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Abstract 
The last decennium a vast literature on stochastic mortality models has been developed. 
However, as far as we know, none of the existing models meet most of the criteria an insurer 
or pension fund would set for stochastic mortality models. All well known models have nice 
features but also disadvantages. In this paper a new stochastic mortality model is proposed 
that aims at combining the nice features from existing models, while eliminating the 
disadvantages. More specifically, the model fits historical data very well, is applicable to a 
full age range, captures the cohort effect, has a non-trivial (but not too complex) correlation 
structure and has no robustness problems, while the structure of the model remains relatively 
simple. Also, the paper described how to incorporate parameter uncertainty in the model. 
Furthermore, a risk neutral version of the model is given, that can be used for pricing.    

 
Keywords: stochastic mortality models, longevity risk, pricing, Solvency 2, Monte Carlo 
simulation 

 
     

1. Introduction 
 
In recent years there has been an increasing amount of attention of the insurance industry for the 
quantification of the risks that insurers are exposed to. Important drivers of this development are 
the increasing internal focus on risk measurement and risk management and the introduction of 
Solvency 2 (expected to be implemented around 2011).  
 
Solvency 2 will lead to a change in the regulatory required solvency capital for insurers. At this 
moment this capital requirement is a fixed percentage of the mathematical reserve or the risk 
capital. Under Solvency 2 the so-called Solvency Capital Requirement (SCR) will be risk-based, 
and market values of assets and liabilities will be the basis for these calculations.  
 
Also for pension funds, a new solvency framework will be developed, either as part of Solvency 
2 or as a separate project (usually named IORP 2). It is expected that the general principles will 
be similar as Solvency 2, meaning market valuation of assets and liabilities and risk-based 
solvency requirements. 
                                                 
1 The author likes to thank Antoon Pelsser, Peter Boswijk, Marwa Khalaf-Allah, David Epstein and Andrew Cairns.  
a University of Amsterdam, Dept. of Quantitative Economics, Roetersstraat 11, 1018 WB Amsterdam, The 
Netherlands, e-mail: H.J.Plat@uva.nl 
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Important risks to be quantified are mortality and longevity risk. Not only is this an important 
risk for most (life) insurers and pension funds, the resulting solvency margin will also be part of 
the fair value reserve. Reason for this is that it is becoming best practice for the quantification of 
the Market Value Margin to apply a Cost of Capital rate to the solvency capital necessary to 
cover for unhedgeable risks, such as mortality and longevity risks. 
 
There is a vast literature on stochastic modeling of mortality rates. Often used models are for 
example those of Lee and Carter (1992), Renshaw and Haberman (2006), Cairns et al (2006a), 
Currie et al (2004) and Currie (2006). For an extensive review we refer to section 2. 
 
As far as we know, none of the existing models meet most of the criteria an insurer or pension 
fund would set for stochastic mortality models. All well known models have nice features but 
also disadvantages. In this paper a new mortality model is proposed that aims at combining the 
nice features from existing models, while eliminating the disadvantages of existing models. More 
specifically, the model fits historical data very well, is applicable to a full age range, captures the 
cohort effect, has a non-trivial (but not too complex) correlation structure, has no robustness 
problems and can take into account parameter risk, while the structure of the model remains 
relatively simple. 
  
The remainder of the paper is organized as follows. First, in section 2 the existing literature 
review is extensively reviewed, focusing on stochastic mortality models and the criteria for them. 
In section 3 a new mortality model is proposed. Section 4 describes the fitting procedure of the 
model and gives results of the fitting process for mortality of different countries. Section 5 shows 
simulation results of mortality rates and the results of a robustness test. In section 6 a risk neutral 
version of the model is given, which can be used for pricing. Section 7 describes a possible 
method to account for parameter risk for the proposed mortality model. Conclusions are given in 
section 8. 
 
 

2. Literature review: criteria and models 
 
Due to the increasing focus on risk management and measurement for insurers and pension funds, 
the literature on stochastic mortality models has developed rapidly during the last decennium. In 
this section an overview of current literature on stochastic mortality models and criteria for them 
is given.  
 
2.1 Criteria for stochastic mortality models 
It is important to consider whether a specific stochastic mortality model is a good model or not. 
Therefore, Cairns et al (2008a) defined criteria against which a model can be assessed: 
 

- Mortality rates should be positive. 
- The model should be consistent with historical data. 
- Long-term dynamics under the model should be biologically reasonable. 
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- Parameter estimates should be robust relative to the period of data and range of ages 
employed. 

- Model forecasts should be robust relative to the period of data and range of ages 
employed. 

- Forecast levels of uncertainty and central trajectories should be plausible and consistent 
with historical trends and variability in mortality data. 

- The model should be straightforward to implement using analytical methods or fast 
numerical algorithms. 

- The model should be relatively parsimonious. 
- It should be possible to use the model to generate sample paths and calculate prediction 

intervals. 
- The structure of the model should make it possible to incorporate parameter uncertainty 

in simulations. 
- At least for some countries, the model should incorporate a stochastic cohort effect. 
- The model should have a non-trivial correlation structure. 

 
An important additional criterion is that the model is applicable for a full age range. Some 
models are designed for higher ages only (say 60 years or older). However, the portfolios of 
insurers and pension funds usually exist of policyholders from age 20 and older. One would want 
to model the mortality rates and their dependencies for the whole portfolio consistently, therefore 
the model should be applicable for the whole age ranges. 
 
2.2 Stochastic mortality models 
Stochastic mortality models either model the central mortality rate or the initial mortality rate 
(see Coughlan et al (2007)). The central mortality rate mx,t  is defined as: 
 

(2.1) ,
,

,

#x t
x t

x t

D deaths during calendar year t aged x last birthdaym
E average population during calendar year t aged x last birthday

= =  

 
The initial mortality rate qx is the probability that a person aged x dies within the next year. The 
different mortality measures are linked by the following approximation: 
 
(2.2)  1 xm

xq e−≈ −
 
One of the most well known stochastic mortality models is the model of Lee and Carter (1992): 
 
(2.3) ,ln( )x t x xm a b κ= + t  
 
where ax and bx are age effects and κt is a random period effect. Cairns et al (2007, 2008a and 
2008b) noted several disadvantages of the Lee-Carter model: 
 

- It is a 1-factor model, resulting in mortality improvements at all ages being perfectly 
correlated (trivial correlation structure). 

