)y(T ) − K
)+

f (x, y)dydx

=

∞∫
−∞

e−
1
2

( x−µx
σx

)2

σx
√

2π

[
Fi(x)N

(
h2(x)

)
− KN

(
h1(x)

)]
dx

=: G
(
µx, µy, σx, σy, ρxy

)
, (58)

where N denotes the cumulative standard normal distribution function, with

h1(x) :=
y∗ − µy

σy

√
1 − ρ2

xy

−
ρxy(x − µx)

σx

√
1 − ρ2

xy

,

h2(x) := h1(x) + B(b,T, ti)σy

√
1 − ρ2

xy ,

λi(x) := ciA(T, ti)e−B(a,T,ti)x,

κi(x) := −B(b,T, ti)
[
µy −

1
2
σ2

y(1 − ρ2
xy)B(b,T, ti) + ρxyσy

(x − µx)
σx

,
]

Fi(x) :=
n∑

i=0

λi(x)eκi(x)

and with y∗ the unique solution of

n∑
i=0

λi(x)e−B(b,T,ti)y∗ = K.

Proof The result is analogous to the derivation of the swaption price under the G2++ model, we
therefore refer to equation (4.31) in Brigo and Mercurio (2006) on pp. 158-159 and the corresponding
proof on pp. 173-175.
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B Moments and terminal correlation of the two-factor Gaussian inter-
est rates

To determine the moments of x(T ) and y(T ) under the equity price measure, we need to consider the
dynamics of (41), there stated under the risk-neutral measure Q, under the equity price measure QS .
To change the underlying numeraire (e.g. see Geman et al. (1996)), we calculate the corresponding
Radon-Nikodým derivative which is given by

dQS

dQ
=

S (T )B(0)
S (0)B(T )

= exp
[
−

1
2

∫ T

0
ν2(u)du +

∫ T

0
ν(u)dWQS (u)

]
. (59)

The multi-dimensional version of Girsanov’s theorem hence implies that

dWQ
S

S (t) 7→ dWQS (t) − ν(t)dt, (60)

dWQ
S

x (t) 7→ dWQx (t) − ρxS ν(t)dt, (61)

dWQ
S

y (t) 7→ dWQy (t) − ρyS ν(t)dt, (62)

dWQ
S

ν (t) 7→ dWQν (t) − ρνS ν(t)dt, (63)

are QS Brownian motions. Hence under QS one has the following model dynamics for the volatility
and interest rate process

dx(t) = −ax(t)dt + ρxSσν(t)dt + σdWQ
S

x (t), x(0) = 0, (64)

dy(t) = −ay(t)dt + ρyS ην(t)dt + ηdWQ
S

y (t), x(0) = 0, (65)

dν(t) = κ̃
(
ψ̃ − ν(t)

)
dt + τdWQ

S

ν (t), ν(0) = ν0, (66)

where κ̃ := κ−ρνS τ, ψ̃ := κψ
κ̃

. Integrating the latter dynamics (conditional on the current time filtration
F0) yields the following explicit solutions:

ν(T ) = ψ̃ +
(
ν(0) − ψ̃

)
e−̃κT + τ

T∫
0

e−̃κ(T−u)dWQ
S

ν (u), (67)

x(T ) = ρxSσ
( ψ̃

a
[
1 − e−aT ]

+
ν(0) − ψ̃

a − κ̃
[
e−̃κT − e−aT ])

(68)

+
ρxSστ

(a − κ̃)

T∫
0

[
e−̃κ(T−u) − e−a(T−u)]dWQ

S

ν (u) + σ

T∫
0

e−a(T−u)dWQ
S

x (u),

y(T ) = ρySσ
( ψ̃

b
[
1 − e−bT ]

+
ν(0) − ψ̃

b − κ̃
[
e−̃κT − e−bT ])

(69)

+
ρyS ητ

(b − κ̃)

T∫
0

[
e−̃κ(T−u) − e−b(T−u)]dWQ

S

ν (u) + σ

T∫
0

e−b(T−u)dWQ
S

x (u).
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Using Ito’s isometry, one has that the x(T ), y(T ) (conditional on F0) is normally distributed with
means µx, µy and variance σ2

x, σ
2
y and correlation ρxy(T ) given by

µx := ρxSσ
( ψ̃

a
[
1 − e−aT ]

+
ν(0) − ψ̃
(a − κ̃)

[
e−̃κT − e−aT ])

