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Abstract 

This paper considers the asset allocation strategies for members of 

defined-contribution pension plans with exponential utility when there are three types 

of asset, cash, bonds and stocks. The portfolio problem is to maximize the expected 

utility of terminal wealth that uses the plan member’s final wage as a numeraire, in 

the presence of three risk sources, interest risk, asset risk and wage risk. The use of a 

stochastic numeraire makes usual riskless cash assets risky. A closed form solution is 

found for the asset allocation problem when a portfolio replicates exactly the wage 

process exists, which is the true riskless asset. The optimal portfolio composition is 

horizon dependent, while the investments in the three asset classes have constant 

wealth-to-wage ratios. The paper discusses the implication of using wage as 

numeraire and assuming exponential utility function in portfolio and pension 

investment strategy studies.  

Keywords : Defined-contribution pension plan; Wage risk; Optimal asset allocation; 

Exponential utility; Hamilton-Jacobi-Bellman equation. 
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1. Introduction 

In recent years defined-contribution (DC) pension plans become more popular 

with corporate sponsors. Unlike the defined-benefits (DB) plans whose associated 

financial risks are borne by the plan sponsors, the members of a DC pension plan have 

to bear the financial risks. Several studies have investigated the optimal asset 

allocation strategies for DC pension plans (Battocchio and Menoncin 2004; Blake et 

al 2001; Boulier et al, 2001; Cairns et al, 2006; Deelstra et al, 2000, 2003). The 

optimal asset allocation strategy for a DC pension plan depends critically on the 

specifications of financial market, income model and terminal utility function. 

Difference in specifications can lead to substantially different conclusions. 

The formulation of a financial market includes three aspects: 1) the process 

governing the instantaneous interest rate; 2) the number and types of asset for 

investment; and 3) the process governing the value of risky assets. In Merton’s 

original portfolio and consumption strategy study (1969, 1971), interest rates and risk 

premiums are assumed to be constant. The assumption of a constant instantaneous 

interest rate in Merton’s model is to simplify the computational complexity. It is 

obvious from empirical studies that stochastic variations in interest rates and in risk 

premiums exist, and it may not be appropriate to assume a constant instantaneous 

interest rate in portfolios with a long horizon such as pension funds. Later studies on 

consumption and portfolio strategies often use stochastic interest rates (Sorensen, 

1999; Liu, 2001; Campbell and Viceira, 2002) or stochastic risk premiums (Kim and 

Omberg, 1996; Wachter 2002). Most pension studies assume a stochastic interest rate 

(Boulier et al 2001; Vigna and Haberman 2001; Haberman and Vigna 2002; Deelstra 

et al 2003; Cairns et al 2006; Battochio and Menoncin 2004), while constant interest 

rate scenarios may also be included in the same study (Cairns et al 2006). 

 As in Merton type consumption and portfolio work, most pension studies 

used two or three types of asset. Boulier et al (2001), Deelstra et al (2003) and 

Battochio and Menoncin (2004) used three assets: cash, bonds, and stocks. The stock 

price follows a geometric Brownian motion which includes volatilities from risk 

sources of both the interest rate and the stock market. Vigna and Haberman (2001) 
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assumed two assets: one low risk asset and one high risk asset. Haberman and Vigna 

later (2002) extended their assumption into a sequence of N assets with increasing 

returns and volatilities. Cairns et al (2006) assume one riskless asset and n risky assets 

in the financial market. 

Various treatments of wage incomes have been used in DC pension plan 

studies. In Boulier et al (2001), wages are continuously increasing at a constant rate 

and a pension plan member puts a constant part of her wage into the pension fund. 

Deelstra et al (2003) treat the contribution (a constant part of wage incomes) as a 

square integrable deterministic process. Haberman and colleagues assume a constant 

wage which can be considered equal to 1 for simplicity (Vigna and Haberman 2001; 

Haberman and Vigna 2002). Cairns et al (2006) and Battochio and Menoncin (2004) 

use stochastic wage incomes, which are governed by geometric Brownian processes. 

The wage income process includes volatilities from risk sources of the interest rate 

and the stock market, with or without a non-hedgeable volatility whose risk source is 

independent of financial market risk sources. Pension plan members will put a 

constant fraction of their wages into the pension fund. 

The specification of the argument in a terminal utility function will 

substantially affect the asset allocation strategy for a pension plan. It is usually 

thought to be inadequate for pension plans to define the terminal utility as a function 

of the terminal pension wealth. Boulier et al (2001) and Deelstra et al (2000, 2003) 

have considered pension plans with a guaranteed minimum benefit at retirement and 

the terminal utility measured as a function of surplus cash over the guaranteed benefit. 