- For countries where a cohort effect is observed in the past, the model gives a poor fit to 
historical data. 
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- The uncertainty in future death rates is proportional to the average improvement rate bx. 
For high ages this can lead to this uncertainty being too low, since historical 
improvement rates have often been lower at high ages. 

- The basic version of the model can result in a lack of smoothness in the estimated age 
effect bx. 

 
There is whole strand of literature on additions or modifications of the Lee-Carter model, for 
example Brouhns et al (2002), Lee and Miller (2001), Booth et al (2002), Girosi and King (2005), 
De Jong and Tickle (2006), Delwarde et al (2007) and Renshaw and Haberman (2003). Most of 
these models tackle one of the problems of the Lee-Carter model, but the other disadvantages 
still remain. 
 
The first model that incorporated the cohort effect was proposed in Renshaw and Haberman 
(2006): 
 
(2.4)   1 2

,ln( )x t x x t x tm a b bκ γ −= + + x  
 
where γt-x is a random cohort effect that is a function of the year of birth (t-x). 
For countries where a cohort effect is observed in the past, this model provides a significant 
better fit to the historical data. However, CMI (2007) and Cairns et al (2007, 2008b) find that the 
Renshaw-Haberman suffers from a lack of robustness. Furthermore, although the model has an 
additional stochastic factor for the cohort effect, for most of the simulated mortality rates the 
correlation structure is still trivial. Especially when using a wide age range, the simulated cohort 
parameters are only relevant for the higher ages in the far end of the projection.  
 
Currie (2006) introduced a simplification of the Renshaw-Haberman model that removes the 
robustness problem: 
 
(2.5) ,ln( )x t x t tm a κ γ −= + + x  
 
However, the fit quality is less compared with the Renshaw-Haberman model, and the problem 
with the trivial correlation structure still remains. 
 
When fitting models (2.4) and (2.5) to an age range of say 20-85, the modeled cohort effect can 
result in odd looking humps in the projected mortality rates over time. This problem will be 
further highlighted in the next paragraph. 
 
Furthermore, Cairns et al (2008b) observe that for United Kingdom and United States data, the 
fitted cohort effect appears to have a trend in the year of birth. This suggests that the cohort 
effect compensates the lack of a second age-period effect, as well as trying to capture the cohort 
effect in the data.  
 
Cairns et al (2006a) introduced the following model: 
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(2.6) ( ), 1 2
,

,

logit( ) ln
1

x t
x t t t

x t

q
q x

q
κ κ

⎛ ⎞
= = +⎜ ⎟⎜ ⎟−⎝ ⎠

x−  

 
where x  is the mean age in the sample range and 1 2( , )t tκ κ  is assumed to be a bivariate random 
walk with drift. Cairns et al (2007) also introduced some additions on model (2.6), amongst 
others capturing the cohort effect. The models have multiple factors that result in a (desired) non-
trivial correlation structure, while the structure of the model is relatively simple. However, those 
models are all designed for higher ages only. When using these models for full age ranges, the fit 
quality will be relatively poor and the projections are likely to be biologically unreasonable. 
 
2.3 Problems with modeling cohort effect 
Various explanations have been put forward for cohort effects that have been identified in the 
past. For example, for the United Kingdom Willets (2004) mentions historical patterns of 
smoking behavior and the impact of early life experience on health in later life. He states that 
there are a number of reasons to believe that this cohort effect will have an enduring impact on 
rates of mortality improvement in future decades.  
 
The investigations on cohort effects often concentrate on birth years until about 1945. This is 
natural, since in most cases the cohort effect is an effect on health in later life, so one needs 
observations of mortality rates for middle age and higher ages to verify the existence of the 
cohort effect. When applying models (2.4) and (2.5) to a full age range, say 20-85, cohort 
parameters are also fitted for birth years 1945-1980. This means that for these birth years, 
(cohort) movements for young ages (which can be volatile) are projected into the future. This 
affects the mortality rates for higher ages in a similar degree, since the cohort effect is usually 
modeled in a multiplicative way. However, given the possible nature of the movements for these 
specific birth years (for example AIDS, drug and alcohol abuse and violence) it is unclear 
whether these effects do have a persistent effect on the future mortality rates for these cohorts. 
And if so, it is questionable whether a high relative cohort effect for young ages will have a 
similar relative effect on mortality of higher ages, given the nature of the cohort effect for young 
ages2. 
 
Figure 1 shows a best estimate and percentiles of mortality rates for 75 years old males, using the 
Currie (2006) model applied to United States mortality for an age range of 20-84. 
 
       

                                                 
2 Note that the Renshaw-Haberman tries to capture this in the parameter 2

xb . However, this is based on the cohort 
effects for earlier birth years, which could have a significantly different nature.  
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   Figure 1: projected mortality rates, 75 years old male – Currie (2006) model 
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The figure shows an odd-looking hump around 2020-2040 and flattening of projected mortality 
thereafter, corresponding with patterns in the fitted cohort parameters for birth years 1945-1980. 
 
Given the considerations above and the odd-looking results when taking into account cohort 
effects of recent birth years, it might be wise to only include the cohort effect for early birth 
years (say until year 1945) in the fitting of the model. The cohort effect for later birth years (so > 
1945) can be simulated from the fitted distributions. An additional advantage of this is that the 
simulation of the cohort effect becomes relevant for higher ages already in the beginning of the 
projection, leading to a non-trivial correlation structure. 
 
 

3. A new stochastic mortality model 
 
The models mentioned in the previous section all have some nice features: 
 

- the ax term of the Lee-Carter model makes it suitable for full age ranges 
- the Renshaw-Haberman model addresses the cohort effect and fits well to historical data 
- the Currie model has a simpler structure then the Renshaw-Haberman model, making it 

more robust 
- the models of Cairns et al (2006a, 2007) have multiple factors, resulting in a non-trivial 

correlation structure, while the structure of the model is relatively simple 
 
In this section a new mortality model is proposed that combines those nice features, while 
eliminating the disadvantages mentioned in the previous section.  
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3.1 The proposed model 
As for most other stochastic mortality models, the quantity of interest is the central mortality rate 
mx,t. The proposed model for mx,t is: 
 
(3.1)  ( ) ( )1 2 3

,ln( )x t x t t t tm a x x x xκ κ κ γ+
x−= + + − + − +  

 
where ( ) (max ,0)x x x+− = − x . The model has 4 stochastic factors, but has a similar relatively 
simple structure as the Currie (2006) and the Cairns et al (2006a, 2007) models.  
 