, (70)

µy := ρySσ
( ψ̃

b
[
1 − e−bT ]

+
ν(0) − ψ̃
(b − κ̃)

[
e−̃κT − e−bT ])

, (71)

σ2
x := σ2

1(σ, a) + σ2
2(σ, a, ρxS ) + 2ρ12(σ, a, ρxν, ρxS )σ1(σ, a)σ2(σ, a, ρxS ), (72)

σ2
y := σ2

1(η, b) + σ2
2(η, b, ρyS ) + 2ρ12(η, b, ρyν, ρyS )σ1(η, b)σ2(η, b, ρyS ), (73)

ρxy :=
Cov

(
x(T ), y(T )

)
σxσy

, (74)

where

σ1(λ, z) := λ

√
1 − e−2zT

2z
,

σ2(λ, z, ρ) :=
ρλτ

z − κ̃

√
1
2̃κ

+
1
2z
−

2
(̃κ + z)

−
e−2̃κT

2̃κ
−

e−2zT

2z
+

2e−(̃κ+z)T

(̃κ + z)
,

ρ12(λ, z, ρ1, ρ2) := ρ1
λ2ρ2τ

σ1(λ, z)σ2(λ, z, ρ2)(z − κ̃)

[e−(z+̃κ)T

(z + κ̃)
−

e−2zT

2z

]
,

Cov
(
x(T ), y(T )

)
:= ρxyση

[1 − e−(a+b)T

(a + b)

]
+ρxνσ

ρyS ητ

(b − κ̃)

[1 − e−(a+̃κ)T

(a + κ̃)
−

1 − e−(a+b)T

(a + b)

]
+ρyνη

ρxSστ

(a − κ̃)

[1 − e−(b+̃κ)T

(b + κ̃)
−

1 − e−(a+b)T

(a + b)

]
+
ρxSστ

(a − κ̃)
ρyS ητ

(b − κ̃)

[1 − e−2̃κT

2̃κ
+

1 − e−(a+b)T

(a + b)
−

1 − e−(a+̃κ)T

(a + κ̃)
−

1 − e−(b+̃κ)T

(b + κ̃)

]
.
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C Special case: Pricing formulas with an independent equity price pro-
cess or pure interest rate guaranteed annuities

If one does not link the guaranteed annuity option to the performance of the equity (e.g. seen in the
Netherlands), one has that the guaranteed annuity option price is given by

C(T ) = x pr gP(0,T )IEQ
T
[( n∑

i=0

ciP(T, ti) − K
)+]
, (75)

where the above expectation is taken with respect to the T -forward measure QT , which uses the zero-
coupon bond price maturing at time T as numeraire. Moreover, also in case one assumes the equity
price is independent from the annuity, e.g. according to Boyle and Hardy (2003) and Pelsser (2003),
one ends up with the same expectation as (75); one only has to multiply the currency P(0,T ) with
the expectation future equity price, i.e. in (75) one has to replace resulting in replacing P(0,T ) by
P(0,T )IEQT [

S (T )
]

= S (0). In the following sections we will derive closed-form expressions for the
guaranteed annuity option price under both one-factor and two-factor Gaussian interest rates.

C.1 Hull-White model

Under QT , one has the following expression for the stochastic factor x(T ), driving the short interest
rate (e.g. see Brigo and Mercurio (2006), Pelsser (2000)):

x(T ) = µT
x + σ

∫ T

0
e−a(T−u)dWQT

x (u), (76)

hence from Ito’s isometry, we have x(T ) is normally distributed with mean µx and variance σ2
x given

by

µT
x := −

σ2

a2

[
1 − e−aT

]
+
σ2

2a2

[
1 − e−2aT

]
, (77)

σT
x := σ

√
1 − e−2aT

2a
. (78)

Just as in Section 4, we have that x(T ) is normally distributed, i.e. with the same variance σ2
x, but with

a different mean µT
x . Hence completely analogous to Section 4, one can use the Jamshidian (1989)

result and write the call option on the sum of zero-coupon bonds as a sum of zero-coupon bond call
options: let x∗ solve

n∑
i=0

ciA(T, ti)e−B(T,ti)x∗ = K, (79)

and let
Ki := A(T, ti)e−B(T,ti)x∗ . (80)

Using Jamshidian (1989), we can then write GAO as a sum of zero-coupon bond options, i.e.