Battocchio and Menoncin (2004) use inflation as the pension wealth performance 

benchmark and thus suppose that the terminal utility is a function of real pension 

wealth (nominal wealth-to-price index ratio). Although these additional guarantee or 

benchmark may look innocent, the optimal allocation could be affected substantially 

(Samuelson 1989). While the performance of DC pension plans often uses the DB 

plan pension as benchmark, the pension from DB plans is usually based on final 

wages, implicitly assuming that pension income should be comparable to the existing 

standard of living. Such implicit assumption of the need to have income comparable 
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to existing wage income in pension plans suggests some role of habit formation 

(Spinnewyn 1981; Becker and Murphy 1988) in terminal utility, and therefore final 

wages serve as a numeraire. In order to take the existing standard of living into 

account, Cairns et al (2006) assume that terminal utility is a function of the pension 

wealth-to-wage ratio or replacement ratio (pension income-to-final wage ratio).  

Most portfolio and DC pension plan studies have assumed a power function 

for terminal utility (Boulier et al, 2001; Cairns et al, 2006; Deelstra et al, 2000, 2003; 

Campbell and Viceira, 2002). With power utility, analytical solution cannot be 

derived when there is a non-hedgeable wage risk. Although power utility is generally 

assumed to be more consistent with empirical data, in the opinion of Henderson 

(2005), Bliss and Panigirtzoglou (2004) find evidence from option prices that 

exponential utility provides better representation of preferences than power utility. 

Henderson (2005) solves explicitly the optimal portfolio choice problem with 

stochastic wage income and constant instantaneous interest rate for individuals with 

exponential terminal utility. The advantage of exponential (terminal) utility is its 

better tractability, so that the portfolio problem with non-hedgeable wage income can 

still have a closed-form solution. Battocchio and Menoncin (2004) assume an 

exponential terminal utility together with stochastic interest rates and wage incomes 

in their DC plan studies and also solve explicitly the optimal asset allocation problem. 

They found that the absolute risk aversion coefficient δ determines whether the 

portfolio is more, or less, affected by time-dependent components: a small absolute 

value of δ leads to an optimal strategy which is practically constant through time.  

The present study extends the work of Battocchio and Menoncin (2004) by 

assuming terminal utility as a function of wealth-to-wage ratio which takes the current 

standard of living into consideration (Cairns et al 2006). The representation of the 

present work is mathematically very similar to that of Battocchio and Menoncin 

(2004), since in their work real pension wealth is represented by wealth-to-price index 

ratio. Although the financial market and the wage process are same in the present 

study as in Battocchio and Menoncin (2004), the optimal asset allocation strategy 

from the present study is very different. The optimal portfolio composition in risky 
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assets consists of two components: (i) a speculative component, proportional to both 

the portfolio Sharpe ratio and the inverse of the relative risk aversion index, and (ii) a 

hedging component depending on the state variable parameters. For exponential 

terminal utility, the optimal portfolio composition is horizon dependent and the  

optimal investments in the three assets have constant wealth-to-wage ratios. This 

paper also shows that the formulation of wealth process and numerical solution in 

Battocchio and Menoncin (2004) contain some particular features or errors, which 

may affect the relevance of their final results to pension management in real world.    

This paper is organized as follows. Section 2 formulates the financial market, 

wage and pension wealth growth models. Section 3 presents and solves the optimal 

asset allocation problem using the approach of Battocchio and Menoncin (2004). 

Section 4 presents and solves the optimization problem with a wage replicating 

portfolio. Section 5 discusses the results and concludes.   

2. The model 

 This section presents the assets available for investment and their dynamics, and 

wage process.  

2.1. Financial market 

This study considers a financial market with no arbitrage that is frictionless 

and continuously open. The specifications of the financial market are similar to those 

in Boulier et al (2001) and Deelstra et al (2003), and same as those in Battocchio and 

Menoncin (2004). There are three types of asset in the financial market: cash, bonds 

and equities. For simplicity, only one equity asset, a stock, is considered, which can 

represent the index of a stock market. The randomness in the financial market is 

described by two standard and independent Brownian motions Zr(t) and ZS(t) with 

],0[ Tt ∈ , defined on a complete probability space (Ω, F, P) where P is the real world 

probability. The filtration F =F (t) ],0[ Tt ∈∀  generated by the Brownian motions 

can be interpreted as the information set available to the investor at time t.  
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The instantaneous risk-free rate of interest r(t) follows an Ornstein-Uhlenbeck 

process (Vasicek model)  

 

)())(()( tdZdttrtdr rrσβα +−= , 

  0)0( rr = ,            (1) 

where α and β  are strictly positive constants, and σr is the volatility of interest rate. 

The Ornstein-Uhlenbeck process possesses a stationary distribution. The 

instantaneous drift ))(( tr−βα  represents a force that keeps pulling the process 

towards its long term mean β  with magnitude proportional to the deviation of the 

process from the mean (mean-reverting). The stochastic element Zr(t) causes the 

process to fluctuate around the level β  in an erratic, but continuous fashion (Vasicek, 

1977). 