The ax is similar as in the Lee-Carter model and makes sure that the basic shape of the mortality 
curve over ages is in line with historical observations. Next to the ax, the model has 4 stochastic 
factors . The parameters of the model can be fitted using the methodology 
described in section 4, after which suitable ARIMA-processes are selected for the various factors. 

1 2 3( , , , )t t t t xκ κ κ γ −

 
The factor κ1 represents changes in the level of mortality for all ages. Following the reasoning in 
Cairns et al (2006b), the (long-term) stochastic process for this factor should not be mean 
reverting. Reason for this is that it is not expected that higher mortality improvements in some 
years will surely be compensated by lower mortality improvements in later years. 
 
The factor κ2 allows changes in mortality to vary between ages, to reflect the historical 
observation that improvement rates can differ for different age classes. 
 
Furthermore, historical data seems to indicate that the dynamics of mortality rates at lower ages 
(up to age 40 / 50) can be (significantly) different at some times. For example, think of 
developments like AIDS, drugs and alcohol abuse, and violence. The factor κ3 is added to 
capture these dynamics. 
 
The factor γt-x is capturing the cohort effect, in the same way as the models of Currie (2006) and 
Cairns et al (2007). As mentioned in paragraph 2.2, the process for this factor should not have a 
trend. Therefore, a trendless mean reverting process will be assumed for γt-x. 
 
Next to γt-x, the factors κ2 and κ3 allow the model to have a non-trivial correlation structure 
between ages. Fitting non-stationary ARIMA-process for factors κ2 and κ3 could result (in some 
scenarios) in projected scenarios where the shape of the mortality curve over ages is not 
biologically reasonable. Therefore, a stationary (mean reverting) process will be assumed for 
these factors.   
 
In most cases mortality projections for a wide age range are needed. However, if one is only 
interested in higher ages (say age 60 and older), the factor κ3 is not needed and can be left out. 
This reduces the model to: 
 
(3.2) ( )1 2

,ln( )x t x t t tm a x xκ κ γ x−= + + − +  
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This reduced model still has all the favorable characteristics of model (3.1), but is more suitable 
for high ages only. 
 
3.2 Identifiability constraints     
Just like most stochastic mortality models, the proposed mortality model has an identifiability 
problem, meaning that different parameterizations could lead to identical values for ln(mx,t). Note 
that the following parameterization leads to similar values for ln(mx,t):   
 

(3.3) 

( )

( )

1 2

1 1
1 2

2 2
2

21

t x t x

t t

t t

x x

t x

dx

d
a a d

γ γ ψ ψ

κ κ ψ ψ

κ κ ψ
ψ

− −= + + −

= + −

= +

= + −

%

%

%

%

 

 
where ψ1, ψ2 and d are constants. 
 
This can be resolved by setting identifiability constraints. We use the approach of Cairns et al 
(2007, model M6) for this, leading to the following constraints: 
 

(3.4)  

1

0

1

0

3

0

0

0

c

c
c c

c

c
c c

t
t

c

γ

γ

κ

=

=

=

=

=

∑

∑

∑
 
where c0 and c1 are the earliest and latest year of birth to which a cohort effect is fitted, and c = 
t–x . The rationale behind the choice of first two constraints is that if the function ψ1 + ψ2 (t-x) is 
fitted to γt-x the constraints ensure that 1 2ˆ ˆ 0ψ ψ= = . This results in a fitted process for γt-x that 
will fluctuate around 0 and there will be no constant trend up or down. This means that the 
constraints in (3.4) force the process of γt-x only to be used to capture the cohort effect and not to 
compensate lack of age-period effects. The third constraint is only used to normalize the 
estimates for κ3. 
 
Other approaches for setting the identifiability constraints are also possible, see for example 
Cairns et al (2007) and Renshaw and Haberman (2006). 
 
 

4. Fitting the model 
 
An important aspect of stochastic mortality models is the quality of the fit of the model to 
historical mortality data. In this section the methodology for fitting the model is described, and a 
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comparison of fit quality with other models is made for mortality rates of the United States (US), 
England & Wales (E&W) and The Netherlands (NL). 
 
4.1 Fitting methodology 
Brouhns et al (2002) described a fitting methodology for the Lee-Carter model based on a 
Poisson model. The main advantage of this is that it accounts for heteroskedasticity of the 
mortality data for different ages. This method has been used more commonly after that, also for 
other models, see for example Renshaw and Haberman (2003, 2006) and Cairns et al (2007). 
 
This fitting methodology will be applied to the model proposed in section 3. Therefore, the 
number of deaths is modeled using the Poisson model, implying: 
 
(4.1) Dx,t ∼ Poisson(Ex,t mx,t)      
 
where Dx,t is the number of deaths, Ex,t  is the exposure (see (2.1)) and mx,t is modeled as in (3.1).  
The parameter set φ is fitted with maximum likelihood estimation, where the log-likelihood 
function of model (4.1) is given by: 
 
(4.2) ( ) ( ){ }, , , , , ,

,

; , ln ( ) ( ) ln !x t x t x t x t x t x t
x t

L D E D E m E m Dφ φ φ⎡ ⎤= −⎣ ⎦∑ −

                                                

 

 
Because of the specific nature of the problem, there are (as far as we know) no commercial 
statistical packages that implement this Poisson regression with constraints. Therefore we have 
used the R-code of the (free) software package “Lifemetrics” as a basis for fitting (4.2)3. Another 
reason for using this is to make an honest comparison of the fit quality of the model proposed in 
this paper and existing models (also modeled in Lifemetrics), which is the topic of the next 
paragraph. 
 
Besides estimates for ax, the fitting procedure described above leads to time series of estimations 
of κ1, κ2, κ3 and γt-x. The next step in fitting the model is selecting and fitting a suitable ARIMA-
process to these time series (see paragraph 4.3). 
  
