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Abstract

Since its introduction, the Lee Carter model has been widely adopted as a means
of modelling the distribution of projected mortality rates. Increasingly attention is
being placed on alternative models and, importantly in the financial and actuarial
literature, on models suited to risk management and pricing. Financial economic
approaches based on term structure models provide a framework for embedding
longevity models into a pricing and risk management framework. They can include
traditional actuarial models for the force of mortality as well as multiple risk fac-
tor models. The paper develops a stochastic longevity model suitable for financial
pricing and risk management applications based on Australian population mortality
rates from 1971-2004 for ages 50-99. The model allows for expected changes aris-
ing from age and cohort effects and includes multiple stochastic risk factors. The
model captures age and time effects and allows for age dependence in the stochastic
factors driving longevity improvements. The model provides a good fit to historical
data capturing the stochastic trends in mortality improvement at different ages and
across time as well as the multivariate dependence structure across ages.
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1 Introduction

In life insurance and pensions, mortality models have traditionally been based on life tables
using deterministic projections to allow for mortality improvement. Life tables are based on
an assumption that future death rates are known with certainty. Dramatic improvements
in longevity over the 20th century have shown this approach to be inadequate for the
management of mortality and longevity risk. Empirical studies, including for example
Lee and Carter (1992) [19], clearly show that longevity risk requires a stochastic modelling
approach. Mortality improvement trends have been poorly forecast by deterministic trends.
Tuljapurkar (1998) [29] and Tuljapurkar and Boe(1998) [30] review isssues in longevity
forecasting.

Life insurers, pension funds and annuity providers are increasingly aware of their expo-
sure to the risk of mortality changes and the need for better models for risk management.
They must manage uncertainty in trends and volatility in risk exposures that were previ-
ously not formally considered. Actuarial and demographic models for mortality need to be
integrated into financial models in order to consider applications such as risk-based cap-
ital management and pricing mortality-linked securities. Financial economic approaches
based on term structure models, such as that of Dahl (2004) [14], provide a framework for
embedding mortality models into a pricing and risk management framework.

Stochastic mortality models were considered by population biologists. Woodbury and
Manton (1977) [34] and Yashin et al. (1985) [35] consider mortality as a dynamic process
driven by a multivariate state space. An individual’s physiological status is determined
by multiple factors affecting the health of the individual. Death occurs if the individual
enters a state beyond a boundary in the space, corresponding to a ”terminal” effect of
the risk factors. These models aim to mirror the biological process leading to death.
Although promising as a basis for modelling longevity risk, they can involve unobservable
risk factors and require large amounts of individual data, some of which is not currently
readily available, to calibrate and assess the models.

Stochastic models of mortality is a significant topic of current research in actuarial
science and demography. Cairns et al (2007) [9], Macdonald et al, 2003 [22], Currie,
Durban and Eilers, 2004 [12], and JP Morgan, 2007 [18], amongst others, develop and
assess a range of stochastic models. In the demographic literature stochastic modeling of
mortality has been influenced by the modelling approach of Lee and Carter (1992) [19].
They proposed a model for the central rate of mortality m(x, t) as a function of age and
time of the form

ln[m(x, t)] = ax + bxkt + εx,t. (1)

The underlying mortality rate is determined by age specific constants ax with the evolution
of mortality over time driven by a stochastic process kt which impacts each age differently
according to age specific parameters bx. Short term fluctuations in mortality are modeled
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by εx,t usually assumed to be normally distributed. The kt term is modeled using an
ARIMA process. The age specific constants ax and bx are estimated using a two stage
procedure with singular value decomposition. A number of extensions have been proposed
to improve the Lee-Carter model. Brouhns, Denuit and Vermunt (2002) [5] fit a Lee-
Carter model assuming that the number of deaths follow a Poisson process. Renshaw and
Haberman (2003) [24] propose adding additional time varying factors, improving the model
fit to a range of ages. Renshaw and Haberman (2006) [25] showed that a cohort effect was
required in order to fit gender-based 1961-2003 UK data. Hyndman and Ullah (2007) [17]
develop a multi-factor modelling approach using functional principal components to fit
demographic data.