Given the interest rate process, the price of zero-coupon bonds for any date of 

maturity τ at time t, B(t, τ, r), is governed by the diffusion equation (Vasicek 1977; 

Boulier et al 2001; Deelstra 2003) 

 )(),()),()((
),,(
),,(

tdZtbdttbtr
rtB
rtdB

rrr στξστ
τ
τ

−+= , 

 1),( =ττB , 

where ξ is the market price of interest rate risk assumed to be constant, and 

 
α

τ
τα )(1

),(
te

tb
−−−

= . 

The price process of the riskless asset, R(t,r), is given by 

 dttrtRtdR )()()( = , 

 0)0( RR = .             (2) 

The riskless asset can be considered as a cash fund, i.e. a bank account paying the 

instantaneous interest rate r(t) without any default risk. The value of units in the cash 

fund at t is then 
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  

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= ∫

t
dssrRtR
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)(exp)0()( .        (3) 

There are zero-coupon bonds for any date of maturity, and a bond rolling over 

zero coupon bonds with constant maturity K. The price of the zero coupon bond with 

constant maturity K is denoted by BK(t, r) with 

 )(])([
),(
),(

tdZbdtbtr
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rrKrK
K

K σξσ −+=  ,     (4)  

where  
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 . 

The relationship between B(t, τ, r) and BK(t,r) through the riskless cash asset 

R(t) (Boulier et al, 2001) is  
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),,(
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K

K
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






−= . 

As Boulier et al (2001) pointed out, it is quite unrealistic to assume the existence of 

zero-coupon bonds with arbitrary maturity date. However, since the interest rate 

model is a one-factor model, only one zero-coupon bond at any time is needed to 

replicate the other ones. The above equation shows that other bonds can be obtained 

through a portfolio of the riskless asset and the “rolling bond”, and that the “rolling 

bond” can be obtained by a portfolio of one zero coupon bond and the cash asset. 

The total return (that is, the value of a single premium investment in the stock 

with reinvestment of dividend income) on the risky asset, the stock, is denoted by S(t) 

with  

 [ ])()(),()()( tdZtdZvdttrtStdS SSrrrSS σσµ ++= , 

 0)0( SS = ,             (5) 

where 

 SS trtr σξµ += )(),(            (6) 

is the instantaneous percentage change in stock price per unit time. The 

volatility 222
SrrSv σσσ += , the total stock instantaneous volatility, is assumed to 
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be constant, and vrS represents a volatility scale factor measuring how the interest rate 

volatility affects the stock volatility. The market price of stock risk, ξS, is assumed to 

be constant, and the risk premium on the stock is SSm σξ= .  

The market as assumed above has a diffusion matrix given by 

   






−
≡Σ

SrrS

rK

v
b

σσ
σ 0

,           (7) 

and I assume that σr and σS are different from zero and the diffusion matrix is 

invertible. 

2.2. Wages and contribution 

The plan member’s wage, Y(t), evolves according to the stochastic differential 

equation (SDE) 

  [ ])()()())()(()()( tdZtdZvtdZvdttrttYtdY YYSSSYrrrYY σσσµ ++++= , 

0)0( YY = ,              (8) 

where µY(t) is a deterministic function of time, age and other individual characteristics 

such as education and occupations. Here the instantaneous mean change of wages is 

assumed to be the sum of short interest rate and a deterministic function. Similar 

assumptions on wage processes have been used by Battochio and Menoncin (2004) 

and Cairns et al (2006). ZY(t) is a standard Brownian motion, independent of Zr(t) and 

ZS(t). Here σY is a non-hedgeable volatility whose risk source does not belong to the 

set of the financial market risk sources, and assumed to be constant. When σY = 0, the 

market is complete. Otherwise the market is incomplete. Further, vrY and vSY are 

volatility scaling factors measuring how interest rate volatility and stock volatility 

affect wage volatility, respectively.  

The plan member is assumed to contribute a constant proportion π  of her 

wages to the pension fund, since most DC plans have a relatively fixed contribution 

ratio.  
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3. The optimization problem without a wage replicating portfolio and solution 

for exponential utility 

This section presents the portfolio optimization problem and solves the 
problem for exponential utility using the approach of Battocchio and Menoncin 
(2004).  

3.1. The fund wealth and wealth-to-wage ratio 

The value of the plan member’s pension fund is denoted by W(t), and the 

proportions of fund wealth invested in the riskless asset, bonds and stock θR(t), θB(t) 

and θS(t) satisfy: 

  1)()()( =++ ttt SBR θθθ ,          (9) 

The change in the pension wealth (dW) at time t comes from two sources: the capital 

income (returns from investment of pension wealth) and the contribution from wage 

income (Y) at time t. The dynamics of W(t) is therefore governed by the SDE: 

  

,)(

))((

)}(])()[({

)()()(

SSS

rrrSSKB

SSrKBR

SBR

dZtW

dZvbtW

dttYbrrtW

dttY
S
dS

B
dB

R
dR

tWtdW

σθ

σθθ

πµθξσθθ

πθθθ

+

+−+

++++=

+



 ++=

   (10) 

where π  is the proportion of wage contributed to the pension plan and Y(t) is the wage 

income at time t. The above equation indicates that the change in pension fund wealth 

is due to both the return of the investments and the contribution from wages.  