4.2 Comparison of fit quality with existing models 
To evaluate whether the proposed model fits historical data well, we have fitted the model to 
three different data sets and compared the fitting results with those of models from the 
Lifemetrics toolkit. The three used data sets are: 

- United States, Males, 1961-2005, ages 20-84 
- England & Wales, Males, 1961-2005, ages 20-89 
- The Netherlands, Males, 1951-2005, ages 20-90 

 
The data consists of numbers of deaths Dx,t and the corresponding exposures Ex,t and is extracted 
from www.mortality.org4.  

 
3 See www.lifemetrics.com and http://www.r-project.org/. Lifemetrics is an (open source) toolkit for measuring and 
managing longevity and mortality risk, designed by J.P. Morgan. 
4 Note that a longer history is available. We used these historic periods (for the U.S. and E&W) to be able to roughly 
compare results with Cairns et al (2007) and Cairns et al (2008). 

 9

http://www.lifemetrics.com/
http://www.r-project.org/


 
As in Cairns et al (2007), the models are compared using the Bayes Information Criterion (BIC). 
The measure BIC provides a trade-off between fit quality and parsimony of the model. The BIC 
is defined as: 
 

(4.3) ( ) 1ˆ ln
2

BIC L K Nφ= −    

 
where φ̂  is the maximum likelihood estimate of the parameter vector, N is the number of 
observations and K is the number of parameters being estimated. 
 
Table 1 gives a comparison of the fitting results (in terms of BIC) of the model proposed in 
section 3 and existing models (fitted with the Lifemetrics toolkit). 
 
Table 1: comparison BIC for proposed model and existing models  
BIC mortality models * U.S. E&W NL
Plat -24.506 -18.151 -18.425
Renshaw-Haberman (2006) -25.971 -18.062 -18.632
Currie (2006) -37.489 -19.805 -18.597
Lee-Carter (1992) -47.542 -22.949 -20.353
Cairns et al (2007, model M7) -56.571 -27.730 -21.055
Cairns et al (2006) -294.928 -66.744 -31.511
* higher BIC is more favorable  
 
The table shows that the proposed model comes out most favorable, closely followed by the 
Renshaw-Haberman model. The BIC for the other models is (sometimes significantly) less.  
The models of Cairns et al (2006a, 2007) do not perform very well for this age range, since they 
are designed for higher ages only. 
 
In the fitting process of the models above the cohort effect was taken into account for all birth 
years of the dataset. However, given the reasons mentioned in paragraph 2.3, for the remaining 
of this paper we will exclude the cohort effect for birth years later than 1945 in the fitting of the 
model. In general this will reduce the quality of the fit somewhat, as is shown in table 2. 
 
Table 2: results BIC when excluding cohorts > 1945 
BIC mortality models * U.S. E&W NL
Plat -24.506 -18.151 -18.425
Plat (exluding cohorts > 1945) -32.392 -18.927 -18.378
* higher BIC is more favorable  
 
The fitting results of the model are still good when excluding the cohort effect for birth years > 
1945, certainly considering the fact that the BIC of the other models which include a cohort 
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effect (Renshaw-Haberman (2006), Currie (2006) and Cairns et al (2007)) would also be less 
favorable when excluding these birth years5. 
 
Note that the proposed model nests the model of Currie (2006). For nested models, the use of a 
likelihood ratio test is more appropriate than the use of the BIC measure. The likelihood ratio 
(LR) test can be used to test the null hypothesis that the nested model (in this case, the Currie 
(2006) model) is the correct model against the alternative that the more general model (the model 
proposed in this paper) is correct. The likelihood ratio test statistic is: 
 
(4.4) ( ) ( )ˆ2LR L Lξ φ φ⎡ ⎤= −⎣ ⎦

%  

 
where ( )ˆL φ  is the log-likelihood of the general model and ( )L φ%  of the nested model. 

Under the null hypothesis, ξLR has a Chi-squared distribution with J degrees of freedom, J being 
the additional parameters being estimated in the general model compared to the nested model. 
Therefore, the null hypothesis can be rejected if: 
 
(4.5) 2

,LR J αξ χ>  
 
where α is the significance level. Alternatively, the p-value can be determined for this test: 
 

(4.6)   ( ) ( )( )2 1 ˆ1 2Jp L Lχ φ− ⎡ ⎤= − −⎣ ⎦
%φ

 
The p-value is the probability of obtaining the observed value, assuming that the null hypothesis 
is true. If the p-value is lower than α, the null hypothesis is rejected. Table 3 shows the results of 
the likelihood ratio test for the three data sets.   
 
Table 3: LR test, null hypothesis Currie (2006) model against proposed model 

Likelihood Ratio Degrees of
test statistic freedom p-value

U.S. 26.677 89 < 0,0001
E&W 4.023 89 < 0,0001
Holland 1.245 109 < 0,0001  
 
The table shows that for each data set the null hypothesis is rejected overwhelmingly. Therefore, 
the conclusion above (based on BIC results) that the model proposed in this paper is preferable to 
the nested Currie (2006) model is supported by the results from the likelihood ratio test.     
 
 
 

                                                 
5 An alternative way of presentation could be to exclude the birth years > 1945 for all models that include the cohort 
effect and compare the BIC on that basis. However, the other models are all fitted with the Lifemetrics tool that 
includes all birth years. 
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4.3 Fitting the ARIMA processes – U.S. Males 
In the remainder of this paper, we will focus on the population of U.S. males6. The next step in 
the process is selecting and fitting a suitable ARIMA-process to the time series of κ1, κ2, κ3 and 
γt-x.  The fitted parameters κ1, κ2, κ3 and γt-x for U.S. males are given in figure 2. The figure 
shows that the pattern of the important parameter κ1 is well-behaved. The patterns of the other 
parameters all reveal some autoregressive behavior. 
 
Since the factor κ1 drives a significant part of the uncertainty in mortality rates, its relatively 
regular behavior (for this particular dataset) will also show in the projected uncertainty (in other 
words, the confidence intervals will be relatively narrow).     
 
   Figure 2: estimated values of κ1, κ2, κ3 and γt-x 
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Now for each of these time series all relevant ARIMA(p,d,q) processes for the range p, d, q = 0, 
1, 2, 3 are fitted and the most favorable process in terms of BIC is selected. The selected ARIMA 
processes are: 
 

- κ1: ARIMA(0,1,0) 
- κ2, κ3 and γt-x: ARIMA(1,0,0), no constant 

 
It is commonly assumed that the process for γt-x is independent of the other processes, so the 
parameters of this process can be fitted independently using Ordinary Least Squares (OLS). The 
                                                 
6 To be able to compare simulation results with Cairns et al (2007), we can either use US males or E&W males. The 
choice for U.S. males is more or less arbitrary. 
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other processes can be fitted simultaneously using Seemingly Unrelated Regression (SUR, see 
Zellner (1963)). 
 
