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In the first part of the paper, we consider the wide range of extrapolative stochastic mortality models

that have been proposed over the last 15�20 years. A number of models that we consider are framed in

discrete time and place emphasis on the statistical aspects of modelling and forecasting. We discuss

how these models can be evaluated, compared and contrasted. We also discuss a discrete-time market

model that facilitates valuation of mortality-linked contracts with embedded options. We then review

several approaches to modelling mortality in continuous time. These models tend to be simpler in

nature, but make it possible to examine the potential for dynamic hedging of mortality risk. Finally,

we review a range of financial instruments (traded and over-the-counter) that could be used to hedge

mortality risk. Some of these, such as mortality swaps, already exist, while others anticipate future

developments in the market.

Keywords: Stochastic mortality models; Short-rate models; Market models; Cohort effect; SCOR

market model; Mortality-linked securities; Mortality swaps; q-forwards

1. Introduction

The twentieth century has seen significant improvements in mortality rates. Figure 1

demonstrates this for selected ages for English and Welsh males. To facilitate under-

standing, these rates have been plotted on a logarithmic scale, and with the same relative

range of values on the vertical axis (that is, the maximum on each scale is 12 times the

minimum). From these plots we can extract the following stylised facts which apply to

most developed countries (for example, Western Europe, Scandinavia, North America):

. Mortality rates have fallen dramatically at all ages.

. At specific ages, improvement rates seem to have varied over time with significant

improvements in some decades and almost no improvements in other decades. For

example, for English and Welsh males, the age 25 rate improved dramatically before

1960 and then levelled off; at age 65 the opposite was true.
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. Improvement rates have been significantly different at different ages. For example,

for English and Welsh males, the age 45 improvements have been much higher than

the age 85 improvements.

. Aggregate mortality rates reveal significant volatility from one year to the next. This

is especially true at both young ages, where the numbers of deaths are relatively

small, and high ages. At high ages, the numbers of deaths are, of course, high, so we

infer that there are genuine annual fluctuations in the true underlying rates of

mortality at high ages. These fluctuations might, for example, be due to the incidence

of winter flu epidemics or summer heat waves in some years causing increased

mortality amongst the old and frail in the population in those years.

From a statistical perspective, we might also add a further point. Since rates of

improvement have varied over time and have been different at different ages, there will

be considerable uncertainty in forecasting what rates of improvement will be in the future

at different ages.

In some, but not all countries, an additional observation has been made that patterns of

improvement are linked to year of birth (see, for example, Willets (2004) and Richards
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Figure 1. England and Wales males: Mortality rates at ages 25, 45, 65 and 85. Rates are plotted on a logarithmic

scale, with the same relative range of values in each plot. The age-25 rate for 1918 is off the scale.
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et al. (2006)). In Figure 2, we have plotted 5-year-average rates of improvement (that is,

�0:2 log [q(t; x)=q(t�5; x)] ; where q(t, x) is the mortality rate at age x in year t). In this

plot, we can see that there are clear groupings of high improvement rates and of low

improvement rates. We have specifically highlighted the cohort born around 1930 by a

solid black diagonal line. The shading along this diagonal is clearly lighter than other

diagonals indicating that individuals born around that time (1925�1935) have experienced

rather larger improvements in mortality compared with people born before or after.

Possible explanations for this ‘golden’ cohort include a healthy diet in the 1940s and early

1950s (or, to be more precise, shortages of unhealthy food), and the introduction of the

National Health Service. In more general terms, it is easy to detect diagonals above age 30

running through Figure 2, and this is indicative of year of birth potentially being an

important factor in projecting future mortality rates for England and Wales males. Also in

Figure 2, we can see strong reductions in mortality amongst the very young, and a

deterioration in mortality amongst males in their 20s during the late 1980s and 1990s (due

to the AIDS epidemic).

1.1. Systematic and unsystematic mortality

It is appropriate at this point to discuss mortality in a more scientific setting. We will

define q(t, x) to be the underlying aggregate mortality rate in year t at age x. This is an

unobservable rate. What we do observe depends on how, for example, national statistics

offices record deaths and population sizes. However, in many countries we observe the

crude death rate, mc(t, x), which is the number of deaths, D(t, x), aged x last birthday at
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Figure 2. Improvement rates in mortality for England and Wales by calendar year and age relative to mortality

rates at the same age in the previous year. Black cells imply that mortality is deteriorating; medium grey small

rates of improvement, and white strong rates of improvement. The black diagonal line follows the progress of the

1930 cohort. (Source: Cairns et al. (2007))
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the date of death, during year t, divided by the exposure, E(t, x) (the average population

aged x last birthday during year t).1

The uncertainty in future death rates can be divided into two components:

. Unsystematic mortality risk. Even if the true mortality rate is known, the number

of deaths, D(t, x), will be random. The larger the population, the smaller the

unsystematic mortality risk (as a result of the pooling of offsetting risks, i.e.,

diversification).

. Systematic mortality risk. This is the undiversifiable component of mortality risk

that affects all individuals in the same way. Specifically, forecasts of mortality rates in

future years are uncertain.

1.2. Life assurers and pension plans

The modelling and management of systematic mortality risk are two of the main concerns

of large life assurers and pension plans and we will focus in this paper on these two concerns:

. Modelling:

� What is the best way to forecast future mortality rates and to model the

uncertainty surrounding these forecasts?

� How do we value risky future cashflows that depend on future mortality rates?

. Management:

� How can this risk be actively managed and reduced as part of an overall strategy

of efficient risk management?

� What hedging instruments are easier to price than others?

In order to address these questions, we require the following: first, we need suitable

stochastic mortality models capable of forecasting the distribution of future mortality

rates which will help with both quantifying and pricing mortality risk; second, we need

suitable vehicles for managing or transferring mortality risk. In addition to focusing on

these two requirements, we also review the rapidly developing literature in this field, as

well as present some new ideas and models.

In Section 2, we introduce some of the basic notation that is required in the subsequent

Sections 3�5 where we discuss specific approaches to modelling. In Section 1, before

looking at particular models, we review the range of criteria that can be used to evaluate

different models. We then move on, in Sections 4 and 5, to discuss discrete-time and

continuous-time models. We develop some new insights as well as some new models

(including a new model with a cohort effect, a generalization of the Olivier�Smith market

model and further thoughts on the survivor credit offered rate (SCOR) market model).

Section 6 reviews existing and potential market instruments that might be used to help

manage mortality risk. Section 7 concludes.

1 In our notation the subscript c in mc(t, x) distinguishes the crude or actual death rate from the underlying or

expected death rate.
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2. Basic building blocks

For modelling, we need to define some general notation.

2.1. Mortality rates

q(t, x) is the underlying probability that an individual aged exactly x at time t will die

before time t�1. The period t to t�1 will also be referred to as ‘year t’. q(t, x) is normally

only defined for integer values of x and t, and is only observable after time t�1.

2.2. The instantaneous force of mortality

m(t, x) is the underlying force of mortality at time t and age x for real t and x.

We have the relationship

q(t; x)�1�exp

�
�g

t�1

t

m(u; x�t�u)du

�

which we treat as being observable only after time t�1.

2.3. The survivor index

The survivor index is defined as

S(t; x)�exp

�
�g

t

0

m(u; x�u)du

�
:

An informal way of thinking about S(t, x) is that it represents the proportion of a large

population aged exactly x at time 0 who survive to age x�t at time t. More formally, let

Mt be the filtration generated by the whole of the instantaneous force of mortality curve

(that is, covering all ages) up to time t, so that S(t, x) is Mt-measurable. Now consider a

single individual aged exactly x at time 0. Let I(t) be the indicator random variable that is

equal to 1 if the individual is still alive at time t and 0 if he is dead.

Then Pr[I(t)�1½Mt]�S(t; x): Further, Pr[I(t)�1½Mu]�S(t; x) for all u]t.

REMARK (See, for example, Biffis et al. (2006)) The filtration Mt informs us about the

underlying mortality dynamics only. It does not tell us about the times of death of individuals

in the population. We will denote by M�
t the augmented filtration that is generated by both

m(t, x) and the times of death of the individuals in the population.

2.4. Spot and forward survival probabilities

Our remark about u]t in subsection 2.3 raises the question as to what happens if uBt.

For 0BuBt,

Pr[I(t)�1jMu]�E[S(t; x)jMu]�S(u; x)E

�
S(t; x)

S(u; x)jMu

�
:
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This leads us to the definition of the spot survival probabilities:

p(u; t; x)�Pr[I(t)�1jI(u)�1;Mu]

so that Pr[I(t)�1jMu]�S(u; x) p (u; t; x):

Finally, this leads us to define forward survival probabilities for T0BT1:

p(t;T0;T1; x)�Pr[I(T1)�1jI(T0)�1;Mt]: (1)

The name forward survival probability suggests that t5T0, but, in fact, the probability is

well defined for any t.

REMARK It is important to keep in mind that the spot and forward survival probabilities,

p(t, T, x) and p(t, T0, T1, x) concern individuals aged x at time 0 and not at time t.