In the study by Battocchio and Menoncin (2004), the change in pension fund 

wealth was assumed to be (in my own notation) 

  )()()( tdY
S

dS
B

dB
R

dR
tWtdW SBR πθθθ +



 ++= . 

This equation appears to imply that changes in wages (rather than wage itself) lead to 

the growth of pension wealth and that contribution from a constant wage will not 

increase pension wealth. I think that the contribution from the wage Y(t) per se should 

be included, and might be more important in the growth of pension wealth. In the 

present formulation, even a constant wage still contributes to the growth of pension 
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wealth.  In an infinitesimal time interval dt, Y(t) can be considered as constant. 

Integration dttY∫ )(π catches all effects of wage changes on pension contribution.  

Since it is likely that a pensioner’s utility derived from a pension fund at the 

time of retirement depends on its ratio to the individual’s final wage, rather than its 

absolute value, the plan member is assumed to retire at time T and have a terminal 

utility function, ))(),(( TYTWU . That is, her terminal utility depends on both her 

final wage and her pension wealth at retirement. As in Cairns et al (2006), the 

terminal utility is assumed to be a function of the terminal pension wealth-to-wage 

ratio, )(/)()( TYTWTX = . Thus terminal utility will be independent of the interest 

rate at time T, r(T), 

 ))(())(),(( TXUTrTXU ≡ . 

Applying Itô’s lemma, the SDE governing the wealth-to-wage ratio is 

  )(
1

)(
1

)(
2

2
32

dWdY
Y

dY
Y
W

dY
Y
W

dW
Y

tdX −+−= .    (11) 

By substituting the expression of W, Y, dW and dY, the SDE governing this pension 

wealth-to-wage ratio process is: 

 dZXdtMXtdX )''()'()( Γ++= θπθ  ,      (12) 

where, 

  [ ]SBR θθθθ ≡' , 
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  [ ]'YSr ZZZZ ≡ .           (13) 
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The new diffusion matrix for the financial market is given by Γ. I assume that 

( ΓΓ' ) is invertible in all following sections. The objective of the pension fund 

manager is to choose a portfolio strategy that maximizes the expected value of a 

terminal utility function. The terminal utility function is a function of the 

wealth-to-wage ratio X(t).  

In the study of Battocchio and Menoncin (2004), the terminal utility is a 

function of real wealth (the nominal wealth-to-price index ratio). The role of price 

index p in their wealth-to-price index ratio is similar to that of wage in the present 

wealth-to-wage ratio. However, in their formulation, the volatilities of price index 

appear in both 'Γ and another vector Λ.  Their formulation (in my notations) is 

dZXdtuMXtdX )''()'()( Λ+Γ++= θθ  

The vector Λ includes both wage volatilities and inflation (price index) volatilities. 

The term u has contributions from deterministic drifts and variances of both wage and 

inflation (price index)  processes. It appears that the contribution from the inflation 

(price index) process has been fully captured by M and Γ (Ma, 2007) and the 

contribution from wage incomes should be represented by πYdt in equation (10). If 

this view is correct, the SDE governing the real wealth growth in Battocchio and 

Menoncin (2004) should be 

  dZXdtuMXtdX )''()'()( Γ++= θθ  

  Y
p

u
π

=  

The difference in the treatment of inflation and wage impacts on the 

wealth-to-price index (or wealth-to-wage) ratio SDE will lead to a difference in the 

solution of the optimization problem. 

3.2. The optimization problem and Hamilton-Jacobi-Bellman equation 

The expected terminal utility has the functional form  

[ ]ytYrtrxtXTYTrTXUEyrxtV ==== )(,)(,)(|))(),(),(();,,,( θθ  (14) 
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where Xθ(t) is the path of X(t) given the strategy θ. The objective of the optimization 

problem is to find the maximum expected terminal utility of a plan member,  

  );,,,(sup),,,( θ
θ

yrxtVyrxtJ =          (15) 

and the strategy θ which attains this maximum. The above specifications have a 

similar form to those in Cairns et al (2006). The stochastic optimal control problem is 

rewritten as follows: 

  [ ])),((max TTXUE
θ

, 

subject to 

  dZ
X

dt
MXX

w
d w









Γ
Ω

+







+

=







''
'

' θπθ
µ

, 

  TtXXww ≤≤∀== 0,)0(,)0( 00 ,        (16) 

where, 

  [ ]' 
12

Yrw ≡
×

,  

  [ ]' )()(
12

rYr Yw +−≡
×

µβαµ ,  









≡Ω

×
YSSYrrY

r

YYvYv σσσ
σ 00

'
32

.        (17) 

The solution to this problem should give us the optimal portfolio composition. 