The Lee-Carter model has been fitted to mortality data for a range of countries. These
studies indicate the need to modify the model to include additional factors or effects such
as the cohort effect. The model requires estimation of a large number of parameters
and the analysis of Hyndman and Ullah (2007) [17] and Renshaw and Haberman (2003)
[24] demonstrate the need for additional stochastic factors. Booth et al (2002) [3] have
considered models for Australian data. They fitted the Lee Carter model to Australian
data. They find a departure from a pattern of constant exponential decline in the kt term
and non-constant patterns in the age parameter bx.

The model is also limited in its application to the pricing of mortality-linked securities
since the incorporation of a risk adjusted probability measure is not natural. Denuit,
Devolder and Goderniaux (2007) [13] use the Wang (2002) [32] transform to risk-adjust
mortality rates based on the Lee-Carter model, similar to Lin and Cox (2005) [21]. Cairns
et al (2006a) [7] and Bauer and Russ (2006) [1] discuss limitations of the Wang transform
when developing a stochastic mortality for pricing and risk management.

Recent approaches to modelling mortality use the framework originally developed to
price interest-rate derivatives in continuous time as in the early models of Vasicek (1977)
[31] and Cox et al.(1985) [10]. The model framework can ensure mortality rate processes
are positive. Mortality linked securities can also be readily priced using this approach.
Milevsky and Promislow (2001) [23] developed models for interest rates and mortality in
a framework designed to price an annuity option. Dahl (2004) [14] proposed a generalized
form for these models, including the Milevsky and Promislow model as a special case. The
stochastic diffusion process for the force of mortality at time t for a life initially aged x,
denoted by µ(x, t), is

dµ(t, x) = αµ (t, x, µ(t, x)) dt + σµ (t, x, µ(t, x)) dBt. (2)

A special case is the affine models. Both the Ornstein-Uhlenbeck process used by Vasicek
(1977) [31] and the Feller process used by Cox et al (1985) [10] are affine. Biffis (2005)
[2] introduces jump-diffusion in affine processes. Dahl and Møller (2005) [15] assume a
time-inhomogeneous Cox, Ingersoll Ross mortality model. Schrager (2006) [26] develops a
multiple factor model for mortality using an affine model for all ages simultaneously and
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fits the model to Dutch data.

This paper develops a stochastic longevity model based on Australian population mor-
tality data from 1971-2004 and for ages 50-99 that is designed for financial pricing and risk
management applications. The model allows for expected changes arising from age and
cohort effects and for multiple stochastic risk factors impacting on longevity. Population
mortality is used because it is independently constructed, readily available, and suitable
for longevity risk modeling and the development of financial risk management products.
Ages above 55 are used since these are the ages where longevity risk has the most financial
impact. Data was obtained from the Human Mortality Database.

The model structure has a similar form to that used for term structure models allowing
it to be calibrated as a market consistent valuation model for longevity risk. A price of
mortality risk is formally included in the model. The model provides a good fit to historical
data for the ages and time period considered, capturing the stochastic trends in mortality
improvement at different ages, across time as well as the multivariate dependence structure
across ages. Wills and Sherris (2008) [33] calibrate the model to insurance linked market
prices and analyse the pricing and structuring of longevity bonds.

The remainder of this paper is structured as follows. Section 2 outlines the multivari-
ate mortality model including the risk adjustment for pricing mortality-linked securities.
Section 3 summarises the approach used to estimate parameters and provides an assess-
ment of the model based on observed Australian population mortality data. Results from
simulations using the model are analysed in Section 4. Section 5 concludes.

2 Multivariate Mortality Model

The model developed in this paper is in the same spirit as the financial modelling approach
of Dahl (2004) [14] and Schrager (2006) [26]. The model integrates financial and demo-
graphic longevity risk models in a framework suitable for pricing and risk management of
longevity risk. Demographic trends are modelled in the expected changes for mortality
and all ages are modelled simultaneously using multiple dependent factors to drive the
shocks to mortality rates. The model allows expected changes in mortality to vary by
age and time. Multiple random factors capture dependence between ages. Since mortality
improvement is observed to be similar for individuals of similar ages and for cohorts of
individuals, it is important to capture age dependence in the model.

The model is designed to be in a form that can readily be used to price longevity-linked
securities based on cash flows from annuity portfolios for lives of multiple ages. Portfolio
cash flows and the payments on securitized products need to be aggregated over a range of
ages. This aggregation of age dependent cash flows is influenced by mortality dependence
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between ages. Apart from Schrager (2006) [26] models currently proposed consider single
ages independently. Since pricing requires a change of measure from the real world prob-
abilities to a pricing measure, the model structure must readily allow incorporation of a
price of risk.