2.5. Real-world and risk-neutral probabilities

In the remarks above, we have implicitly assumed that probabilities and expectations have

been calculated under the true or real-world probability measure, P. When it comes to

pricing, we will often use an artificial, risk-neutral probability measure, Q. The extent to

which P and Q differ depends, for example, upon how much of a premium life assurers

and pension plans would be prepared to pay to hedge their systematic and possibly non-

systematic mortality risks, giving rise to the concept of a market price of risk.

Most previous research (see, for example, Cairns et al. (2006a), and references therein)

assumes that there is a market price of risk for systematic mortality risk only and that

non-systematic risk, being diversifiable, goes unrewarded. Under this assumption

PrQ[I(t)�1jMt]�PrP[I(t)�1jMt]�S(t; x)

but, for uBt, PrQ [I(t)�1jMu] and PrP[I(t)�1jMu] are not necessarily equal.

With an illiquid market, it is, nevertheless, plausible that insurers might be prepared to

pay a premium to hedge their exposure to non-systematic mortality risk, in the same way

that individuals are prepared to pay insurers a premium above the actuarially fair (i.e. P)

price of an annuity in order to insure against their personal longevity risk. Under these

circumstances, we need to define a risk-neutral force of mortality m̃Q (t; x) and the

corresponding risk-neutral survivor index

S̃(t; x)�exp

�
�g

t

0

m̃Q (u; x�u)du

�
:

Then PrQ [I(t)�1jMt]�S̃(t; x): The concept of a non-zero market price of risk for non-

systematic mortality risk is explored further by Biffis et al. (2006).

Similarly, most modelling of stochastic mortality has assumed that the dynamics of the

force of mortality curve are independent of the evolution of the term structure of interest

rates. Under these circumstances, the value at time t of a pure mortality-linked cashflow X

at a fixed time T can be written as the product of the zero-coupon bond price P(t, T) and

the risk-neutral expected value of X given the information available at time t.
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2.6. Zero-coupon fixed-income and longevity bonds

In what follows, we wish to consider the value of mortality-linked cashflows. To do this,

we need to introduce two types of financial asset: zero-coupon fixed-income bonds, and

zero-coupon longevity bonds.

The time T-maturity zero-coupon bond pays a fixed amount of 1 unit at time T. The

price at time t of this bond is denoted by P(t, T). We will assume that underlying interest

rates are stochastic, and the reader is referred to Cairns (2004) or Brigo & Mercurio

(2001) for textbook accounts of interest-rate models. Also relevant here is a cash account

C(t) that constantly reinvests at the (stochastic) instantaneous risk-free rate of interest,

r(t), so that C(t)�exp½ft

0
r(u)du�:

Zero-coupon longevity bonds (or zero-coupon survivor bonds, as Blake & Burrows

(2001) originally called them) can take two forms. Each type is characterized by a

maturity date, T, and a reference cohort aged x at time 0, and we will refer to this as the

(T, x)-longevity bond. Type A pays S(T, x) at time T and the market value at time t of this

bond will be denoted by Bs(t, T, x). Type B pays C(T)S(T, x) at time T, and the market

value at time t of this bond will be denoted by BCS(t, T, x).

Throughout the rest of this paper, we will, for simplicity of exposition, assume that the

term structure of interest rates is independent of the term structure of mortality, and that

the market price of risk for non-systematic mortality risk is zero. It follows that (see, for

example, Cairns et al. (2006a))

BS(t;T ; x)�
P(t;T)BCS(t;T ; x)

C(t)
:

Prices are linked to an artificial risk-neutral pricing measure Q (see above) as follows (see

Cairns et al. (2006a))

BCS(t;T ; x)�EQ

�
C(t)

C(T)
C(T)S(T ; x)jHt

�
�C(t)EQ[S(T ; x)jMt]: (2)

Here, Ht represents the augmented filtration that includes information about both

mortality and interest rates up to time t.

REMARK (Fundamental Theorem of Asset Pricing) If there exists such a risk-neutral

measure Q, and if prices are calculated according to Eq. (2), then the market will be

arbitrage free. This includes markets that are incomplete or illiquid.

It follows that BCS(t, T, x)�C(t)S(t, x)pQ(t, T, x), where pQ(t, T, x) is the risk-neutral

spot survival probability, EQ S(T ; x)=S(t; x)jMt½ �: This represents the risk-adjusted

probability, based on the information available at time t, that an individual aged x�t

at t will survive until age x�T.

2.6.1. Risk-neutral spot and forward survival probabilities. If the spot market in type-B

bonds is sufficiently liquid for a range of maturities, then we can take as given the bond

prices, BCS(t, T, x), at time t. This then defines the risk-neutral spot survival probabilities
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pQ(t;T ; x)�
BCS(t;T ; x)

C(t)S(t; x)

from which we can define the risk-neutral forward survival probabilities

pQ(t;T0;T1; x)�pQ(t;T1; x)=pQ(t;T0; x) for t5T0

and pQ(t;T0;T1; x)�
S(t; x)

S(T0; x)
pQ(t;T1; x) for t�T0:

(3)

2.6.2. The forward mortality surface. In the traditional mortality setting, with no

mortality improvements, the force of mortality can be defined as mx�t��@log tpx=@t: In

the current context, this can be developed as a concept for individual cohorts. We assume

for a given cohort aged x at time 0 that the spot survival probabilities, pQ(t, T, x) are

known at time t for all T�0 (not just integer values of T ). The forward force of mortality

surface (or, more simply, forward mortality surface) is defined as (see Dahl (2004))

m̃(t;T ; x�T)��
@

@T
log pQ(t;T ; x): (4)

At a given time t, this defines a two-dimensional surface in age, x, and maturity, T. It can be

regarded as a central estimate, based on information available at time t, of the force of

mortality at the future time T (that is, T�t years ahead) for individuals aged x�T at time T.

3. Stochastic mortality models: introductory remarks

In Sections 3.1�5, we will review the full range of approaches that can be taken to

modelling future randomness in mortality rates.

At least in theory (published modelling work has still to fill some gaps), there is a wide

range of extrapolative approaches that can be taken to model mortality. Some models are

framed in discrete time, others in continuous time. In discrete time, most research has

focused on the statistical analysis and projection of annual mortality data using what will

be described below as short-rate models. However, some work has also been done using

P-splines and discrete-time market models. In continuous time, most research has also

focused on short-rate models including affine mortality models. But other approaches

analogous to forward-rate models and market models in interest-rate modelling have also

been proposed or discussed.

3.1. Model selection criteria

Once a model has been developed and parameters have been estimated or calibrated, it is

important to consider whether it is a good model or not. This requires a checklist of

criteria against which a model can be assessed, along the lines proposed by Cairns et al.

(2006a), Cairns et al. (2007) and Cairns et al. (2008):
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. Mortality rates should be positive.

. The model should be consistent with historical data.

. Long-term dynamics under the model should be biologically reasonable.

. Parameter estimates should be robust relative to the period of data and range of ages

employed.

. Model forecasts should be robust relative to the period of data and range of ages

employed.

. Forecast levels of uncertainty and central trajectories should be plausible and

consistent with historical trends and variability in mortality data.

. The model should be straightforward to implement using analytical methods or fast

numerical algorithms.

. The model should be relatively parsimonious.

. It should be possible to use the model to generate sample paths and calculate

prediction intervals.

. The structure of the model should make it possible to incorporate parameter

uncertainty in simulations.

. At least for some countries, the model should incorporate a stochastic cohort effect.

. The model should have a non-trivial correlation structure.

Some of these points require further comment to bring out their relevance.

3.2. Consistency with historical data

At a minimum, a good model should be consistent with historical patterns of mortality. If

this is not the case, much greater doubt must be placed on the validity of any forecasts

produced by the model.

More formal statistical approaches have been used by, for example, Brouhns et al.

(2002) and Czado et al. (2005), using full likelihood methods and Markov Chain Monte

Carlo (MCMC) methods. Additionally, Cairns et al. (2007) carried out a detailed

comparison of different models based on maximum likelihoods, using criteria that

penalize over-parameterised models. They showed that statistically significant improve-

ments on the Lee & Carter (1992) and Cairns et al. (2006b) models can be achieved by

adding extra period and cohort effects. They also demonstrated that the fundamental

assumption under these simple models that the two-dimensional array of standardized

residuals be independent and identically distributed is violated, thereby calling into

question their consistency with historical data. Further historical analysis has been

performed by Dowd et al. (2008a,b) who use a variety of backtesting procedures to

evaluate out-of-sample performance of a range of models.

3.3. Biological reasonableness

Cairns et al. (2006a) introduce the concept of biological reasonableness, drawing on the

concept of economic reasonableness from interest-rate modelling. Different modellers

might have their own idea about what constitutes a biologically reasonable model, but we

offer the following examples of what might be considered biologically unreasonable:
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. Period mortality tables have historically exhibited increasing rates of mortality with

age at higher ages. A forecasting model that gives rise to the possibility of period

mortality tables that have mortality rates falling with age might be considered

biologically unreasonable.

. Short-term mean reversion might be considered to be biologically reasonable due to

annual environmental variation. Long-run mean reversion around a deterministic

trend might, on the other hand, be considered biologically unreasonable. In the long

term, mortality improvements will, amongst other reasons, be the result of medical

advances, such as a cure for cancer. It is very difficult to predict when such advances

will happen or what the impact of a new treatment might be. A deterministic mean-

reversion level would suggest that we do know what advances are going to happen

and what their impact will be: we just do not know when they will happen.