The Hamiltonian corresponding to the above optimal control problem (16) is  

  

,  )''(
2
1

)''('
2
1)'(')(

2

2
2

2

2

2

X
JX

Xw
JX

w

Jtr
X
JMX

w
J

t
JJH w

∂
∂ΓΓ+

∂∂
∂ΩΓ+









∂

∂ΩΩ+
∂
∂++

∂
∂+

∂
∂=

θθ

θπθµ
 

                 (18) 

where J(X,w,t) solves the Hamilton-Jacobi-Bellman equation and satisfies 

  )),(([sup),,(
}{

TTXUEtwXJ t
θ

=  

(Øksendal 2000). The two variables r and Y in equation (15) are represented by the 

vector [ ]' 
12

Yrw ≡
×

as defined in equations (17).  

The system of the first order conditions on H with respect to θ is: 
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  0
2

2
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=
∂
∂

ΓΓ+
∂∂

∂
ΩΓ+

∂
∂

=
∂
∂

X
J

X
Xw
J

X
X
J

MX
H

)'(' θ
θ

,   (19) 

where 
θ∂

∂H
 is a vector. From the above equation, the optimal portfolio composition 

is: 

  
XX

wX

XX

X

XJ
J

XJ
J

M ΩΓΓΓ−ΓΓ−= −− ')'()'(* 11θ ,     (20) 

where the subscripts on J indicate partial derivatives. Here 

[ ]' *)(*)(*)(* ttt SBR θθθθ = , the optimal proportions invested in cash, bonds and 

stock respectively.  

The two terms on the right hand side of equation (20) can be designated as θ1* 

and θ2* respectively, which are themselves vectors with three elements corresponding 

to certain proportions of investment in cash, bonds and stock. We can also view θ1* 

and θ2* as two mutual funds constructed with three assets of cash, bonds, and stock, 

and obtain 

 

Proposition 1: Under the market structure assumed in this paper, the portfolio 

composition of the three assets (cash fund, bonds and stock) maximizing the investor’s 

expected terminal utility (and pension wealth-to-final wage ratio) depends on two 

components: (i) a speculative component, proportional to both the portfolio Sharpe 

ratio and the inverse of the relative risk aversion index, 

  
XX

X

XJ
J

M1
1 )'(* −ΓΓ−=θ           (21) 

and, (ii) a hedging component depending on the state variable parameters  

  
XX

wX

XJ
J

ΩΓ−= −1
2*θ .           (22) 

The first portfolio component increases when the “returns” on wealth-to-wage 

ratio X(t) (i.e. M) increase, and decreases when the relative risk aversion (-XJXX/JX) or 

the wealth-to-wage ratio variance ( ΓΓ' ) increases. Here the “returns” on 
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wealth-to-wage ratio X(t) (i.e. M) means wage adjusted returns on the assets, not the 

original returns from the assets. 

The second portfolio component depends explicitly on the diffusion terms of 

the state variables (Ω), suggesting that this component covers the plan member from 

financial market risk. In fact, the present formulation uses the member’s wage as a 

numeraire to assess the fund manager’s performance. 

This result is different from that of Battocchio and Menoncin (2004). In 

addition to these two components of optimal portfolios, Battocchio and Menoncin got 

a third preference-free hedging component depending only on the diffusion terms of 

assets and background variables with their formulation (2004). The preference-free 

hedging component in Battocchio and Menonion (2004) arises from the extra 

volatility term Λ in their wealth-to-price index SDE. As I explained in the preceding 

section, the inclusion of Λ appears incorrect (Ma 2007).  

3.3. Optimal asset allocation strategy without a wage replicating portfolio for 

exponential terminal utility 

When the instantaneous interest rate is constant and there is no wage income, 

individuals with exponential utility should invest a constant dollar value of wealth in 

risky assets and the rest in riskless assets (Merton 1969). The optimal allocation 

problem for exponential utility is solved in this section. By assuming an exponential 

utility function of the form 

  FeFU δη −−=)( .           (23) 

where η and δ are strictly positive parameters and F is real pension wealth (nominal 

wealth-to-price index ratio), Battocchio and Menoncin find a closed-form solution for 

optimal pension management problem under stochastic interest rates, wages and 

inflation (2004). In this section, a similar exponential utility function as that of 

Battocchio and Menoncin (2004) is used. The terminal utility function is separable by 

product in wealth-to-wage ratio and in the other state variables according to the 

following form: 
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  ),(),,( twhXetxwJ +−−= δη ,   

  XeTxwJ δη −−=),,( .          (24) 

Then, the derivatives of the maximum expected terminal utility 

  t
hX

t heJ +−−= δη , 

  hX
X eJ +−= δηδ , 

  hX
XX eJ +−−= δηδ 2 , 

  w
hX

w heJ +−−= δη , 

  2
w

hX
ww

hX
ww heheJ +−+− −−= δδ ηη , 

  w
hX

wX heJ +−= δηδ ,          (25) 

With exponential utility function, the optimization problem has a closed form solution, 

as long as ]'[ ΓΓ  is invertible. Here, as in the previous sections, ]'[ ΓΓ  is assumed to 

be invertible. 