Table 4 gives the fitted parameters and their standard errors (between brackets) and table 5 
shows the fitted standard deviations (on the diagonal) and correlations. 
 
Table 4: fitted parameters for the process yt+1 = θ1 + θ2 yt 

 
 
 
 
 

Fit results κ 1 κ 2 κ 3 γ t-x

θ 1 -0,0131
(0,0022)

θ 2 0,9539 0,8440 0,9366
(0,0495) (0,0656) (0,0361)

 
Table 5: fitted standard deviations (on the diagonal) and correlations 

κ 1 κ 2 κ 3 γ t-x

κ 1
0,0150 0,2539 0,0274 0

κ 2 0,2539 0,0005 0,0144 0

κ 3
0,0274 0,0144 0,0012 0

γ t-x 0 0 0 0,0175  
 
 

5. Mortality projections – U.S. Males 
 
Using the fitted ARIMA processes and the fitted values for ax and γt-x (see Appendix A), future 
mortality rate scenarios for U.S. males can be constructed using Monte Carlo simulation. This 
section shows the simulation results. Furthermore, the robustness of the projections is tested, 
using a similar test as in Cairns et al (2008b).  
 
5.1 Simulation results – U.S. Males 
Figure 3 shows simulation results for ages 25, 45, 65 and 84 for U.S. males. The best estimate 
projection is given and the 5% and 95% percentiles. 
 
The results are biologically plausible. For higher ages, the widths of the confidence intervals are 
broadly similar as the models of which Cairns et al (2008b) concluded that they produced 
biologically plausible results. The results for younger ages (25 and 45) also seem plausible, 
where the observed historical variability is reflected in the confidence intervals.   
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    Figure 3: simulation results for U.S. Males 
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5.2 Robustness of simulation results 
Some models suffer from a lack of robustness. For example, Cairns et al (2007, 2008b) find that 
the Renshaw-Haberman model is not robust for changes in range of years. They link this to the 
shape of the likelihood function. Robust models probably have a unique maximum that remains 
broadly unchanged when the range of years or ages is changed. Models that lack robustness 
possibly have more than one maximum, so when changing the range of years or ages the 
optimizer can jump from one local maximum to another, yielding different parameter estimates.  
 
The model proposed in this paper is tested for robustness using the same test as in Cairns et al 
(2008b). This means that the simulation results above are compared with those of two 
sensitivities. These sensitivities are: 

1) The model is fitted only to historical data from 1981-2005 (instead of 1961-2005) 
2) The model (3.1) is fitted to historical data from 1961-2005, but the stochastic models for 

κ1, κ2, κ3 and γt-x are only fitted to a restricted set of parameter estimates (being only the 
final 24 κ(i)’s and the final 45 γt-x’s)   

 
Of course, if there is a change in trend or variability in the period 1981-2005 compared to 1961-
2005, it is inevitable, for all models, that the simulation results will be somewhat different. 
 
The results are given in appendix B and are not significantly different as the results shown in 
paragraph 5.1. The confidence intervals for age 25 are wider, due to the higher variability for 
younger ages in the past 25 years. Conclusion is that the proposed model is robust for the 
sensitivities given above. 
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Furthermore, a backtest is carried out, meaning that the model is fitted to historical data from 
1961-1986 and the forecast results are compared with the actual observations for the period 
1987-2005. Also for this backtest, the proposed model performs adequately (see the results in 
appendix B).  
 
 

6. Risk neutral specification of the model 
 
The model proposed in section 3 is set up in the so-called real-world measure, suitable for 
assessing risks for example in the context of Solvency 2. For pricing instruments of which the 
payoff depends on future mortality rates, a risk adjusted pricing measure has to be defined. A 
common approach is to specify a risk neutral measure Q that is a suitable basis for pricing, see 
for example Milevsky and Promislow (2001), Dahl (2004), Schrager (2006), Cairns et al (2006a, 
2006b) and Biffis et al (2006). The risk neutral specification proposed below is in line with the 
approach of Cairns et al (2006a).  
 
Note that the market for longevity or mortality instruments is currently (very) far from complete. 
Consequence of this is that the risk neutral measure Q is not unique. Given the absence of any 
market price data, it seems wise to keep the specification of the risk neutral process relatively 
simple. 
 
6.1 Risk neutral dynamics 
The stochastic process for the factors κ1, κ2, κ3 and γt-x in the real world measure P can generally 
be specified as: 
 
(6.1)  ( )1 1, P

t t tε− −Κ = Θ Κ + ΣΖt

 
Where Κt is the vector with factors κ1, κ2, κ3 and γt-x, Θ(Kt-1, εt-1) is the drift of the process, ΣΣ ’ 
is the covariance matrix and ZP is a 4 x 1 vector with standard normal random variables under 
measure P. 
 
Now the proposed dynamics under the risk neutral measure Q are: 
 

(6.2) 
( )
( )

1 1

1 1

,

,

Q
t t t t

Q
t t t

ε λ

ε λ
− −

− −

⎡ ⎤Κ = Θ Κ + Σ Ζ −⎣ ⎦
= Θ Κ − Σ + ΣΖ

 

 
where the vector λ represents the “market price of risk” associated with the process Kt. Like 
Cairns et al (2006a), we assume that the market price of risk is constant over time. When market 
prices for longevity or mortality derivatives are available, the vector λ should be calibrated in 
such a way that the theoretical prices under the measure Q are approximately equal to market 
prices. 
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6.2 Calibration of the market price of risk 
Currently, there is no developed market for longevity derivatives. However, Loeys et al (2007) 
have the opinion that q-forwards are most likely to become the basis a longevity market.  
 
A q-forward is a simple capital market instrument with similar characteristics as an interest rate 
swap. The instrument exchanges a realized mortality rate in a future period for a pre-agreed fixed 
mortality rate. This is shown in figure 4. The pre-agreed fixed mortality rate is based on a 
projection of mortality rates, coming from the Lifemetrics toolkit. 
 