3.4. Robustness of parameter estimates and forecasts

When we fit a model, we need to specify what range of ages and past years we will use to

estimate parameters: for example, ages 60�89, and years 1960�2005. Ultimately, we wish

to have confidence in the forecasts that are produced by a model. With most models, we

find that a change in the range of years or of ages in the historical dataset results in a

relatively modest revision of parameter estimates, consistent with the statistical variation

in the data. Such models might be described as being robust.

For other models, however, a change in the age or calendar-year range sometimes

results in (a) a set of qualitatively different parameter estimates and (b) substantially

different forecasts of future mortality. Such models are not robust and they cannot be

relied upon to produce consistently reasonable forecasts.

3.5. Plausibility of forecasts

The plausibility of forecasts is again a rather subjective issue, discussed by Cairns et al.

(2008). In general, one cannot normally make a definitive statement that a set of forecasts

look reasonable. However, Cairns et al. (2008) do provide examples of models that

provide a statistically good fit to the historical data, but then produce quite implausible

projections of mortality. Examples of implausible forecasts include: a sudden and

dramatic change in the central trend in mortality rates at certain ages; and prediction

intervals for mortality that are either extremely wide or extremely narrow.

3.6. Implementation

There is little point in having a great model if it requires excessive amounts of computing

time to calculate important quantities of interest. If this happens, then a compromise

needs to be reached, ideally without sacrificing too much in terms of statistical goodness

of fit.
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3.7. Parsimony

We should avoid models that are excessively parameterized. This can be addressed by

using, for example, the Bayes Information Criterion (BIC), to choose between models.

This ensures that extra parameters are only included when there is a significant

improvement in fit.

3.8. Sample paths and prediction intervals

Most models (except for P-splines models) generate sample paths and therefore allow an

assessment of the uncertainty in future mortality-linked cashflows, and the pricing of

these cashflows. Pricing might require a change of measure and this requires a fully

specified stochastic model with sample paths.

3.9. Parameter uncertainty

We have a limited amount of data that we can use to estimate model parameters, and so it

follows that these parameters will be subject to estimation error. It is important to be able

to incorporate parameter uncertainty, if we wish, into simulations in order to assess the

impact of this estimation error. Cairns et al. (2006b) and, for example, Dowd et al. (2007)

investigated this issue in the Cairns�Blake�Dowd two-factor model and found that the

inclusion of parameter uncertainty has a significant impact on forecast levels of

uncertainty in mortality rates and expected future lifetimes, especially at longer time

horizons. We do not discuss the issue of parameter uncertainty further in this paper, but

note that this, along with model risk, are important issues that require substantial further

research.

3.10. Cohort effect

As remarked earlier, some countries including England and Wales, have mortality rates

that appear to be determined not just by age and period effects but also by year-of-birth

effects. Cairns et al. (2007) demonstrated that the inclusion of a cohort effect provided a

statistically significantly better fit. We would expect that such effects will persist into the

future and that forecasts will, therefore, be improved by the inclusion of a cohort effect.

3.11. Correlation term structure

As also remarked earlier in this paper and elsewhere, rates of improvement at different

ages have been different both over long periods of time and also from one year to the next.

In other words, improvements at different ages might be correlated, but they are not

perfectly correlated. The use of a model that assumes perfect correlation might cause

problems for two reasons. First, aggregate levels of uncertainty at the portfolio level might

be overstated (since it is assumed that there are no diversification benefits across ages).

Second, perfect correlation would incorrectly suggest that derivative instruments linked to

mortality at one age could be used to hedge perfectly mortality improvements at a
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different age. Ignoring this problem might result in a degree of hidden basis risk if hedging

strategies are adopted that rely on perfect correlation.

4. Discrete-time models

National mortality data are generally published on an annual basis and by individual year

of age, and this leads naturally to the development of discrete-time models. Typically, the

data are presented in the form of crude death rates

mc(t; x)�
D(t; x)

E(t; x)
�

#deaths during calendar year t aged x last birthday

average population during calendar year t aged x last birthday
:

The average population (the exposure) will normally be an approximation, either based

on a mid-year population estimate or on estimates of the population at the start and end

of each year. Cairns et al. (2007) found, for example, that US exposures data tended to be

rather less reliable than England and Wales data, leading to less reliable parameter

estimates for stochastic mortality models.2 The numbers of deaths are usually felt to be

known with greater accuracy, although the accuracy might depend on local laws

concerning the reporting of deaths.

Some authors have chosen to model the death rates directly, while others choose to

model mortality rates, q(t, x), the underlying probability that an individual aged exactly x

at time t will survive until time t�1.

The two are linked, typically, by one of two approximations: q(t; x)�1�exp�m(t; x)½ �;
or q(t; x)�m(t; x)= 1�0:5m(t; x)ð Þ:

4.1. The Lee�Carter model

The availability of annual data subdivided into integer ages means that it is relatively

straightforward to use rigorous statistical methods to fit discrete-time models to the data.

This has tended to produce models that are straightforward to simulate in discrete time

but which do not lead to analytical formulae for, for example, spot survival probabilities.

The earliest model and still the most popular is the Lee & Carter (1992) model

m(t; x)�exp b(1)
x �b(2)

x k(2)
t

� �
where the b(k)

x are age effects and k
(2)
t is a random period effect. Under this model, b(1)

x

represents an average log mortality rate over time at age x, while b(2)
x represents the

improvement rate at age x. The period effect, k
(2)
t ; is often modelled as a random-walk

process (e.g., Lee & Carter (1992)) or as an ARIMA process (e.g., CMI (2007)).

A variety of approaches have been taken to the estimation of parameters. The early

approach of Lee and Carter has been largely replaced by more formal statistical methods

2 To date, we are unaware of any studies that have explicitly attempted to model the exposures as unobserved

variables.
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(Brouhns et al. (2002), Czado et al. (2005) and Delwarde et al. (2007)) with the primary

focus on goodness of fit over all of the data. A rather different approach was taken by Lee

& Miller (2001) who took the view that a greater emphasis ought to be placed on goodness

of fit in the final year in the dataset. They observed that the purpose of modelling is

normally to project mortality rates. However, the usual statistical procedures aim to fit the

historical data well over all past years. This means that the final year of historical data

(sometimes referred to as the stepping-off year) might have a relatively poor fit. (Note also,

that this problem tends to be worse if more calendar years of data are used.) As an

example, Figure 3 shows estimated underlying mortality rates in 2004 for England and

Wales mortality data (1961�2004, and ages 60�89) using the Lee�Carter model. We can see

that the fitted curve systematically underestimates the death rate at lower ages. Based on an

out-of-sample analysis, Lee & Miller (2001) observed that systematic bias of this type in

the stepping-off year persists and it results in biased predictions of key outputs such as

mortality rates at specific ages or of period life expectancy. To avoid this problem, they

suggested that b(1)
x should be calibrated to log death rates in the stepping-off year, t0 (i.e.,

b(1)
x � log mc(t0; x)) in combination with k

(2)
t0
�0:

Elsewhere in this paper, we will draw on interest-rate modelling analogies. In the present

context, we can liken the Lee�Miller method of calibrating rates against the stepping-off-

year crude death rates to the Hull & White (1990) extension of the Vasicek (1977) interest-

rate model. The Vasicek model assumes a constant mean reversion level for interest rates,

whereas the Hull and White model assumes a deterministic but time-varying mean-

reversion level that is calibrated in a way that ensures that theoretical zero-coupon bond

prices match observed prices at time zero.

60 65 70 75 80 85 90
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Figure 3. England and Wales males: log death rates in 2004 for ages 60�89. Dots: crude death rates. Solid line:

Lee and Carter fitted curve of the underlying death rate based on data from 1961 to 2004 and ages 60�89.
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Other authors have adapted the methodology in an attempt to improve the model for

k
(2)
t : The motivation for this (see, for example, Booth et al. (2002)) is that the drift of the

random walk appears to change from time to time. De Jong & Tickle (2006) tackled this

by modelling the drift itself as a latent random process. On the other hand, Booth et al.

(2002) attempted to estimate the optimal estimation period for the random-walk model

with constant drift. However, Booth et al.’s method might lead to systematic under-

estimation of the true level of volatility in k
(2)
t :

The Lee�Carter model serves a useful pedagogical purpose, but the model has drawbacks:

. It is a one-factor model, resulting in mortality improvements at all ages being

perfectly correlated.

. The b(2)
x age effect is normally measured as the average improvement rate at age x, but

b(2)
x has a second purpose in setting the level of uncertainty in future death rates at age

x: V ar log m(T ; x)jMt½ ��b(2)2

x Var½k(2)
T jk(2)

t �: This means that uncertainty in future

mortality rates cannot be decoupled from improvement rates. Historically, improve-

ment rates have been lower at high ages. This, in turn, means that predicted uncertainty

in future death rates will be significantly lower at high ages. However, this prediction

does not conform with the high level of variability in mortality improvements at high

ages observed in historical data, undermining the validity of the model.