Substituting the partial derivatives of the value function, which was given in 

(25), and the optimal value of θ into the Hamiltonian derived in the section 3.2, leads 

to the following equation: 
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                 (26) 

Here, M, Γ, Ω and π  are defined as those in the sections 2 and 3. Since  

  )()),(,( TXeTTXwJ δη −−= ,  

it implies that  

  0))(,( =TwTh .            (27) 
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The HJB equation can be simplified as follows 

  0)'(
2
1

)'('
2
1

)''( 11 =ΩΩ+ΓΓ−−ΩΓ−+ −−
wwwwt htrMMhMh δπµ ,  

  0),( =Twh .             (28) 

Let 

  MMtwf 1)'('
2
1

),( −ΓΓ−−≡ δπ .        (29) 

The partial differential equation can be solved by using the Feynman-Kac formula 

(Øksendal 2000；Duffie 2001), and the functional form of h(w,t) is given by: 

  



= ∫ dssswfEtwh

T

tt )),(~(),(  .        (30) 

where 

  dZswdsMwd sws )',~()''(~ 1
~ Ω+ΓΩ−= −µ , 

  tt ww =~ ,              (31) 

  MMtwf 1)'('
2
1

),( −ΓΓ−−≡ δπ . 

Then, the optimal portfolio strategy is 

  dsswfE
wX

M
X st

T

t
t

)],~([
1

)'(
1

* 11 ∫ ∂
∂

ΩΓ+ΓΓ= −−

δδ
θ  .   (32) 

Here δ can be considered as the Arrow-Pratt risk aversion measure. Under the 

Feynman-Kac representation theorem, the state variable w is given by the solution to a 

stochastic differential equation which is different from the original one. Since the 

terms π  and MM 1)'(' −ΓΓ  in the function f(w,t) do not depend on the state variables, 

their derivatives with respect to wt are zero and the above equation becomes 

  M
X

1)'(
1

* −ΓΓ=
δ

θ            (33) 

As I have indicated in the section 3.2, the two items on the right hand side can be 

designated as two mutual funds, funds 1 and 2 respectively, which are constructed 

with cash, bonds and stock. The above equation corresponds to the fund 1 because 

fund 2 equals zero.  

It is easy to show that equation (33) leads to constant wealth-to-wage ratio 

invested in the three assets, cash, bond, and stock. Since the denominator in the right 
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hand side of the equation contain a factor X, the optimal wealth (to wage ratio) 

invested in the three assets 

 MX 1)'(
1

* −ΓΓ=
δ

θ  

The matrix product of the right hand side is a vector with three elements, each 

element for one asset category. Since all the three elements are constant, the optimal 

wealth-to-wage in each asset to wage ratio must be constant. The optimal total 

pension wealth-to-wage ratio invested in the three assets is 

 MX 1)'('1
1

*'1 −ΓΓ=
δ

θ  

where 1 13×ℜ∈ is a vector containing only ones. Therefore, the optimal total pension 

wealth-to-wage ratio invested in the three assets must be constant.  

 This result of optimal constant total pension wealth-to-wage ratio is implied 

by the study of Battocchio and Menoncin (2004), who found that optimal pension 

wealth consists of a constant component and a horizon dependent component. Their 

optimal total pension wealth-to-price index ratio (real pension wealth) is horizon 

dependent because of the need to hedge wage and inflation risks.  

Since an increase in pension wealth will increase the pension wealth derived 

utility, it seems wrong to have a constant optimal total pension wealth here. Moreover, 

to have the “constant optimal total pension wealth” invested in the three assets at the 

beginning of the pension plan, it is necessary to short-sell “riskless assets”; after the 

“constant optimal pension wealth” has been acquired, the ensuing contributions from 

wage incomes have to be invested in some assets instead of being thrown away. The 

existence of short-sale at the beginning and the need to invest the ensuing 

contributions suggest that the investment in the three assets is only part of the total 

pension wealth and that a fourth asset is needed for early short-sale and later long 

position. Because the stochastic wage is the numeraire, all the three assets, cash, bond 

and stock, are risky. The optimal strategy would be to hold some riskless assets as 

well as the constant wealth-to-wage ratio in the three risky assets. Since the stochastic 

wage is the numeraire, a portfolio that replicates the wage income is a riskless asset. 
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4. The optimization problem with a wage replicating portfolio and solution for 

exponential utility 

This section presents the portfolio optimization problem and solves the 
problem for exponential utility when there is a wage replicating portfolio.  