C(T ) = x pr gS (0)IEQ
S
[ n∑

i=0

ci

(
A(T, ti)e−B(T,ti)x(T ) − Ki

)+]
. (81)
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As the bond price again follows a log-normal distribution in the Gaussian model, one can express
GAO price in terms of the Black and Scholes (1973) formula, i.e.

C(T ) = gP(0,T )
n∑

i=0

ci

[
FiN

(
di

1
)
− KiN

(
di

2
)]
, (82)

Fi = eMi+
1
2 Vi , (83)

d1
i =

ln
(
Fi/Ki

)
+ 1

2 Vi
√

Vi
, (84)

d2
i = d1

i −
√

Vi , (85)

where

Mi = ln A(T, ti) − B(T, ti)µT
x , (86)

Vi = B2(T, ti)
(
σT

x
)2, (87)

and note that the above expression only deviates from (35) in the different means and variances for
the x(T ) process.

C.2 Gaussian Two-factor model

Under QT , one has the following expression for the stochastic factors x(T ), y(T ) that drive the short
interest rate (e.g. see Brigo and Mercurio (2006)):

x(T ) = µT
x + σ

∫ T

0
e−a(T−u)dWQT

x (u), y(T ) = µT
y + σ

∫ T

0
e−b(T−u)dWQT

y (u), (88)

hence x(T ), y(T ) is normally distributed with means µT
x , µ

T
y , variances σ2

x, σ
2
y and correlation ρxy(T )

given by

µT
x := −

(
σ2

a2 + ρxy
ση

ab

)[
1 − e−aT

]
+
σ2

2a2

[
1 − e−2aT

]
+

ρxyση

b(a + b)

[
1 − e−(a+b)T

]
, (89)

µT
y := −

(
η2

b2 + ρxy
ση

ab

)[
1 − e−bT

]
+
η2

2b2

[
1 − e−2bT

]
+

ρxyση

a(a + b)

[
1 − e−(a+b)T

]
, (90)

σx := σ

√
1 − e−2aT

2a
, (91)

σy := η

√
1 − e−2bT

2b
, (92)

ρxy(T ) := ρxy
ση

σxσy

[
1 − e−(a+b)T

(a + b)

]
. (93)

Hence analogously to Section 5, one has that the GAO price is given by

C(T ) = gP(0,T )G
(
µT

x , µ
T
y , σx, σy, ρxy(T )

)
, (94)

where G is a closed-form expression, i.e. defined by equation (58) of appendix A.
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D Model setup and relative differences in the Chu and Kwok (1999)
example

In this appendix we describe the numerical input of the example being used in Chu and Kwok (2007).
We also report the relative differences between the GAO price obtained by their methods and the
exact closed form expression in (49) for that example; note that as the Black-Scholes G2++ model,
used in Chu and Kwok (2007), is special case of the Schöbel-Zhu G2++ considered in 5, we can one
on one translate their parameters into our modeling framework. As the notation is slightly different,
we explicitly provide this translation into our modeling framework.

The GAO is specified using the guaranteed rate g = 9, the current age of the policy holder x = 50
and his retirement age is r = 65, with corresponding probability of survival x pr = 0.9091 and time
to expiry for the GAO equal to T = 15 years. The equity price is modeled by the Black and Scholes
(1973) model with parameters:

q = 5%, S (0) = 100 exp(−q · T ) = 47.24, σS = 10%, (95)

where q denotes the continuous dividend rate and σS the constant volatility of the equity price. The
current (continuous) yield curve is given by (97) and for the G2++ interest rate model (e.g. see Brigo
and Mercurio (2006)) the following parameters are used:

a = 0.77, b = 0.08, σ = 2%, η = 1%, ρxy = −0.7. (96)

where the correlations between equity and interest rate drivers given by ρxS = 0.5 and ρyS = 0.0071.
Finally, the i-year survival probabilities ci from policy holder’s retirement age 65 are provided in the
following table:

c0 1.0000 c9 0.8304 c18 0.4889 c27 0.0998
c1 0.9871 c10 0.8018 c19 0.4414 c28 0.0725
c2 0.9730 c11 0.7708 c20 0.3934 c29 0.0503
c3 0.9578 c12 0.7374 c21 0.3454 c30 0.0330
c4 0.9411 c13 0.7015 c22 0.2981 c31 0.0203
c5 0.9229 c14 0.6632 c23 0.2523 c32 0.0115
c6 0.9029 c15 0.6226 c24 0.2088 c33 0.0059
c7 0.8808 c16 0.5798 c25 0.1684 c34 0.0027
c8 0.8567 c17 0.5351 c26 0.1319 c35 0.0011

Table 5: i-year survival probabilities ci from policy holder’s retirement age 65. A maximum age of
100 is assumed, that is for all j > 35: c j = 0.