. Use of the basic version of the Lee�Carter model can result in a lack of smoothness

in the estimated age effect, b(2)
x : Suppose that b̂(1)

x and b̂(2)
x have been estimated using

data up to, say, 1980. We can then carry out an out-of-sample experiment by taking

b̂(1)
x and b̂(2)

x as given and estimating k
(2)
t for each future year. We next calculate

the standardized residuals for the out-of-sample period, o(t; x)�(D(t; x)�

m(t; x)E(t; x))=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m(t; x)E(t; x)

p
: If the model and estimation method are correct,

then the o(t,x) should be independent and identically distributed and approximately

standard normal. Preliminary experiments indicate that if there is a lack of

smoothness in b̂(2)
x ; then there is a clear inverse relationship between the b̂(2)

x ; for

each x, and the observed out-of-sample variance of the o(t,x). This observation

violates the i.i.d. standard normality assumption.

Delwarde et al. (2007) tackle this problem by applying P-splines (see below) to the age effects.

. The problem of bias in forecasts identified by Lee & Miller (2001) and their proposed

solution arises fundamentally because the Lee�Carter model does not fit the data

well. At a visual level, this is borne out by a plot of standardized residuals. The

statistical approach proposed by Brouhns et al. (2002) assumes that deaths, D(t, x)

are independent Poisson random variables with mean and variance both equal to

m(t,x)E(t,x) where m(t; x)�exp[b(1)
x �b(2)

x k
(2)
t ]: The standardized residuals are

o(t; x)�(D(t; x)�m(t; x)E(t; x))=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m(t; x)E(t; x))

p
:

Standardised residuals for England and Wales males are plotted in Figure 4. If the

residuals were independent then there should be no evidence of clustering. However,
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Figure 4 shows clear evidence of clustering that violate this assumption, especially along

the diagonals (the so-called cohort effect identified by Willets (2004)).

The Lee and Miller adjustment is therefore simply a ‘quick fix’ that improves the short-

term problem of bias in forecasts. However, if the ‘usual’ method of estimation (for

example, Brouhns et al. (2002)) has poor in-sample statistical properties, then the Lee�
Miller calibration of the model will have the same problems with the reliability of long-

term forecasts of mortality improvements.

4.2. Multifactor age�period models

A small number of multifactor models have appeared in recent years. As examples,

Renshaw & Haberman (2003) propose the model

log m(t; x)�b(1)
x �b(2)

x k(2)
t �b(3)

x k(3)
t

where k
(2)
t and k

(3)
t are dependent period effects (for example, a bivariate random walk).

Cairns et al. (2006b) focus on higher ages (60�89) and used the relatively simple pattern

of mortality at these ages to fit a more parsimonious model based on the logistic

transform of the mortality rate rather than the log of the death rate:

logit q(t; x)� log
q(t; x)

1 � q(t; x)
�k(1)

t �k(2)
t (x�x̄)

where (k
(1)
t ;k(2)

t ) is assumed to be a bivariate random walk with drift. Their analysis also

includes a detailed account of how parameter uncertainty can be included in simulations

using Bayesian methods.

1970 1980 1990 2000
60

65

70

75

80

85

90

Year

A
ge

Figure 4. England and Wales males: standardized residuals, o(t, x), for the Lee�Carter model fitted to ages

60�89 and years 1961�2004. Black cells indicate a negative residual; grey cells indicate a positive residual; white

cells were excluded from the analysis. (Source: Cairns et al. (2007))
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Both models offer significant qualitative advantages over the Lee�Carter model.

However, both still fail to tackle the cohort effect.

4.3. The Renshaw�Haberman cohort model

Renshaw & Haberman (2006) proposed one of the first stochastic models for population

mortality to incorporate a cohort effect (see also Osmond (1985) and Jacobsen et al.

(2002)):

log m(t; x)�b(1)
x �b(2)

x k(2)
t �b(3)

x g(3)
t�x

where k
(2)
t is a random period effect and g

(3)
t�x is a random cohort effect that is a function

of the (approximate) year of birth, (t�x).

In their analysis of England and Wales males data, Renshaw and Haberman found that

there was a significant improvement over the Lee�Carter model (see, also, Cairns et al.

(2007)). The most noticeable improvement was that an analysis of the standardized

residuals revealed very little dependence on the year of birth, in contrast with the Lee�
Carter model (see Figure 5). The upper plot (Lee�Carter) shows significant dependence

on the year of birth, particularly between 1925 and 1935. The cohort model (lower plot)

shows no such dependence.

Unfortunately, the Renshaw�Haberman model turns out to suffer from a lack of

robustness. CMI (2007) found that a change in the range of ages used to fit the model

might result in a qualitatively different set of parameter estimates. Cairns et al. (2007) and

Cairns et al. (2008) found the same when they changed the range of years used to fit the

model. This lack of robustness is thought to be linked to the shape of the likelihood

function. For robust models, the likelihood function probably has a unique maximum

which remains broadly unchanged if the range of years or ages is changed. For models

that lack robustness, the likelihood function possibly has more than one maximum. So

when we change the age or year range, the optimiser will periodically jump from one local

maximum to another with qualitatively quite different characteristics.

Cairns et al. (2008) note a further problem with the Renshaw�Haberman model. The

fitted cohort effect, g
(3)
t�x; appears to have a deterministic linear, or possibly quadratic,

trend in the year of birth. This suggests that the age�cohort effect is being used,

inadvertently, to compensate for the lack of a second age�period effect, as well as trying to

capture the cohort effect in the data. This suggests that an improvement on the model

might be to combine the second age�period effect in Renshaw & Haberman (2003) with a

simpler cohort effect. This might result in a better fit, although it might not deal with the

problem of robustness.

4.4. The Cairns�Blake�Dowd model with a cohort effect

Given the problems with the preceding models, a range of alternatives have been explored

with the aim of finding a model that incorporates a parsimonious, multifactor age�period

structure with a cohort effect. Out of several models analysed, the following generalization
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of the Cairns�Blake�Dowd two-factor model (Cairns et al. (2006b)) has been found to

produce good results (see, also, Cairns et al. (2007)):

logit q(t; x)�k(1)
t �k(2)

t (x�x̄)�k(3)
t (x�x̄)2�s2

x

� �
�g(4)

t�x

where x̄�(xu�xl�1)�1axu

x�xl
x is the mean in the range of ages (xl to xu) to be fitted, and

s2
x�(xu�xl�1)�1axu

x�xl
(x�x̄)2 is the corresponding variance.

Compared with the original model of Cairns et al. (2006b), there are two additional

components. First, there is an additional age�period effect, k
(3)
t (x�x̄)2�s2

x

� �
; that is

quadratic in age. For both England and Wales and US males mortality data, this additional

term was found to provide a statistically significant improvement, although it is
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Renshaw−Haberman Cohort Model

Figure 5. England and Wales, males: standardized residuals, o(t, x), for the Lee�Carter and Renshaw�Haberman

cohort models plotted against year of birth, t�x. Both models are fitted to ages 60�89 and years 1961�2004.
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considerably less important than the first two age�period effects. Second, we have

introduced a cohort effect, g
(4)
t�x; that is, a function of the approximate year of birth t�x.

An alternative model that setsk
(3)
t to zero and replaces g

(4)
t�x with a more complex age�cohort

factor, (xc�x)g
(4)
t�x was also considered with mixed results (see Cairns et al. (2007) and

Cairns et al. (2008)).

Parameter estimates for this model for England and Wales males aged 60�89 are plotted

in Figure 6. From this we can make the following observations:

1960 1970 1980 1990 2000

−3.4

−3.0

−2.6

−2.2

κ t
(1) κ t

(2)

κ t
(3) γ t

(4)

Year, t 
1960 1970 1980 1990 2000

0.08

0.09

0.10

0.11

Year, t  

1960 1970 1980 1990 2000
−0.0015

−0.0010

−0.0005

0.0000

0.0005

Year, t 
1880 1900 1920 1940

−0.05

0.00

0.05

0.10

Year, t 

Figure 6. England and Wales data: parameter estimates for the three-factor Cairns�Blake�Dowd cohort model.

Crosses in the bottom right plot correspond to excluded cohorts.
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. /k
(1)
t (which can be interpreted as the ‘level’ of mortality) has a downwards trend,

reflecting generally improving mortality rates over time.

. /k
(2)
t (the ‘slope’ coefficient) has a gradual upwards drift, reflecting the fact that,

historically, mortality at high ages has improved at a slower rate than at younger

ages.

. /k
(3)
t (the ‘curvature’ coefficient) is more erratic, but has increased between 1961 and

2004.

. /g(4)
c ; where c�t�x, fluctuates around zero with no systematic trend or curvature.

For forecasting, we need to develop models for the future dynamics of the period and

cohort effects. A simple starting point is to use a three-dimensional random-walk model

for, /k
(1)
t k

(2)
t ; and k

(3)
t (see, for example, Cairns et al. (2008)). However, there are potential

dangers with this approach:

. Based on the information in Figure 6, the random-walk model for k
(3)
t is likely to

have a positive drift. As k
(3)
t becomes more and more positive, the curvature of logit

q(t, x) would become more and more positive over time. We therefore need to

question whether or not this increasing curvature could result in biologically

unreasonable mortality curves. Possible compromises are to fit a random-walk model

to k
(3)
t with zero drift, or to fit a process (e.g., AR(1)) that is mean reverting to some

possibly non-zero level.