Motivated by Lee and Carter (1992) [19], Dahl (2004) [14] and Schrager (2006) [26],
the model is based on an assumed force of mortality µ(x, t) for age x at time t of the form

µ(x, t) = µ(x, 0) exp [(a + f(x) + g(t))t + σ(x, t)W (x, t)]

0 < x < ω, 0 < t < ω − x.
(3)

where a is a constant, f (x) is a deterministic function of age, g (t) is a deterministic function
of time, σ(x, t) is a deterministic (volatility) function of age and time and W (x, t), for x
continuous, is an (infinite dimensional) Brownian motion. For any given age xk

ln

[
µ(xk, t)

µ(xk, 0)

]
= (a + f(xk) + g(t))t + σW (t). (4)

so that the expected rate of change of µ(x, t), for any given age, consists of a constant a,
plus a component that varies with age f(xk), plus a time varying component g(t). The age
dependent component f(xk) is similar to the age parameter in the Lee-Carter model. At
time t, the variance of this rate of change is σt, which is independent of age and constant
per unit of time.

The infinite dimensional system in Equation (3) is made tractable by considering a
finite dimensional multivariate random vector of mortality rates with length N , for ages
x = x1, . . . , xN :

µ(t) =




µ(x1, t)
...

µ(xN , t)


 . (5)

The dynamics dµ(t) = [dµ(x1, t), . . . , dµ(xN , t)]′ are driven by the multivariate Wiener
process dW (t) with mean 0 and instantaneous covariance matrix Σ:

dW (t) =




dW (x1, t)
...

dW (xN , t)


 . (6)

To give the model a form suitable for simulation and estimation, the multivariate Wiener
process dW (x, t) is expressed in terms of an N -dimensional random vector of independent
Wiener processes: dZ(t) = [dZ1(t), . . . , dZN(t)]′. The dW (x, t) can be expressed as a linear
combination of dZ(t) using a deterministic and constant matrix D as dW (x, t) = DdZ(t)
where

D =




δ11 . . . δ1N
...

. . .
...

δN1 . . . δNN


 , (7)



2 MULTIVARIATE MORTALITY MODEL 6

and with each element given by

dW (x, t) =
N∑

i=1

δxidZi(t) for x = x1, . . . , xN : . (8)

Each row of D has unit length:

||δx|| =

√√√√
N∑

i=1

δ2
xi = 1 for all x. (9)

The (n,m) element of the covariance matrix Σ is then given by:

Cov
(
dW (xn, t), dW (xm, t)

)
=

[
N∑

i=1

δniδim

]
V ar

(
dZi(t)

)

=
N∑

i=1

δniδimdt.

(10)

and Σ can be written as:

Σ =
(
D
√

dt
)(

D
√

dt
)′

,

= RΣdt.
(11)

where RΣ is the associated correlation matrix of Σ and D is the Cholesky decomposition
of Σ.

2.1 Model Parameterization

Based on empirical studies including Cairns et al (2007) [9], Renshaw and Haberman (2006)
[25] and JP Morgan, 2007 [18], along with preliminary analysis of the Australian data the
model in Equation (3) is parameterized as:

dµ(x, t) =
(
a(x + t) + b

)
µ(x, t)dt + σµ(x, t)dW (x, t) for all x. (12)

The model in Equation (12) has a drift parameter as an affine function of the current age
(x+t). The percentage volatility is a constant σ, so that the variability of dµ(x, t) increases
with µ(x, t). As µ(x, t) is an increasing function of the current age (x + t), the process
becomes more variable for higher initial ages x, and later times t. Mean reversion is not
included in the mortality changes based on the assumption that longevity changes do not
revert to a long run mean. The absence of mean reversion is consistent with the approach
taken by Liao, Yang and Huang (2007) [20] in their longevity model.
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The proposed model based on Equation (12) becomes a system of equations:

dµ(x, t) =
(
a(x + t) + b

)
µ(x, t)dt + σµ(x, t)

N∑
i=1

δx,idZi(t) for x = x1, . . . , xN < ω. (13)

where the dependence between ages is captured in the δx,i terms.