Figure 4: working of a q-forward 

Notional x REALISED mortality rate

Notional x FIXED mortality rate

 

 

 
 Hedge

Provider
Pension / Annuity

Insurer  
 
 

For example, when the realized mortality rate is lower than expected, the pension / annuity 
insurer will receive a payment which (partly) compensates the increase of the expected value of 
the insurance liabilities (caused by the decreasing mortality rates). 
 
The basis for the instrument is the (projected) mortality of a country population, not the mortality 
of a specific company or portfolio. This makes the product and the pricing very transparent 
compared to traditional reinsurance. 
 
Although there have been some transactions involving q-forwards, currently no market quotes 
for q-forwards are publicly available. However, Loeys et al (2007) give an indication and 
examples on how such an instrument would be priced in practice. In absence of real market data, 
we calibrate the model to q-forward prices resulting from these examples.  
 
Loeys et al (2007) give the following formula for setting the fixed q-forward rate: 
 
(6.3) qforward = (1 – horizon * Sharpe ratio * qvol) * qexpected   
 
where they have used 10 years for the horizon of the derivative, 25% for the Sharpe ratio and the 
volatility qvol based on historical data. Table 6 shows the results for q-forwards with a horizon of 
10 and starting ages of 35, 45, 55 and 65, where qexpected is based on model (3.1). Since in this 
paper the central mortality rate mx,t is modeled, the results are also translated these terms, which 
makes the calibration easier.  
 
Table 6: indication q-forward rate for horizon 10 and translation to m-forward 
Age start Age end q vol q expected q forward m expected m forward h

35 45 2,31% 0,306% 0,288% 0,307% 0,289% 0,060
45 55 1,53% 0,709% 0,682% 0,712% 0,685% 0,039
55 65 1,01% 1,618% 1,578% 1,632% 1,590% 0,026
65 75 1,47% 3,542% 3,412% 3,606% 3,471% 0,038  
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Now interpreting mforward as the expectation under the risk neutral measure and mexpected as the 
expectation under real world measure leads to: 
 
(6.4)   ( ) (, ,end end end end

Q P
x t x tE m g E m= )

 
where xend and tend are age and year at the end of the contract and g can be extracted from the 
market (or in this case, from table 6). Taking logarithms leads to: 
 
(6.5) ( ) [ ] ( ), ,ln ln ln

end end end end

Q P
x t x tE m g E m⎡ ⎤ ⎡= +⎣ ⎦ ⎣

⎤
⎦  

 
Because the only difference between the processes under Q and P is in the drift term, we can 
assume that: 
 
(6.6)    ( ) ( ) ( ) ( ) [ ], , , ,ln ln ln ln ln

end end end end end end end end

Q P Q P
x t x t x t x tE m E m E m E m g⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = − =⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦  

 
Now since this difference in the drift term is the matrix -Σλ, for a horizon k the following holds: 
 

(6.7) ( ) ( ), ,
1

ln ln
end end end end

k
Q P

x t x t t
t

E m E m W λ
=

⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦ ∑ Σ  

 
where Wt is the matrix of weights that are used to translate the values for κ1, κ2, κ3 and γt-x into 
values for ln(mx,t). This leads to: 
 

(6.8) 
1

k

t
t

h W λ
=

= Σ∑  

 
where h = -ln[g], of which the values are given in the table above. From (6.8) the market prices 
of risk can be solved: 
 

(6.9)  
1

1

ˆ
k

t
t

W hλ
−

=

⎛ ⎞
= Σ⎜ ⎟
⎝ ⎠
∑

 
Now we use this formula to calibrate the market prices of risk to the q-forwards specified above. 
The weights matrices Wt vary slightly for each year t depending on the development of the age:  
 

(6.10) 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 45 45

1 55 55

1 65 65

1 75 75

t

t

x x

x x
W

1

1

0

x x c

x x

+

+

+

+

⎛ ⎞− −
⎜ ⎟
⎜ ⎟− −

= ⎜ ⎟
− −⎜ ⎟

⎜ ⎟⎜ ⎟− −⎝ ⎠

 

 17



 
where ct = 0 for t < 5 and ct = 1 otherwise. Reason for this time dependence is that the simulated 
cohort effect gradually comes into the projections for age 65. The right bottom item of Wt is 0 
because for age 75 the cohort effect does not play a role within the horizon of 10 year for this age. 
 
Applying formula (6.9) using (6.10), the results in table 5 and the vector h from table 6 leads to 
the calibrated market prices of risk given in table 7. 
 
Table 7: market prices of risk  

λ

κ 1 1,2430
κ 2 0,9793
κ 3 -0,5756
γ t-x -0,7338  

 
When the market develops and a number of q-forward prices are available, the market prices of 
risk can be calibrated by minimizing the squared errors between the theoretical prices and the 
market prices: 
 

(6.11) 
2

1 1

ˆ
p k

i
i t

i t

Min h W
λ

λ λ
= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ∑ Σ   

 
where p is the number of q-forwards the model is calibrated to. 
 
 

7. Parameter Uncertainty 
 
As mentioned in the criteria for stochastic mortality models in paragraph 2.1, the structure of the 
model should make it possible to incorporate parameter uncertainty in simulations. There are two 
possible approaches for including this parameter uncertainty: 
 

1) Using a Bayesian framework, see Cairns (2000) and Cairns et al (2006a) 
2) Simulate the parameter values using the estimates and the standard errors obtained in the 

estimation process 
 
In a Bayesian framework a prior, possibly non-informative, distribution is assumed for the 
parameters. Combining this prior distribution with the sample data and the assumed density 
function of a particular stochastic process leads to a posterior distribution. This posterior 
distribution can be used to assess the parameter uncertainty.  
 
Approach 2) uses the standard errors of the fitted parameters to incorporate the parameter 
uncertainty. When least squares or maximum likelihood estimation is used the estimators are 
either normally or asymptotically normally distributed. 
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While a Bayesian approach is more elegant than approach 2), it generally leads to significantly 
more complexity. Market Chain Monte Carlo (MCMC) methods or importance sampling might 
be necessary, because the posterior distribution often does not belong to a known class of 
probability density functions (see for example Kleibergen and Hoek (1996)). Since approach 1) 
and 2) should not lead to significantly different parameter uncertainty, it is questionable whether 
it is worth increasing the complexity of the model significantly for slightly more elegance. 
Therefore, our preference would be approach 2). 
 