. The upward trend for k
(2)
t is more pronounced than it is for k

(3)
t and similar

comments might apply if we were to fit a random-walk model with positive drift to

k
(2)
t : Specifically, this would result in mortality curves at high ages becoming

gradually steeper over time, and we have to question whether or not this is

biologically plausible. So, again, a model with no drift or even mean reversion might

be biologically more reasonable, despite the observed strong upward trend in k
(3)
t :

Although not obvious, it is by design (see the Appendix) that the cohort effect, g(4)
c ; looks

like a process that is mean reverting to zero. This means that it is natural to fit an AR(1)

or some other mean-reverting process to g(4)
c : Making this a mean-reverting process,

prevents g
(4)
t�x from being decomposed into age�period effects. In some other models that

have been considered (see Cairns et al. (2007)), the cohort effect appears to have a linear

drift. But linear drift in the cohort effect can often be transformed into additional age�
period effects. This raises the possibility that such models could be improved by

incorporating additional age�period effects and perhaps simplifying the form of the

cohort effect.

4.5. P-splines

An approach that has become popular in the UK is the use of penalized splines (P-splines)

(Currie et al. (2004) and CMI (2006)). A typical model takes the form

log m(t; x)�
X

i;j

uijBij(t; x)
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where the Bij(t, x) are pre-specified basis functions with regularly spaced knots, and the uij

are parameters to be estimated. It is well known that the use of splines can lead to

functions that are over-fitted, resulting in fitted mortality surfaces that are unreasonably

lumpy. P-splines avoid this problem by penalizing roughness in the uij (for example, using

linear or quadratic penalties). This approach has proven to be very effective at producing

globally a good fit (CMI (2006)). However, excessive smoothing in the period dimension

can lead to systematic over- or underestimation of mortality rates, as the model fails to

capture what may be genuine environmental fluctations from one year to the next that

affect all ages in the same direction (Cairns et al. (2007)). To avoid this problem, Currie

(personal communication) is developing a variant that adds annual shocks to an

underlying mortality surface that is smooth in both the age and period dimensions.

4.6. Philosophical issues

The last remarks draw attention to some philosophical differences between approaches.

Specifically, to what extent should the fitted mortality surface be smooth?

A recent extension of the P-splines approach developed by Kirkby & Currie (2007)

suggests that underlying mortality rates (the signal) are smooth, but we observe a signal

plus noise where the noise is a systematic effect across all ages that is specific to each

calendar year and which reflects ‘local’ conditions. The other models that have been

discussed so far assume that we observe the signal with no systematic noise (the

independent Poisson assumption about mortality rates). Amongst these other models,

there are varying assumptions about smoothness in individual dimensions. The Lee�
Carter and Renshaw�Haberman models do not assume smoothness in the age or cohort

effects. In contrast, the Cairns�Blake�Dowd cohort model outlined in Section 4.4 assumes

smoothness in the age effect, but not in the cohort effect.

With the limited amount of data at our disposal, it remains a matter for debate as to

how much smoothness should be assumed.

4.7. Discrete-time market models

In the field of interest-rate modelling, market models are ones that model the rates that

are directly traded in the market such as LIBOR rates or swap rates. There are a number

of equivalent approaches that can be taken in the stochastic modelling of mortality rates.

In this section, we will consider a hypothetical market in zero-coupon longevity bonds

with a full range of ages and terms to maturity. The price at time t, as remarked earlier, of

the (T, x)-bond that pays C(T)S(T, x) at time T is denoted by BCS(t, T, x).

For the market to be arbitrage free, we require the existence of a risk-neutral measure,

Q, under which the discounted asset price, BCS(t;T ; x)=C(t)�EQ S(T ; x)jMt½ �; is a

martingale. Using the terminology of forward survival probabilities (Eqs. (1) and (3)), we

have pQ(t;T0;T1; x)�BCS(t;T1; x)=BCS(t;T0; x): The martingale property of discounted

asset prices means that

pQ(t; t;T ; x)�EQ pQ(t�1; t;T ; x)jMt

h i
(5)
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for all tBT and for all x. (Recall that (Eq. (3)) pQ(t�1; t;T ; x)�fS(t�1; x)=S(t; x)g�
pQ(t�1; t�1;T ; x):)

Market models simultaneously model the prices of all of the type-B (T, x)-longevity

bonds. This approach was first adopted in the Olivier�Smith model (see Olivier & Jeffery

(2004) and Smith (2005)) which assumes for all t5T and for all x:

pQ(t�1;T ;T�1; x)�pQ(t;T ;T�1; x)b(t�1; T ; T�1; x)G(t�1)

where G(1), G(2), . . . is a sequence of independent and identically distributed Gamma

random variables with both shape and scaling parameters equal to some constant a. The

function b(t�1, T, T, x) is measurable at time t and is a normalizing constant that ensures

that Eq. (5) is satisfied. This suffers the drawback that it is a one-factor model that results

in (a) lack of control over variances of mortality rates at individual ages and (b) perfect

correlation between mortality improvements at different ages.

The use of a Gamma random variable has two advantages over possible alternatives. It

makes the calculations analytically tractable, and it ensures that risk-neutral forward

survival probabilities remain between 0 and 1.

Cairns (2007) proposes a generalization of the Olivier�Smith model that moves away

from dependence on a single source of risk and allows for full control over the variances

and correlations:

pQ(t�1; t;T ; x)�pQ(t; t;T ; x)eg(t�1; T ; x)G(t�1; T ; x): (6)

In this model, the g(t�1, T, x) are again normalizing constants that ensure the martingale

property is satisfied. The G(t�1, T, x) are dependent Gamma random variables that are

specific to each maturity date T and to each age x. Cairns (2007) leaves as an open

problem how to generate the Gamma random variables and provides a detailed discussion

of why this is, potentially, a difficult challenge. However, if this problem can be overcome

then the generalized model has considerable potential.

5. Continuous-time models

Even though data are typically reported in aggregate and at discrete intervals (e.g.,

annually), it is natural to consider the development of mortality rates in continuous time.

Cairns et al. (2006a) identify four frameworks that can be used in the development of

continuous-time models:3

. short-rate models � models for the one-dimensional (in x) instantaneous force of

mortality m(t, x);

. forward-rate models � models for the two-dimensional (in age x, and maturity T)

forward mortality surface, m̃(t;T ; x�T) (Eq. (4));

3 The discrete-time models described in Section 4 can all be described as short-rate models, with the exception

of the market model in Section 4.7.

99Modelling and management of mortality risk

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
i
r
n
s
,
 
A
n
d
r
e
w
]
[
C
a
i
r
n
s
,
 
A
n
d
r
e
w
 
J
.
 
G
.
]
 
A
t
:
 
0
7
:
2
1
 
1
 
O
c
t
o
b
e
r
 
2
0
0
8



. market models � models for forward survival probabilities or annuity prices; and

. positive mortality models � models for the spot survival probabilities.

No models have been proposed so far under the positive mortality framework, so this

approach is not discussed further in this article.

5.1. Philosophy: diffusions or jumps

Before we progress to consider specific continuous-time frameworks and models, we will

digress briefly to consider what underlying stochastic processes to use. Most modelling

work to date has focused on the use of diffusion processes: that is, mortality dynamics are

driven by one or more underlying Brownian motions. However, there is the possibility that

these Brownian motions might be replaced or supplemented by the use of jump processes.

Jumps in the mortality process might occur for a variety of reasons: sudden changes in

environmental conditions, or radical medical advances.

If they are included, jumps might have one of two effects. In the simplest case, they have

a direct impact on the instantaneous force of mortality, m(t, x). Examples of this might

include a sudden pandemic or war. However, it is plausible that the sudden announcement

at time t of, for example, a cure for cancer might not have such an immediate impact.

Instead, the cure might take time to become widely used and implemented effectively. This

would imply that there is no jump in the spot instantaneous force of mortality. However,

the discovery might cause a jump in the improvement rate of m(t, x). As a consequence,

forward mortality rates would also jump, with larger jumps the further into the future.

Models with jumps are in their infancy (see, for example, Hainaut & Devolder (2008)

and Chen & Cox (2007)), but their use will require just as much care in terms of model

evaluation (see Section 3.1). Thus, for example, the inclusion of jumps will need to be

motivated by sound biological reasoning, rather than their inclusion for the sake of

mathematical generalization.

As a final remark, the discrete nature of mortality data inevitably makes the use of

jump models versus diffusion models a matter of speculation: if we only observe the

process annually then we cannot observe jumps directly: instead, we can only observe the

compounded effect of jumps. Again, therefore, this places a degree of responsibility on

modellers to provide a good biological justification for the inclusion of jumps.

5.2. Short-rate models

Continuous-time short-rate models have, to date, proved the most fruitful source of new

models. Models are of the type:

dm(t; x)�a(t; x)dt�b(t; x)?dW̃ (t)

where a(t, x) is the drift, b(t, x) is an n�1 vector of volatilities, and W̃ (t) is a standard

n-dimensional Brownian motion under the risk-neutral measure, Q. Risk-neutral spot

survival probabilities (assuming an arbitrage-free market) are then given by (see, for

example, Milevsky & Promislow (2001) or Dahl (2004))
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pQ(t;T ; x)�EQ

�
exp

�
�g

T

t

m(u; x�u)du


jMt

�
:

The drift and volatility processes will almost certainly depend on the current term

structure of mortality to ensure that the mortality curve remains positive and retains a

biologically reasonable shape. (For further discussion, see Cairns et al. (2006a).)