4.1. Optimization problem for non-hedgeable wage risk 

If a portfolio P can be constructed to replicate the wage perfectly 

[ ])()()())()(()()( tdZtdZvtdZvdttrttPtdP YYSSSYrrrYY σσσµ ++++= , 

                (34) 

the pension plan member now has four assets instead of three to invest. Let the 

proportion invested in the riskless portfolio be θP,  

1=+++ SBRP θθθθ .           (35) 

The dynamics of W(t) is now governed by the SDE: 
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                 (36) 

Applying Itô’s lemma, we get the wealth-to wage ratio expression that has 

exactly the same form as that of equations (12) and (13). The only difference is that 

the sum of proportions θR, θB and θS is no longer 1, PSBR θθθθ −=++ 1 . The HJB 

equation and optimal portfolio composition also have the same forms as equations (18) 

and (20) respectively. The solution for the exponential terminal utility has the same 

expressions as those from equation (26) to equation (33). Equation (33), 

M
X

1)'(
1

* −ΓΓ=
δ

θ , shows that the because the optimal wealth-to-wage ratios 

invested cash, bond and stock are constant, the proportions they represent in the total 

pension wealth are decreasing as the total pension wealth is increasing. The 
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proportion invested in the “riskless” replicating portfolio increases as the total pension 

wealth increases. This result is consistent with Merton’s results (1969) that the 

optimal strategy for exponential utility is to invest a constant dollar value in the risky 

asset and the rest in the riskless asset. 

From the above analysis, we get the following 

Proposition 2: When terminal utility is a function of wealth-to-wage ratio, under the 

market structure and optimization objective specified in this paper, the optimal 

pension asset allocation strategy is to hold a risky portfolio with constant (optimal) 

wealth-to-wage ratios in the three assets, cash, bond, and stock, and invest the rest of 

pension wealth in a riskless portfolio that replicates the wage. 

The constant optimal wealth-to-wage ratios invested in cash, bond and stock 

are  
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The optimal proportions invested in cash, bond and stock are  
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where  
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The optimal proportion invested in the replicating portfolio is  

***1* SBRP θθθθ −−−= .          (40) 

Since the expressions of optimal proportions for the three assets in equation 

(38) all contain δX in their denominator, the absolute risk aversion coefficient δ has 

no impact on the optimal proportions of the three assets in the risky portfolio. From 

equations (37)-(40), we have the following 

Proposition 3: When terminal utility is an exponential function of wealth-to-wage 

ratio, the absolute risk aversion coefficient δ does not affect the optimal proportions 

of the three assets in the risky portfolio; δ affects the relative weights between the 

risky and the riskless portfolios in the optimal allocation strategy described in 

Proposition 2. 

Proposition 3 is the result of the mutual fund theorem of Tobin (1958). 

If there is no short-sale constraint, the pension plan member will short-sell the  

“riskless” replicating portfolio in order to hold the constant optimal wealth-to-wage 

ratio in the three “risky” assets, and pay off the short-sale with future contributions. 

After the short-sale has been paid off, the future contributions and the returns from the 

risky assets that exceed the constant optimal wealth-to-wage ratio will be invested in 

the “riskless” replicating portfolio. If the returns from the risky assets cannot maintain 

the constant optimal wealth-to-wage ratio, some future contributions have to be used 

to make up the difference. If there is short-sale constraint, the pension plan member 

will invest all contributions in the three risky assets until the constant optimal 

wealth-to-wage ratio in the risky assets is reached; afterwards the contributions will 

be invested in the “riskless” portfolio unless the returns from the risky assets cannot 

maintain the constant optimal wealth-to-wage ratio. 

One interesting question consequent on Merton’s results (1969) is for 

exponential utility how to invest in two or more risky assets when there is no risk free 
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asset? The use of replacement ratio and wealth-to-wage ratio by Cairns et al (2006) 

and the present study, as well as the use of wealth-to-price index ratio by Battocchio 

and Menoncin, has actually made all assets (including cash) risky. The present result 

demonstrates that while the optimal wealth-wage ratio invested in the risky assets is 

constant, the rest of pension wealth should be invested in a “riskless” replicating 

portfolio.  

Admittedly, a riskless portfolio may not always be found. With the assumption 

in this section of unhedgeable wage risk ZY(t), the perfect replicating portfolio cannot 

be constructed with existing assets. In this case, the optimal pension allocation 

strategy is to invest the constant (optimal) wealth-to-wage ratios in the three assets, 

and the rest of pension wealth in a replicating portfolio that is closest to risk free. 

Fig.1 shows the constant optimal wealth-to-wage ratio invested in the three 

(risky) assets, cash, bond, and stock, for different values of absolute risk aversion 

calculated with parameters in Table 1. The smaller the absolute risk aversion (ARA), 

the larger the optimal wealth-to-wage ratio invested in the three (risky) assets. 