2.2 Risk Adjusted Pricing Measure

As in Dahl (2004) [14], Dahl and Moeller (2005) [15] and Cairns et al (2006a) [7], an
important application for the model is for pricing mortality-linked securities. To do this the
mortality dynamics are derived under an equivalent (risk-adjusted) probability measure.
The mortality process will not be a martingale under this measure. Rather, the price
process of each security will be a martingale. The longevity risk market is inherently
incomplete and as a result the choice of a risk-adjusted measure for mortality is not unique.

The mortality rate for initial age x, µ(x, t), follows a stochastic diffusion process defined
in Equation (12)

dµ(x, t) = (a(x + t) + b) µ(x, t)dt + σµ(x, t)dW (x, t),

dW (x, t) =
N∑

i=1

δxidZi(t).

on the probability space (Ω,F ,P), where P is the ‘real-world’ probability measure.

From the Cameron-Martin-Girsanov Theorem, see for example Cairns (2004) [6] for
more details, the process dW (x, t) under an equivalent (risk-adjusted) probability measure
Q is given by

dWQ(x, t) =
N∑

i=1

δxi (dZi(t) + λi(t)dt)

= dW (x, t) +
N∑

i=1

δxiλi(t)dt.

(14)

which can be written as
dWQ(t) = dW (t) + Dλ(t)dt, (15)

where λ(t) = [λ1(t), . . . , λN(t)]′.

The mortality dynamics for a specific age x under the risk adjusted measure Q is given
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by:

dµQ(x, t) = (a(x + t) + b) µQ(x, t)dt + σµQ(x, t)dWQ(x, t)

= (a(x + t) + b) µQ(x, t)dt + σµQ(x, t)
(
dW (x, t) +

N∑
i=1

δxiλi(t)dt
)

=
(
a(x + t) + b +

N∑
i=1

δxiλi(t)
)
µQ(x, t)dt + σµQ(x, t)dW (x, t).

(16)

This is equivalent to the original process under P, with an additional drift adjustment
given by (

∑N
i=1 δxiλi(t)).

The choice of risk adjusted measure Q, and thus λ is not unique and can be derived
from market equilibrium utility functions as in Cox et al (1985) [10]. Price data from
insurance linked securities can be used to calibrate the market price of risk.

3 Data and Methodology

The model is estimated using Australian Population Mortality Data for ages 50-99 from
1971-2004. The ages are chosen to reflect the exposure of an annuity portfolio. Data is
obtained from the Human Mortality Database, University of California, Berkeley (USA),
and Max Planck Institute for Demographic Research (Germany). Define m(x, t) as the
observed central death rate in year t for lives initially aged x as

m(x, t) =
# deaths during calendar year t aged (x + t) last birthday
avg. pop. during calendar year t aged (x + t) last birthday

. (17)

The data lists the number of deaths per calendar year by ‘lower age limit’, or age last
birthday. Population data is provided for the number of lives alive at age (x + t) at the
30th of June each year. This serves as an estimate for the required population in Equation
(17). The observed central death rate can thus be calculated directly from the data.

Calibrating the model requires estimates of the observed force of mortality µ̂(x, t).
Under the assumptions that the force of mortality is constant over each integer age and
calendar year so that µ(x+u, t+s) = µ(x, t) for integers x and t and all 0 <= (s, u) <= 1,
and the size of the population at all ages remains constant over the calendar year it follows
that

µ̂(x, t) = m(x, t). (18)

The observed male and female mortality rates used in this analysis are displayed in Figures
(1) and (2).
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Figure 1: Observed Australian male mortality µ̂(x, t): 1971-2004, on linear (left) and
log (right) scales.

The data shows a linear drift in the logarithm of the mortality rates ages above 50
which is consistent with the model parametrization.

From the estimates µ̂(x, t), estimates for the change in the force of mortality ∆µ̂(x, t)
are given by

∆µ̂(x, t) = µ̂(x + 1, t + 1)− µ̂(x, t) (19)

A matrix of annual observed changes in mortality rates ∆µ̂(x, t) is then given by:

∆µ̂(x, t) =




µ̂51,1972 . . . µ̂51,2004
...

. . .
...

µ̂99,1972 . . . µ̂99,2004


−




µ̂50,1971 . . . µ̂50,2003
...

. . .
...

µ̂98,1971 . . . µ̂98,2003


 . (20)

The model parameters are estimated using this data for all elements in the vector ∆µ(t).

3.1 Parameter Estimation - Maximum Likelihood

Maximum likelihood is used to estimate the parameters of the dµ(x, t) process:

dµ(x, t) = (a(x + t) + b)µ(x, t)dt + σµ(x, t)dW (t) .