If a(t, x) and b(t, x) satisfy certain conditions (see Dahl (2004)), we have a closed-form

expression for the spot survival probabilities:

pQ(t;T ; x)�exp A0(t;T ; x)�A1(t;T ; x)m(t; x�t)½ �: (7)

Models where the logarithm of the spot survival probability is a linear function of the current

force of mortality are referred to as affine models, and have become the most popular of

the stochastic mortality models for their analytical tractability (Dahl (2004), Biffis (2005),

Biffis & Millossovich (2006), Dahl & Møller (2006) and Schrager (2006)). Non-affine

models have been developed by Milevsky & Promislow (2001) and Biffis et al. (2006).

Dahl & Møller (2006) develop a one-factor mortality model and use the concept of

mortality improvement factors to relate the future force of mortality to the current

mortality term structure:

m(t; x�t)�m(0; x�t)j(t; x�t)

where j(t, x�t) is the improvement factor with dynamics

dj(t; y)� g(t; y)�d(t; y)j(t; y)ð Þdt�s(t; y)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j(t; y)

p
dW̃ (t):

Thus, j(t, y) takes the form of a time-inhomogeneous Cox et al. (1985) model (CIR). This

model satisfies the criterion for an affine mortality term structure and so spot survival

probabilities take the form (7). The deterministic functions g(t, y) and d(t, y) allow for

considerable flexibility in terms of the rate at which mortality is predicted to improve over

time. It does require mean reversion (that is, d(t, y)�0; see Section 3.3), but it is argued

that this mean reversion can be relatively weak and, therefore, is a minor disadvantage

when compared with the advantages of tractability. Dahl & Møller (2006) give examples

for g(t, y), d(t, y) and s(t, y) that take particular parametric forms that are then calibrated

approximately to Danish mortality data. A more general two-factor model is proposed by

Biffis & Millossovich (2006).

5.3. The forward-mortality modelling framework

This approach has been outlined by a number of authors (see, for example, Dahl (2004),

Miltersen & Persson (2005), Bauer (2006), Bauer et al. (2008) and Cairns et al. (2006a)) all

echoing the original work of Heath et al. (1992) in an interest-rate setting. The general

form of the model has the following dynamics:

m̃(t;T ; x�T)�a(t;T ; x�T)dt�b(t;T ; x�T)?dW̃ (t)

where a(t, T, y) is a scalar, b(t, T, y) is an n�1 vector and W̃ (t) is a standard

n-dimensional Brownian motion under the risk-neutral measure, Q. For the market to be

arbitrage free we require
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a(t;T ; x�T)��V (t;T ; x)?b(t;T ; x�T)

where b(t;T ; x�T)�@V (t;T ; x)=@T :

Miltersen & Persson (2005) also consider the case where mortality and interest rates are

correlated and this enriches the modelling environment given that mortality dynamics

now involve the Brownian motions that drive interest rates.

5.4. Change of numeraire and market models

In the fixed-income markets, modelling in recent years has focused on the use of the

LIBOR and swaps market models (Brace et al. (1997), Jamshidian (1997) and Miltersen et

al. (1997)). In mortality modelling, the equivalent models are the SCOR market model

(subsection 5.4.2) and the annuity market model as proposed by Cairns et al. (2006a).

5.4.1. Change of numeraire. The development of market models relies heavily on the

potential to change between different pricing measures. Until now, we have focused on the

use of the risk-neutral measure, Q, for calculating prices. Under Q, the prices of all

tradeable assets discounted by the cash account, C(t), are martingales. Recall, therefore,

the price of the type-B (T, x)-longevity bond (Eq. (2)). The discounted asset price is

B̃CS(t;T ; x)�
BCS(t;T ; x)

C(t)
�EQ[S(T ; x)jMt]:

In a continuous-time diffusion setting, the dynamics of this discounted price process can

be written as

dB̃CS(t;T ; x)�B̃CS(t;T ; x)V (t;T ; x)?dW̃ (t)

where V(t, T, x) is a previsible n�1 process and W̃ (t) is a standard n-dimensional

Brownian motion under Q. In these expressions, we have used the cash account C(t) as the

numeraire. But we can use the prices of other tradeable assets (provided these prices

remain positive) as alternative numeraires. For example, if we take BCS(t, t, x) as the

numeraire, and define Z(t;T ; x)�BCS(t;T ; x)=BCS(t; t; x); then

dZ(t;T ; x)�Z(t;T ; x)(V (t;T ; x)�V (t; t; x))?(dW̃ (t)�V (t; t; x)dt):

We now define dW t;x(t)�dW̃ (t)�V (t; t; x)dt and note that this depends only on the

volatility of the numeraire and not on any characteristics of the (T, x)-longevity bond.

Provided that V(t, t, x) satisfies the Novikov condition (see, for example, Karatzas &

Shreve (1998)), there exists a measure Pt,x equivalent to Q under which the resulting

process, Wt,x(t), is a standard Brownian motion. Under Pt,x the Z(t, T, x) are martingales

for all tBT and tBt: that is

dZ(t;T ; x)�Z(t;T ; x)(V (t;T ; x)�V (t; t; x))?dW t;x(t):

Why is a change of numeraire relevant? First, in interest-rate modelling, it was discovered

that the pricing of interest-rate derivatives could sometimes be simplified by making a

change of measure (see, for example, Cairns (2004)). Second, the LIBOR and swap market

models both rely on a change of measure as a fundamental step in defining the model

dynamics. Third, if we make certain assumptions about the volatility, then the use of
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models that exploit a change of numeraire makes it straightforward to value key option

contracts.

5.4.2. The SCOR market model. The survivor credit offered rate (SCOR; first proposed

by Cairns et al. (2006a)) is similar to the bonus in a traditional with-profits insurance

contract where the bonus is linked solely to the historical development of mortality rates.

A minor difference, though, is that the SCOR represents a bonus rate that is set one year

in advance of its payment. By analogy with forward LIBOR rates, the forward SCOR

s(t, T, T�1, x) can be linked to a financial and mortality-linked derivative with the

following terms (for variants on the contract below, see Cairns et al. (2006a)):

. At time t, no money exchanges hands, and the value of the derivative is zero.

. At time T, the contract-holder will pay a fixed amount, K, to the counterparty, to be

invested in the risk-free cash account, C(u).

. At time T�1, the contract-holder will receive

K�C(T�1)=C(T)�(1�s(t;T ;T�1; x))�(1�q(T ; x�T))

. where q(T, x�T) is the realized mortality rate between T and T�1 of individuals

aged x�T at time T: that is, 1�q(T ; x�T)�S(T�1; x)=S(T ; x):

The rate that ensures that this contract has zero value at time t is (see Cairns et al.

(2006a))

s(t;T ;T�1; x)�
pQ(t;T ; x) � pQ(t;T � 1; x)

pQ(t;T � 1; x)

�
BCS(t;T ; x) � BCS(t;T � 1; x)

BCS(t;T � 1; x)
:

(8)

Variants of this contract can link the initial payment to financial markets up to T or, for

example, to the survivor index itself (Cairns et al. (2006a)).

The forward SCOR (Eq. (8)) is therefore the ratio of the value of a portfolio (long in

the (T, x)-longevity bond and short in the (T�1, x)-longevity bond) to the price of the

(T�1, x)-longevity bond. It follows that the forward SCOR, s(t, T, T�1, x) must be a

martingale under the (T�1, x)-forward measure PT�1, x. We can, therefore, mimic

the LIBOR market model by postulating that if the volatility of s(t, T, T�1, x) is

deterministic, then s(T, T, T�1, x) will be log-normal under PT�1, x (an admissible

distribution, since the forward SCOR can take any value between 0 and �). This property

then allows straightforward construction of option-type derivatives on s(T, T, T�1, x)

with Black�Scholes-type pricing formulae (Cairns et al. (2006a)).

5.4.3. Individual insurance. In an insurance context, the contract-holder is a policy-

holder who is aged x�t at time t, with survival function I(u)�1 if the policyholder is still

alive at time u and 0 otherwise. The cashflows to the policyholder are then replaced by

�KI(T) at time T and K
C(T � 1)

C(T)
(1�s t;T ;T�1; x)ð ÞI(T�1): K might be linked to
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financial and other events up to time T. The SCOR then represents a bonus rate payable

to survivors, while assets belonging to policyholders who die revert to the insurer.

A traditional annuity contract is, indirectly, an example of such an arrangement. Provided

the market price of non-systematic mortality risk is zero, this variant of the SCOR is

priced in the same way as above (see Cairns et al. (2006a)).