By using approach 2), parameter uncertainty can be incorporated in the model proposed in this 
paper. For the stochastic processes of κ1, κ2, κ3 and γt-x the estimates and standard errors given in 
table 4 can be used as the moments of the normal distributions of the parameters. For the 
parameter estimates of the γt-x‘s (until birth year 1945) and the ax’s the standard errors have to be 
calculated separately. Starting point for this (see for example Verbeek (2008)) is the vector of 
first derivatives of the log-likelihood function, the so-called score vector s(φ): 
 

(7.1) ( ) ( ) ( ) ( )
1 1

N N
i

i
i i

L L
s s

φ φ
φ φ

φ φ= =

∂ ∂
= = =

∂ ∂∑ ∑         

 
where φ is the parameter set, Li(φ) is de log-likelihood function for observation i and N is the 
number of observations. Now the covariance matrix Vpar to be used can be estimated with: 
 

(7.2)  ( ) ( )
1

1

ˆ ˆ
N

par i i
i

V s sφ φ
−

=

⎛ ⎞′= ⎜ ⎟
⎝ ⎠
∑

 
The standard errors for the γt-x‘s (until birth year 1945) and the ax’s are the square roots of the 
relevant diagonal elements. 
 
 

8. Conclusions 
 
As far as we know, none of the existing stochastic mortality models meet most of the criteria an 
insurer or pension fund would set. In this paper a new stochastic mortality model is proposed that 
aims at combining the nice features from existing models, while eliminating the disadvantages. 
The paper shows that the fit of the model to historical data is better than the well-known 
mortality models. Also, the model has 4 stochastic factors, leading to a (desired) non-trivial (but 
not too complex) correlation structure between ages. Due to a (Lee-Carter type) variable that 
describes the shape of the mortality curve over ages and the inclusion of a separate stochastic 
factor for young ages, the model is applicable to a full age range. Furthermore, the model 
captures the cohort effect and has no robustness problems. The paper also describes how to 
incorporate parameter uncertainty into the model. 
 
For pricing purposes, a risk neutral version of the model is given, that can be used for pricing. 
This model is calibrated to some indicative prices for longevity derivatives. 
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Appendix A: U.S. Male - estimates for ax and γt-x 
 
 

age ax age ax birth year γt-x birth year γt-x
20 -6,3983 53 -4,6403 1881 -0,1202 1914 0,0773
21 -6,3328 54 -4,5587 1882 -0,1103 1915 0,0708
22 -6,3382 55 -4,4660 1883 -0,1057 1916 0,0609
23 -6,3483 56 -4,3843 1884 -0,0940 1917 0,0544
24 -6,3826 57 -4,3008 1885 -0,0839 1918 0,0603
25 -6,3812 58 -4,1935 1886 -0,0743 1919 0,0340
26 -6,3777 59 -4,1249 1887 -0,0967 1920 0,0554
27 -6,3645 60 -4,0197 1888 -0,0553 1921 0,0366
28 -6,3301 61 -3,9471 1889 -0,0321 1922 0,0400
29 -6,3426 62 -3,8376 1890 -0,0370 1923 0,0313
30 -6,3080 63 -3,7746 1891 -0,0574 1924 0,0376
31 -6,2548 64 -3,7040 1892 -0,0361 1925 0,0402
32 -6,2078 65 -3,6100 1893 -0,0074 1926 0,0361
33 -6,1571 66 -3,5483 1894 -0,0067 1927 0,0297
34 -6,1303 67 -3,4648 1895 0,0075 1928 0,0203
35 -6,0643 68 -3,3801 1896 0,0329 1929 -0,0057
36 -6,0026 69 -3,3068 1897 0,0244 1930 -0,0050
37 -5,9383 70 -3,2088 1898 0,0321 1931 -0,0184
38 -5,8493 71 -3,1444 1899 0,0016 1932 -0,0152
39 -5,8183 72 -3,0406 1900 0,0576 1933 -0,0128
40 -5,7386 73 -2,9656 1901 0,0834 1934 -0,0360
41 -5,6532 74 -2,8864 1902 0,0396 1935 -0,0347
42 -5,5658 75 -2,7994 1903 0,0703 1936 -0,0477
43 -5,4921 76 -2,7193 1904 0,0711 1937 -0,0651
44 -5,4221 77 -2,6375 1905 0,0702 1938 -0,0717
45 -5,3288 78 -2,5568 1906 0,0690 1939 -0,0751
46 -5,2423 79 -2,4671 1907 0,0705 1940 -0,0709
47 -5,1539 80 -2,3649 1908 0,0809 1941 -0,0697
48 -5,0575 81 -2,2824 1909 0,0615 1942 -0,0914
49 -4,9965 82 -2,1863 1910 0,0749 1943 -0,0632
50 -4,8950 83 -2,0906 1911 0,0785 1944 -0,0831
51 -4,8109 84 -1,9992 1912 0,0655 1945 -0,0702
52 -4,7155 1913 0,0765  

 20



 21

U.S. Male - age 25

0,00%

0,05%

0,10%

0,15%

0,20%

0,25%

1961 1971 1981 1991 2001 2011 2021 2031 2041 2051

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile

U.S Male - age 45

0,0%

0,1%

0,2%

0,3%

0,4%

0,5%

0,6%

0,7%

1961 1971 1981 1991 2001 2011 2021 2031 2041 2051

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile

U.S. Male - age 65

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

4,5%

1961 1971 1981 1991 2001 2011 2021 2031 2041 2051

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile

U.S. Male - age 84

0,0%

2,0%

4,0%

6,0%

8,0%

10,0%

12,0%

14,0%

16,0%

18,0%

1961 1971 1981 1991 2001 2011 2021 2031 2041 2051

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile

U.S. Male - age 25

0,00%

0,05%

0,10%

0,15%

0,20%

0,25%

1961 1971 1981 1991 2001 2011 2021 2031 2041 2051

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile

U.S Male - age 45

0,0%

0,1%

0,2%

0,3%

0,4%

0,5%

0,6%

0,7%

1961 1971 1981 1991 2001 2011 2021 2031 2041 2051

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile

A

 this appendix the simulation results are given for the sensitivities that have been specified to 
test the robustness of the model: 