Since
∆µ ∼ N ((a(x + t) + b)µ, σµ) .

the log-likelihood function is:

` (dµ̂ | a, b, σ) = −
∑

all x, t

ln
(
σµ̂
√

2π
)
− 1

2

∑

all x, t

(
(∆µ̂/µ̂)− (a(x + t) + b)

σ

)2

,
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Figure 2: Observed Australian female mortality µ̂(x, t): 1971-2004, on linear (left) and
log (right) scales.

assuming independent and identically distributed sample data, given a, b and σ. Differen-
tiating the log-likelihood function with respect to a gives

∂`

∂a
=

∑

all x, t

(
(∆µ̂/µ̂)− (a(x + t) + b)

σ

)
(x + t)

σ

0 =
1

σ2

( ∑

all x, t

∆µ̂(x + t)

µ̂
− â

∑

all x, t

(x + t)2 − b̂
∑

all x, t

(x + t)

)

Differentiating with respect to b gives

∂`

∂b
=

∑

all x, t

(
(∆µ̂/µ̂)− (a(x + t) + b)

σ

)
1

σ

0 =
1

σ2

( ∑

all x, t

∆µ̂

µ̂
− â

∑

all x, t

(x + t)− b̂(N × T )

)

where (N × T ) is the number of observations of dµ̂ across N ages and for T time periods.
Differentiating with respect to σ gives

∂`

∂σ
= −(N × T )

σ
+ σ−3

∑

all x, t

((∆µ̂/µ̂)− (a(x + t) + b))2

(N × T )

σ̂
= σ̂−3

∑

all x, t

(
(∆µ̂/µ̂)− (â(x + t) + b̂)

)2

σ̂ =

√√√√
∑

all x, t

(
(∆µ̂/µ̂)− (â(x + t) + b̂)

)2

(N × T )
.
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Parameter MLE: Male MLE: Female

â -9.4398E-04 2.6993E-04

b̂ 0.1347 0.0608
σ̂ 0.0906 0.0873

Table 1: Parameter estimates for the mortality model using MLE.

Simultaneously solving the expressions for â, b̂, σ̂ yields their Maximum Likelihood Esti-
mates. The parameter estimates are summarized in Table 1.

The asymptotic variance/covariance matrix of the maximum likelihood estimates is
given in Table 2. For both male and female data, these values are small, indicating a
high level of confidence in the estimates. The large sample distribution of the maximum
likelihood estimates p is asymptotically normally distributed, with mean p̄ and variance:

V ar(p) =
1

nI(p̄)
, (21)

where p̄ is the vector of true parameters. This variance is determined using the approxima-
tion I(p̄) = I(p). The number of observations is n = 1617. I(p) is found by shocking each

parameter and noting the change in ∂
∂pi

log L(X|p) for all pi. Note that p = [p1, . . . , pn]′

is the vector of maximum likelihood estimates for data set X and I(p) is the matrix with
ijth component:

I(p)ij = −E

[
∂2

∂pi∂pj

log L(X|p)

]
, (22)

where L(X|p) is the likelihood function of X given parameters p.

Male
a b σ

a 5.53E-13 4.24E-11 -
b 4.24E-11 3.14E-09 -
σ 5.01E-11 2.84E-07 1.61E-09

Female
a b σ

a 5.13E-13 3.94E-11 -
b 3.94E-11 2.91E-09 -
σ -4.48E-11 -2.54E-07 1.50E-09

Table 2: Asymptotic var/covar. matrix for male and female MLEs.
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3.2 Dependence and Principal Components Analysis

Dependence in the mortality process dµ(t) is modelled based on dependence in the multi-
variate Wiener process:

dW (t) =




dW (x1, t)
...

dW (xN , t)


 . (23)

The model assumes that dW (t) are independent between time periods. Across a single time
period, dW (t) incorporates dependence between each age x = x1, . . . , xN . To estimate the
dependence the residuals are taken from the model with â, b̂, σ̂ based on their Maximum
Likelihood Estimates to get estimated standardised residuals:

r(x, t) =
∆µ̂(x, t)/ ˆµ(x, t)− (â(x + t) + b̂)

σ̂
. (24)

The standardized residual values for each year are a realization of the random vector
dW (t). These r(x, t) are used to estimate the sample covariance matrix Σ̂ of dW (t). The
standardised residuals are jointly normally distributed dW (t) ∼ M.V.N(0, Σ) where Σ is
the associated N ×N positive semi-definite covariance matrix.