5.5. Forward-rate and market models: advantages and disadvantages

In certain cases, forward-rate and market models offer the possibility of analytical

tractability. But the key advantage of forward-rate and market models is that, at any

future date t, they automatically provide as output a two-dimensional forward mortality

table (pQ(t, T, x) for all T and x). This means that it is easy to compute the payoff on a

contract that is linked to the two-dimensional mortality table that is in use at time t (for

example, a guaranteed annuity contract). With some exceptions (e.g., Dahl (2004)), it is

not straightforward to compute such a two-dimensional table using short-rate models. In

some cases (see, for example, Dowd et al. (2007)) this problem can be mitigated through

the use of good analytical approximations for key outputs as functions of the finite

number of underlying state variables.

But forward-rate and market models have their limitations. First, they require as input

at time 0, a complete two-dimensional set of market spot survival probabilities. At the

present time, such market-determined variables do not exist. (Market annuity prices do

offer a partial solution, but these can be heavily distorted by expense loadings.) Instead, it

will be necessary to use tables of projected survival rates using other models. Second, the

longest maturity date that is input at time 0 places a limit on the length of each sample

path: that is, we can only follow the paths of SCOR rates, s(t, T, T�1, x), that are input at

time 0, and each SCOR rate ‘expires’ at its respective payment date T�1.

6. The management of mortality risk

Recent years have seen a growing realization that mortality risk can be significant for

financial institutions such as life assurers and pension plans (see, for example, O’Brien

(1999)). Depending upon how such institutions have invested their assets, mortality risk

might not be the largest risk they face, but it is often significant and one that cannot be

ignored. Instead, modern risk-management practice requires companies to manage

mortality risk as effectively as possible as part of a wider framework of enterprise risk

management rather than to accept its presence as inevitable.

A range of possible responses to longevity risk is possible, some depending on the type

of institution (see, for example, Blake et al. (2006)).

. Assurers can retain mortality risk as a legitimate business risk. This assumes that the

company is able to achieve an adequate expected rate of return relative to the level of

risk being carried.
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. Assurers can diversify their mortality risk across product ranges, regions and socio-

economic groups. An example of this includes natural hedging (see, for example, Cox

& Lin (2007)) where gains on the life book will balance losses on the annuity book.

. They can enter into a variety of forms of full or partial reinsurance, in order to hedge

downside mortality risk.

. Pension plans can arrange a full or partial buyout of their liabilities by a specialist

insurer (e.g., Paternoster in the UK). (Small pension plans in the UK are exposed to

considerable non-systematic mortality risk and often, therefore, purchase annuities

from a life office for employees at the time of their retirement, thereby removing the

tail mortality risk.)

. For future annuity and pension provision, non-profit contracts could be replaced by

participating annuities. Such annuities might share mortality profits or losses by

adjusting the amounts of pensions in payment or by linking the date of retirement to

current life expectancy.

. Assurers can securitize a line of business (see, for example, Cowley & Cummins

(2005)).

. Mortality risk can be managed through the use of mortality-linked securities and

derivatives. This approach differs from the securitisation of a line of business as the

financial securities concerned have cashflows that are purely linked to the future

value of a mortality index, rather than being a complex package of business risks.

We will focus here on the last of these possibilities, mortality-linked securities and

derivatives, which have recently been made available by the establishment of a new capital

market called the ‘life market’. Loeys et al. (2007, p. 6) show that for a new capital market

to become established and to flourish: ‘it (1) must provide effective exposure, or hedging,

to a state of the world that is (2) economically important and that (3) cannot be hedged

through existing market instruments, and (4) it must use a homogeneous and transparent

contract to permit exchange between agents.’ They argue that a market trading mortality

risk meets these criteria and that a successful market should emerge in due course.

We will now describe briefly the different types of security that could be used.

6.1. Mortality catastrophe bonds

Although this paper is primarily concerned with mortality risk, it is, nevertheless,

instructive to discuss short-dated mortality catastrophe bonds, since there have been a

number of successful issues of this type of bond. They are market-traded securities whose

payments are linked to a mortality index. They are similar to catastrophe bonds.

The first such bond issued was the Swiss Re bond (known as Vita I) which came to

market in December 2003. This was designed to securitize Swiss Re’s own exposure to

mortality risk. Vita I was a three-year bond (maturing on 1 January 2007) which allowed

the issuer to reduce exposure to certain catastrophic mortality events: a severe outbreak of

influenza, a major terrorist attack (using weapons of mass destruction) or a natural

catastrophe. The mortality index was weighted by age, sex and nationality. The $400m

principal was at risk if, during any single calendar year, the combined mortality index
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exceeded 130% of the baseline 2002 level, and would be exhausted if the index exceeded

150%. In return for having their principal at risk, investors received quarterly coupons of

three-month US LIBOR plus 135 basis points.

The success of the bond led to additional bonds being issued on much less favourable

terms to investors: for example, Vita II by Swiss Re in 2005 ($362m), Vita III by Swiss Re

in 2007 ($705m), Tartan by Scottish Re in 2006 ($155m) and OSIRIS by AXA in 2006

($442m).

6.2. Mortality (or survivor) swaps

The key derivative of interest is the mortality (or survivor) swap (e.g., Dowd et al. (2006),

see also Lin & Cox (2005)). Counterparties swap fixed series of payments in return for

series of payments linked to the number of survivors in a given cohort. One example

would be a swap based on 65-year-old males from England and Wales. As another

example, a UK annuity provider could swap cashflows based on a UK mortality index for

cashflows based on a US mortality index from a US annuity provider counterparty: this

would enable both counterparties to diversify their longevity risks internationally.

The world’s first publicly announced mortality swap took place in April 2007 between

Swiss Re and Friends’ Provident, a UK life assurer. It was a pure longevity risk transfer

and was not tied to another financial instrument or transaction. The swap was based on

Friends’ Provident’s £1.7bn book of 78,000 of pension annuity contracts written between

July 2001 and December 2006. Friends’ Provident retains administration of policies. Swiss

Re makes payments and assumes longevity risk in exchange for an undisclosed premium.

However, it is important to note that this particular swap was legally constituted as an

insurance contract and was not a capital market instrument.

In a further development in December 2007, Goldman Sachs launched a monthly index

called QxX.LS (www.qxx-index.com) in combination with standardized 5 and 10-year

mortality swaps. The index is based on a pool of 46,290 anonymized lives over the age of

65 from a database of life-policy sellers (the so-called life-settlements market) assessed by

the medical underwriter AVS.

In a thorough and groundbreaking paper, Dahl et al. (2008) consider a situation where

a mortality (or survivor) swap is used to hedge dynamically the mortality risk in a life

book. An important contribution in Dahl et al.’s work is the acknowledgement that the

reference population underlying the swap might be different from that in the portfolio

being hedged, and they carry out a detailed numerical example to illustrate the impact of

the resulting basis risk. The tractability offered by the affine model they use allows a more

straightforward development of hedging strategies for mitigating mortality risk (one of

our criteria for a good model: see subsection 3.1). In the case of Dahl et al.’s (2008) work,

the analytical tractability of their affine mortality model makes it possible to implement

and evaluate the effectiveness of a dynamic hedging strategy. This recalls our earlier

model evaluation criterion that it should be straightforward to implement a model either

analytically or using efficient numerical algorithms.
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6.3. Longevity (or survivor) bonds

The world’s first attempt to issue a longevity (or survivor) bond was in November 2004.

The European Investment Bank (EIB) offered to issue a 25-year longevity bond with an

issue price of £540m and an initial coupon of £50m. The reference survivor index, S(t),

was based on 65-year-old males from the national population of England and Wales as

produced by the UK Government Actuary’s Department (GAD). The structurer/manager

was BNP Paribas which assumed the longevity risk, but reinsured it through PartnerRe,

based in Bermuda. The structure of the bond (see Blake et al. (2006), Figure 4) involves

both a mortality swap and an interest-rate swap. The target group of investors was UK

pension funds, but, for reasons discussed in Blake et al. (2006), the bond did not attract

sufficient investor interest and was later withdrawn.

6.4. Longevity-linked securities

A perceived problem with the EIB longevity bond was that the reference index might not

be sufficiently highly correlated with a hedger’s own mortality experience (as a result of

basis risk). An alternative instrument, that we will refer to as a longevity-linked security

(LLS), deals, at least partly, with this problem. The concept is inspired by the design of

mortgage-backed securities. The LLS is built around a special purpose vehicle (SPV).

Individual hedgers on one side of the contract (for example, pension plans) arrange

mortality swaps with the SPV using their own mortality experience at rates that are

negotiated with the SPV manager. The swapped cashflows are then aggregated and passed

on to the market. Bondholders gain if mortality is heavier than anticipated.

It might be felt that the aggregate cashflows themselves lack transparency (this did not

seem to be a problem with mortgage-backed securities until the emergence of the credit

crunch in 2007) in which case the SPV might link cashflows to an accepted reference

index. The difference between this and the aggregated swap cashflows is a basis risk that is

borne by the SPV manager.