1) The model is fitted only to historical data from 1981-2005 (instead of 1961-2005) 
2) The model (3.1) is fitted to historical data from 1961-2005, but the stochastic models for 

κ1, κ2, κ3 and γt-x are only fitted to a restricted set of parameter estimates (being only the 
final 24 κ(i)’s and the final 45 γt-x’s)   

 
   Figure B.1: simulation results sensitivity 1 

  
  Figure B.2: simulation results sensitivity 2) 
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Figure B3: simulation results backtest 

U.S. Male - age 25

0,00%

0,05%

0,10%

0,15%

0,20%

0,25%

1961 1971 1981 1991 2001

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile
Observations

U.S Male - age 45

0,0%

0,1%

0,2%

0,3%

0,4%

0,5%

0,6%

0,7%

1961 1971 1981 1991 2001

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile
Observations

U.S. Male - age 65

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

4,5%

1961 1971 1981 1991 2001

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile
Observations

U.S. Male - age 84

0,0%

2,0%

4,0%

6,0%

8,0%

10,0%

12,0%

14,0%

16,0%

18,0%

1961 1971 1981 1991 2001

year

ce
nt

ra
l d

ea
th

 ra
te

Best estimate
5% / 95% percentile
Observations

 
 

References 
 
 
BIFFIS, E., M. DENUIT, AND P. DEVOLDER (2006): Stochastic mortality under measure changes, 
Pensions Institute Discussion Paper PI-0512 
BOOTH, H., J. MAINDONALD AND L. SMITH (2002): Applying Lee-Carter under conditions of 
variable mortality decline, Population Studies 56, 325-336  
BROUHNS, N., M. DENUIT, AND J.K. VERMUNT (2002): A Poisson log-bilinear regression 
approach to the construction of projected life tables, Insurance: Mathematics and Economics 31, 
373-393 
CAIRNS, A.J.G. (2000): A discussion of parameter and model uncertainty in insurance, 

s 27, 313-330 
D (2006a): A two-factor model for stochastic mortality 

eter uncertainty: Theory and Calibration, Journal of Risk and Insurance 73, 687-718 

Insurance: Mathematics and Economic
AIRNS, A.J.G., D. BLAKE, AND K. DOWC

with param

 22



 23

CAIRNS, A.J.G., D. BLAKE, AND K. DOWD (2006b): Pricing death: Frameworks for the valuation 
and securitization of mortality risk, ASTIN Bulletin 36, 79-120 
CAIRNS, A.J.G., ET AL (2007): A quantitative comparison of stochastic mortality models using 
data from England & Wales and the United States, Working paper, Heriot-Watt University, and 
Pensions Institute Discussion Paper PI-0701 
CAIRNS, A.J.G., D. BLAKE, AND K. DOWD (2008a): Modelling and Management of Mortality 
Risk: A Review, Working paper, Heriot-Watt University, and Pensions Institute Discussion 
Paper PI-0814 
CAIRNS, A.J.G., ET AL (2008b): The plausibility of mortality density forecasts: an analysis of six 
stochastic mortality models, Working paper, Heriot-Watt University, and Pensions Institute 

iscussion Paper PI-0801 
IGATION (2007): Stochastic projection methodologies: Lee-

Carter model features, example results and implications, Working paper 25 
COUGHLAN, G. ET AL (2007): Lifemetrics Technical Document, available at: 
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics 
CURRIE, I.D. (2006): Smoothing and forecasting mortality rates with P-splines, Talk given at the 
Institute of Actuaries, June 2006, available at: http:www.ma.hw.ac.uk/~iain/research/talks.html 
DAHL, M. (2004): Stochastic mortality in life insurance: Market reserves and mortality-linked 
insurance contracts, Insurance: Mathematics and Economics 35, 113-136 
DELWARDE, A., M. DENUIT AND P. EILERS (2007): Smoothing the Lee-Carter and Poisson log-
bilinear models for mortality forecasting: A penalized log-likelihood approach, Statistical 
Modelling 7, 29-48 
DE JONG, P., AND L. TICKLE (2006): Extending the Lee-Carter model of mortality projection, 
Mathematical Population Studies 13, 1-18 
KLEIBERGEN, F., AND H. HOEK (1996): Bayesian Analysis of ARMA Models using 
Noninformative Priors, Tinbergen Institute discussion paper 
LEE, R.D., AND L.R. CARTER (1992): Modelling and forecasting U.S. mortality, Journal of the 
American Statistical Association 87, 659-675  
LEE, R., AND T. MILLER (2001): Evaluating the performance of the Lee-Carter model for 
forecasting mortality, Demography 38, 537-549 
LOEYS ET AL (2007): Longevity: a market in the making, available at: 
ttp://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics 

MILEVSKY, M.A., AND S.D. PROMISLOW (2001): Mortality derivatives and the option to annuities, 
Insurance: Mathematics and Economics

ENSHAW, A.E., AND S. HABERMAN (2003): Lee-Carter mortality forecasting with age-specific 
nhancement, Insurance: Mathematics and Economics 33, 255-272 

thematics and Economics 38, 556-570 

 

D
CONTINUOUS MORTALITY INVEST

h

 29, 299-318 
R
e
RENSHAW, A.E., AND S. HABERMAN (2006): A cohort-based extension to the Lee-Carter model 
for mortality reduction factors, Insurance: Ma
SCHRAGER, D.F. (2006): Affine stochastic mortality, Insurance: Mathematics and Economics 38, 
81-97 
VERBEEK, M. (2008): Modern Econometrics, 3th edition, John Wiley & Sons, Ltd 
WILLETS, R.C. (2004): The cohort effect: Insights and explanations, British Actuarial Journal 10, 
833-877  
ZELLNER, A. (1963): Estimators of Seemingly Unrelated Regressions: Some Exact Finite Sample 
Results, Journal of the American Statistical Association 58, 977-992 
 


	1. Introduction
	2. Literature review: criteria and models
	3. A new stochastic mortality model
	4. Fitting the model
	5. Mortality projections – U.S. Males
	6. Risk neutral specification of the model
	7. Parameter Uncertainty
	8. Conclusions
	Appendix A: U.S. Male - estimates for ax and (t-x
	Appendix B: simulation results robustness tests
	References
	ADP1F.tmp
	DISCUSSION PAPER PI-0908
	Richard Plat
	March 2009