Principal components analysis (PCA) is applied to the standardised residuals. Prin-
cipal Components Analysis (PCA) provides a method for generating random samples of
a correlated random vector. These samples are designed to have the same covariance
properties as an observed data set. Define θ = [θ1, . . . , θN ]′ as the ordered eigenvalues
of Σ, with θ1 >= . . . >= θN . The corresponding eigenvectors are given by the matrix
V = [V1, . . . , VN ] such that

ΣV = V T

Σ = V TV ′,

where T is the N ×N diagonal matrix with diagonal θ. The term (V
√

T ) is the Cholesky
decomposition of Σ such that:

V
√

T = D
√

dt (25)

By generating independent normal random samples of η we are able to use the linear
transformation in Equation (28) to generate dependent random samples ν of the variable
dW (t) at each time period.

The observed age-based correlation matrix Σ̂ has a total of 49 eigenvectors. Table 3
summarises the percentage of the observed variation explained by these vectors. Hyndman
and Ullah (2007) [17] and Hyndman and Booth (2006) [16] consider (µ(x, t)− µ̂(x)), where
µ(x, t) is the observed mortality rate and µ̂(x) is the average mortality rate for age x across
all years. Principal components analysis is employed to determine the bx and kt terms in a
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Lee-Carter model. They find that six factors are sufficient to explain the variability in the
mortality process, with 90% accounted for by the first factor. They do not include a time
trend and do not examine the changes in the standardised residuals. This is expected to
result in the dominance of the first eigenvector. The analysis presented here is based on
the standardised residuals after allowing for a time trend and using the MLE parameter
estimates â, b̂ and σ̂ to standardise the residuals.

# of Eigenvectors % of Observed Variation

1 29.3%
5 69.8%
10 85.1%
15 92.4%
20 96.5%
25 97.1%
30 99.1%
31 99.5%
32 100.0%

Table 3: Percentage of the observed variation in residuals explained by the eigenvectors
using PCA.

3.3 Analysis of Fit

The model for mortality is found to fit observed Australian population data for the age
range x = 50, . . . , 99 and time period t = 1971, . . . , 2004 very well. The analysis of fit
is based on the standardised residuals from the model, defined in Equation (24). Our
analysis relies on the assumption that the residuals are normally distributed with mean 0
and variance 1. These residuals are illustrated in Figure 3.

There are no trends in either the age or the time dimension, and they are randomly
distributed around zero. The model fit is confirmed by the residual descriptive statistics
summarized in Table 4. The statistics further show that standard error of the mean
estimate is small, and the standard deviation of the residuals is very close to 1.

Pearson’s chi-square statistic for quantifying the discrepancy between observed (O) and
expected (E)

X2 =
∑

all obs.

(Oi − Ei)
2

Ei

(26)

has approximately a chi-square distribution with degrees of freedom:

df = number of observations− number of independent parameters− 1 (27)
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Figure 3: Male and female fitted residuals.

Male Female

Mean -3.12E-03 4.84E-08
Standard Error 0.024 0.025

Standard Deviation 0.972 1.000
Minimum -6.320 -4.396
Maximum 6.277 14.459

Confidence Level(95.0%) 0.047 0.049

Table 4: Residual descriptive statistics for male and female data.

There are 50 ages × 34 years of observed µ(x, t) values. The corresponding number of
observations for dµ(x, t) is 49 × 33 = 1617. There are 3 estimated parameters by MLE,
and 1225 independent parameters for the 49×49 correlation matrix of dW (t). This metric
generates the values given in Table 5. Higher values of the statistic X2 suggest a poorer
fit, and larger deviance of observed values from those expected. This is compared to the
chi-square distribution with 388 degrees of freedom. This confirms the model provides a
very good fit to the data.

X2 Male X2 Female χ2
388 at 99%

71.08 23.16 326.15

Table 5: Pearson’s chi-square statistic and 99% confidence level.