This type of arrangement is illustrated in Figure 7. In this example, there are three

hedgers, A, B, and C. Hedger A wishes to swap the risky longevity-linked cashflows LA(t)

for a series of pre-determined cashflows. The agreement with the SPV manager is to swap

floating LA(t) for fixed L̃A(t) for t�1, . . . ,T, with the fixed leg set at a level that results in

the swap initially having zero value at time 0. Similarly, hedger B swaps floating LB(t) for

fixed L̃B(t); and hedger C floating LC(t) for fixed L̃C(t): The SPV itself invests in AAA-

rated, fixed-interest securities of appropriate duration or uses floating rate notes plus an

interest-rate swap. The LLS bondholders pay an initial premium that is used to buy the

fixed-interest securities and to pay an initial commission to the manager. The bondholders

in return receive coupons and, possibly, a final repayment of principal that is linked either

to the hedgers’ floating cashflows or to a reference index that matches as closely as

possible the combined cashflows. In the latter case, any differences accrue to the SPV

manager. The bondholders will not normally be hedgers themselves, so they will expect a

fair premium over market fixed-interest rates in return for assuming the mortality risk.
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6.5. Mortality (or q-) forwards

In July 2007, JPMorgan announced the launch of a mortality forward contract with the

name ‘q-forward’ (Coughlan et al. (2007)). It is a forward contract linked to a future

mortality rate, taking its name from the standard actuarial notation, ‘q’, for a mortality

rate. The contract involves the exchange, at time T�1, of a realized mortality rate, q(T, x),

relating to a specified population on the maturity date of the contract, in return for a fixed

mortality rate agreed at the beginning of the contract (Figure 8).

A series of q-forward contracts, with different ages, can be combined to hedge,

approximately, a mortality swap. As an example, suppose the contract involves swapping

at time t a fixed cashflow, Ŝ(t); for the realized survivor index, S(t, x). The fixed leg can be

SPV

Bond Holders

Hedger A Hedger B Hedger C

Manager

Mortality
Swap A

L A (t) L̃ A (t)

Mortality
Swap B

L B (t) L̃ B (t)

Mortality
Swap C

L C (t) L̃ C (t)

Commission

Basis risks

Initial
Premium

Longevity-linked
Coupons & Principal

Figure 7. Cashflows under a longevity-linked security (LLS). Bondholders might receive cashflows linked to a

reference index rather than LA(t), LB(t) and LC(t), in which case residual basis risk must be borne by the SPV

manager.

Counterparty A
(fixed rate payer)

Counterparty B
(fixed rate receiver)

Notional × 100 ×
fixed mortality rate

Notional × 100 ×
realized mortality rate

Figure 8. A q-forward arranged at time t exchanges fixed mortality, qF(t, T, y), for realized mortality, q(T, y), at

maturity, T�1, of the contract. (Source: Coughlan et al. (2007, Figure 1))
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hedged using zero-coupon fixed-income bonds. The floating leg can be hedged approxi-

mately as follows. First, note that we can approximate the survivor index by expanding the

cashflow in terms of the fixed legs of a set of q-forwards and their ultimate net payoffs:

S(t; x)� 1�q(0; x)ð Þ�(1�q(1; x�1)Þ�. . .�(1�q(t�1; x�t�1))

�
Yt�1

i�0

(1�qF (0; i; x�i)�D(i; x�i))

:
Yt�1

i�0

(1�qF (0; i; x�i))�
Xt�1

i�0

D(i; x�i)
Yt�1

j�0;j"i

(1�qF (0; j; x�j))

where /D(i; x�i)�q(i; x�i)�qF (0; i; x�i) and /qF (0; i; x�i)�q-forward mortality rate

(the fixed rate). D(i, x�i) is the net payoff on the q-forward per unit at time i�1.

It follows that an approximate hedge (assuming interest rates are constant and equal to

r per annum) for S(t, x) can be achieved by holding:

. /�(1�r)�(t�1) Qt�1

j�0; j"0(1�qF (0; j; x�j)) units of the 1-year q-forward;

. /�(1�r)�(t�2) Qt�1

j�0; j"1(1�qF (0; j; x�j)) units of the 2-year q-forward;

. /n

. /�
Qt�1

j�0; j"(t�1)(1�qF (0; j; x�j)) units of the t-year q-forward.

In calculating these hedge quantities, we take account of the fact that, for example, the

payoff at time 1 on the 1-year q-forward will be rolled up to time t at the risk-free rate of

interest. Hence, the required payoff at time t needs to be multiplied by the discount factor

(1�r)�(t�1). In a stochastic interest environment, a quanto derivative would be required.

A quanto derivative is one that delivers a number of units, N, of a specified asset, where N is

derived from a reference index that is different from the asset being delivered. In this context,

N equals�D(i; x�i)
Qt�1

j�0; j"i(1�qF (0; j; x�j)); and we deliver, at time i�1, N units of

the fixed-interest zero-coupon bond maturing at time t, price P(i�1, t) at time i�1 per unit.

The discussion above covers the ‘pure’ version of the q-forward contract. However, some

practical issues come into play. First, the hedging arguments here would need modification

if, as is likely, q-forwards are subject to annual margin calls that result in the contracts being

marked-to-market. Second, in order to keep the number of contracts to a manageable level,

individual contracts use the average (or ‘bucketed’) mortality across 10 ages rather than

single ages. This averaging has positive and negative effects. On the one hand, the averaging

reduces the basis risk that arises from the non-systematic mortality risk that is present in

crude mortality rates, even at the population level. On the other hand, it introduces some

basis risk depending on the specific age-structure of the population being hedged.

6.6. Forward SCOR

For completeness, we will recall subsection 5.4.2 where we introduced the forward SCOR

contract. This contract is closely linked to the q-forward contract since the payoff

structure involves both the SCOR rate and the mortality rate underlying the q-forward.

The two are related, additionally, by the relationships.
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EQ[q(T ; x)jMT ]�
s(T ;T ;T � 1; x � T)

1 � s(T ;T ;T � 1; x � T)

[EQ[q(T ; x)jMt]�EQ

�
s(T ;T ;T � 1; x � T)

1 � s(T ;T ;T � 1; x � T) jMt

�
for tBT :

6.7. Mortality options, and longevity (or survivor) caps and floors

Mortality options give payoffs that are non-linear functions of underlying variables and

are attractive to (a) hedgers who might wish to protect their downside exposure, but leave

any upside potential, and (b) speculators who want to trade views on volatility rather than

views on the level of mortality (or related, e.g., annuity) rates.

In the case of longevity (or survivor) caps and floors, the underlying is a survivor index

S(t, x). Suppose sc(t) is a cap rate for exercise date t, while sf(t) is the corresponding floor

rate. A caplet will pay max{S(t, x)�sc(t), 0} at time t, while a floorlet will pay max{sf(t)�
S(t, x), 0}. Series of caplets and floorlets then get packaged into caps and floors.

7. Conclusions

There have been tremendous conceptual advances in both the modelling and management

of mortality risk in recent years. These advances are not unrelated. A good stochastic

mortality model is a virtual prerequisite to the successful introduction of a capital market

in mortality hedging instruments. Where we consider the development of other markets,

such as that for interest-rate derivatives, we can note that the early days were

characterized by pricing-to-model, but once the market had become sufficiently deep

and liquid, the models could be dropped in favour of pricing-to-market. The same is likely

to happen in the life market. But the development of a good and reliable model requires

time and considerable patience: an initial analysis might suggest that a model is

satisfactory, but further forensic investigation might reveal some pitfalls that need

corrective work. However, this development time can repay itself handsomely through

greater understanding of the underlying process driving mortality rate dynamics.

There are still considerable challenges ahead. The existing models need further

refinement; the market in mortality-linked derivatives is still in its infancy; and we still

need to develop further our understanding of how these contracts can be used in the most

effective way to manage mortality risk.
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Appendix: Identifiability constraints

For the model discussed in Section 4.4 there is an identifiability problem. This model, as

with others such as the Lee�Carter model requires the use of identifiability constraints to

ensure that the estimation problem is well specified. For this model we have the following

identifiability problem. Suppose that the best-fitting set of parameters are k̂
(1)
t ; k̂(2)

t ; k̂(3)
t ;

and ĝ
(4)
t�x: Now consider the alternative parameterization for constants f1, f2 and f3:
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g̃
(4)
t�x� ĝ (4)

c �f1�f2(t�x)�f3(t�x)2

k̃
(1)
t � k̂

(1)
t �c1(t)

k̃
(2)
t � k̂

(2)
t �c2(t)

k̃
(3)
t � k̂

(3)
t �c3(t)

where c1(t)��f1�f2(t�x̄)�f3(t�x̄)2�f3s
2
x

c2(t)�f2�2f3(t�x̄)

c3(t)��f3:

With a bit of tedious algebra, it can be shown that the two parameterizations give the

same values for q(t, x) for all t and x.

To avoid this problem, we need to introduce three constraints that make the arbitrary

adjustments above impossible. A simple approach would be to require that at k
(i)
t �0 for

i�1, 2, 3. However, for reasons given below we propose an alternative set of constraints:

Xc1

c�c0

g(4)
c �0

Xc1

c�c0

cg(4)
c �0

Xc1

c�c0

c2g(4)
c �0

where c0 and c1 are the earliest and latest years of birth to which a cohort effect is fitted.

The reason for this choice is that if we use least squares to fit a quadratic function

f1�f2c�f3c2 to g(4)
c ; the constraint ensures that f̂1�f̂2�f̂3�0: This means that the

fitted g(4)
c process will fluctuate around zero and it will have no discernible linear trend or

curvature (as can be seen in Figure 6).
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