In Section 6.2 we compared the prices of the exact closed-form solution (49) and estimates obtained
using 1 000 000 Monte Carlo simulations with the Minimum Variance, the Edgeworth and Affine
Approximation method which are used in Chu and Kwok (2007). These results can be found in Table
4, where a comparison is given for different levels r0 of the yield curve provided by the (continuous)
yields

Y(T ) = r0 + 0.04(1 − e−0.2T ). (97)

To shed more light on the relative performance of these methods compared to the exact closed-form
formula, we report in Table 6 the relative differences of these methods to this formula.
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r0 Strike Min. Var. Edgeworth Affine Monte Carlo
Level Duration Expansion Approx. Simulation

0.5% 127% 0.1% 0.1% -0.1% -0.1%
1.0% 123% 0.2% -0.1% -0.1% -0.1%
1.5% 118% 0.3% -0.3% -0.3% -0.1%
2.0% 114% 0.4% -0.6% -0.4% -0.1%
2.5% 110% 0.5% -0.9% -0.6% -0.1%
3.0% 106% 0.5% -1.0% -0.8% -0.2%
3.5% 103% 0.2% -0.9% -0.7% -0.2%
4.0% 99% -0.6% -1.3% -0.3% -0.2%
4.5% 96% -2.2% -2.9% 1.0% -0.2%
5.0% 93% -5.1% -6.2% 3.6% -0.1%
5.5% 90% -9.4% - - -0.1%
6.0% 88% -15.4% - - -0.4%
6.5% 85% -23.3% - - -0.7%
7.0% 83% -32.8% - - -1.1%

Table 6: The relative differences compared to the closed-form formula of the exact GAO price, for
different strike levels around the at-the-money point, can be found in the table.

An analysis of the above results is provided in Section 6.2.

22



References

L. Andersen and R. Brotherton-Ratcliffe. Extended libor market models with stochastic volatility.
Working paper, Gen Re Securities, 2001.

J. Andreasen. Closed form pricing of fx options under stochastic rates and volatility. 2006.

S. Bakshi, C. Cao, and Z. Chen. Empirical performance of alternative option pricing models. Journal
of Finance, 52:2003–2049, 1997.

S. Bakshi, C. Cao, and Z. Chen. Pricing and hedging long-term options. Journal of Econometrics,
94:277–318, 2000.

L. Ballotta and S. Haberman. Valuation of guaranteed annuity conversion options. Insurance: Math-
ematics and Economics, 33:87–108, 2003.

D. Bauer, A. Kling, and J. Russ. A universal pricing framework for guaranteed minimum benefits in
variable annuities. 2008. paper presented at AFIR Colloquium in Stockholm.

D.G. Baur. Stock-bond co-movements and cross-country linkages. http://ssrn.com/
abstract=978249, 2009.

E. Biffis and P. Millossovich. The fair value of guaranteed annuity options. Scandinavian Actuarial
Journal, 1:23–41, 2006.

F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political Econ-
omy, 81(3), 1973.

M.J. Bolton, D.H. Carr, P.A. Collis, C.M. George, V.P. Knowles, and A.J. Whitehouse. Reserving for
annuity guarantees. The Report of the Annuity Guarantees Working Party, 1997.

P.P. Boyle and M. Hardy. Guaranteed annuity options. Astin Bulletin, 33(2):125–152, 2003.

P.P. Boyle and M. Hardy. Mortality derivatives and the option to annuitize. Insurance: Mathematics
and Economics, 29(3), 2001.

D. Brigo and F. Mercurio. Interest rate models - theory and practice. Springer Finance, 2006.

C.C. Chu and Y. K. Kwok. Valuation of guaranteed annuity options in affine term structure models.
International Journal of Theoretical and Applied Finance, 10(2):363–387, 2007.

P. Collin-Dufresne and R.S. Goldstein. Pricing swaptions within an affine framework. Journal of
Derivatives, Fall issue, pages 1–18, 2002.

D. Duffie, J. Pan, and K. Singleton. Transform analysis for affine jump diffusions. Econometrica, 68:
13431376, 2000.
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