Figure 4 illustrates Male and Female residual histograms from an illustrative subset of
the data. The distribution of the residuals at each time is approximately normal with zero
mean. This provides the basis for the simulations discussed below.
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Figure 4: A selection of residual histograms for male and female data, at specific times
(1979, 1987 and 1996).
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4 Model Simulation

To illustrate the application of the model and its distributional properties the model is
simulated. For the purpose of illustration 31 of the 49 eigenvectors have been used although
a lower number of around 10 would also be reasonable. The simulation is for a random
vector ν and its linear transformation:

ν = V
√

Tη, (28)

where
√

T is an N × N diagonal matrix with diagonal
√

θ = [
√

θ1, . . . ,
√

θN ]′. The N -
dimensional random vector η ∼ iid N(0, I), where I is an N × N unit diagonal matrix.
The vector ν will in turn be normally distributed with covariance matrix:

Σν = (V
√

T )I(V
√

T )′ (29)

= V TV ′ (30)

= Σ. (31)

Σ is the covariance matrix of our original residual vector dW (t).

For each simulation of µ(x, t), the number alive at each time for a given cohort, x, is
given by:

l(x, t) = l(x, 0) exp[

∫ t

0

µ(x, s)ds]. (32)

Twenty year projections of expected mortality are illustrated in Figure 5. Mortality is
projected by tracing the change in mortality rates for each initial cohort through time. The
effect of this is seen in the diagonal trends depicted in Figure 5. These trace the progress
of the cohort through the age/time space. The ‘ridges’ in the projection are a result of a
cohort’s higher observed mortality in the base year (2004).

Figure 6 illustrates the observed and fitted residuals under three different assumptions
on the correlations between ages. The first two plots illustrate the observed and fitted
residuals for Australian male data using 100,000 simulations. Each line illustrates the
residual values at a different time/simulation. The second two plots are based on female
data. The final plots are simulations generated under perfect independence and dependence
(left to right) between ages at each time.

The distribution of future mortality rates can be seen in Figure 7. This provides 95%
confidence intervals for the projected mortality curve, at two points in time, under three
types of age-dependence. As a means of reference, the base (2004) mortality curve is also
included. The impact of age-dependence is illustrated by the spread of the confidence
bounds. Over the majority of ages, mortality projections are more constrained under
observed dependence than under either perfect dependence or independence. However,
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Figure 5: A 20 year projection of male expected mortality (linear and log scales).

above age 95 the observed structure is more volatile. These results are consistent with
the work of Hyndman and Booth (2006) [16], who project Australian mortality using the
Lee-Carter method.

Figure 8 shows the expected number alive E[l(x, t)] for each age and time, given l(x, 0) =
2, 000∀x. The increase at age 99 for periods in the near future is a result of the downturn
in the observed force of mortality during the base year. From the plot it can be seen that
mortality is expected to improve at all ages.

Collectively, these results show that the proposed model provides a very good fit to
the observed data. The assumption that the volatility in the population’s size is primar-
ily driven by the underlying mortality process is found to be consistent with experience.
Mortality is projected to continue to improve at a rate consistent with past trends, and
the projected Australian mortality rates are consistent with those given by Hyndman and
Booth (2006), using the Lee Carter model.

Mortality rates at ages 95-99 are projected to increase in the near future, before assum-
ing a general downward trend. This is attributed to the fitting of the model to the most
recent 30 years of data. Over this period, old age mortality has experienced significant
fluctuations (see observed mortality data in Figure 1), and in recent years has decreased at
the highest ages. This has been inconsistent with prior years and female data. Reasons for
the decrease may be age specific volatility, or a fundamental shift in the mortality curve.
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Figure 6: Observed and fitted residuals under three age-dependence assumptions.
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5 Conclusion

This paper develops a dynamic mortality model based on Australian data for use in as-
sessing longevity risk and financial pricing of mortality linked securities. It follows the
approach of Dahl (2004) [14] and Schrager (2006) [26] and models the development of
mortality rates for multiple ages simultaneously. Most mortality models have restricted
attention to modeling mortality at a single-age. The model developed in this paper consid-
ers mortality as a multivariate stochastic process over multiple ages. Maximum likelihood
estimation is used to estimate trend and volatility parameters and principal componenets
analysis to estimate dependence between ages.

The model provides a very good fit to Australian population mortality data for ages
50-99 from 1971-2004. The model is suitable for modeling insurance and annuity portfolios
with a range of ages since the dependence between ages over time captures the risk of these
cash flows. The model has its origins in financial models and this facilitates the application
to the pricing of mortality and longevity-linked securities. Dependence between ages is an
important component in the modelling of mortality. The use of principal components
analysis allows the implementation of a model with a reduced number of factors driving
mortality changes.
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