Plausible optimal wealth-to-wage ratios invested in the three (risky) assets should not 

exceed the total pension wealth-to-wage ratios at retirement. The average (equivalent 

terminal) pension wealth-to-gross wage ratio of public pensions in the OECD 

countries is 9.4 for men (UK has the lowest at 4.6 and Greece the highest at 14.3, 

corresponding to a replacement ratio of 30.8% and 95.7% respectively) and 10.9 for 

women (Mexico has the lowest at 4.8, UK the second lowest at 5.3 and Greece the 

highest at 16.6) (Quesser and Whitehouse 2007). When ARA=1000 (logARA=3), the 

optimal pension wealth-to-wage ratio invested in the three (risky) assets is less than 

0.5. Fig.2 shows the optimal wealth-to-pension ratio invested in the three (risky) 

assets for absolute risk aversion δ in the range between 30 (logARA=1.5) and 300 

(logARA=2.5). In this range, the wealth-to-wage ratio invested in the three (risky) 

assets appears to be more realistic. For logARA=1.5, the optimal pension 

wealth-to-wage ratio is 15.1 for 1−=rSv  and 13.7 for 1=rSv . For logARA=2.5, the 

optimal pension wealth-to-wage ratio is 1.51 for 1−=rSv  and 1.37 for 1=rSv . 
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Table 1  Parameters used in numerical simulation 

_____________________________________________________________________ 

Interest rate        Value  

 Mean reversion, α,     0.2 

 Mean rate, β        0.05 

 Volatility, σr       0.02 

 Initial rate, r0       0.05    

 

Fixed maturity bond 

 Maturity, K        20 years 

 Market price of risk, ξ    0.15 

 

Stock 

 Risk Premium, mS     0.06 

 Stock own volatility, σS    0.19 

 Interest volatility scale factor, vrS  1 or -1    

 

Wage 

 Wage premium,  µY     0.01 

 Non-hedgeable volatility, σY    0.01 

 Interest volatility scale factor, vrY  0.7   

 Stock volatility scale factor, vSY  0.9 

 Initial wage, Y0      10k 

 

Contribution rate, π       10% 

 

Length of pension plan, T     45 
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Optimal Pension Wealth-to-Wage Ratio in Risky 
Assets for Exponential Utility
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Fig.1 Relationship between absolute risk aversion (ARA) and 

optimal wealth-to-wage ratio of the three “risky” assets. 
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 Fig.2 Relationship between absolute risk aversion (ARA) and optimal 

wealth-to-wage ratio of the three “risky” assets for ARA between 30 

(logARA=1.5) and 300 (logARA=2.5).  
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Although the relative risk aversion has a generally agreed estimate range of 

2-4, there seems to be no general agreement on the value of absolute risk aversion in 

literature. Here I try to use the relationship between relative risk aversion R(X) and 

absolute risk aversion A(X), )()( XXAXR = , to estimate the values involved. 

Assuming that individuals with exponential utility have a relative risk aversion γ in 

the usual estimated range of 2 to 4 in terms of the wealth-to-wage ratio in the initial 

period, an assumption of δ=20 to 40 would be reasonable (in the initial period, the 

wealth-to-wage ratio X=π=0.1, the relative risk aversion R(X)=γ divided by X=0.1). 

A δ of 40 leads to an optimal wealth-to-wage ratio in risky assets of about 10, which 

is very similar to the average terminal wealth-to-wage ratio of public pensions in 

OECD countries, 9.4 for men and 10.9 for women (Queisser and Whitehouse 2007). 

The value used by Battocchio and Menoncin (2004), δ=20 (in the initial period with 

the wealth-to-wage ratio X=π=0.1 corresponding to a relative risk aversion γ=2), 

produces an optimal wealth-to-wage ratio in risky assets of about 20. A terminal 

pension wealth of 10 to 20 times the wage, which corresponds to an absolute risk 

aversion of 20 to 40, is close to the range of average pension wealth-to-wage ratio in 

OECD countries, 4.6 to 16.6 (Queisser and Whitehouse 2007). 

4.2. Optimal asset allocation with hedgeable wage income contribution 

If the wage income is fully hedgeable, the replicating portfolio P follows the 

price process 

[ ])()())()(()()( tdZvtdZvdttrttPtdP SSSYrrrYY σσµ +++= .   (41) 

The pension plan member has four assets to invest and  

1=+++ SBRP θθθθ . 

The dynamics of W(t) is governed by the SDE: 
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Applying Itô’s lemma, we get the wealth-to wage ratio process 

dZXdtMXtdX )''()'()( Γ++= θπθ  ,       (43) 

where, 

 [ ]SBR θθθθ ≡' , 
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Except that the elements in the matrices and vectors are different, the solution for the 

fully hedgeable wage scenario is the same as that represented by equations from (26) 

to (33). The constant optimal wealth-to-wage ratios invested in cash, bond and stock 

are  
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The optimal proportions invested in cash, bond and stock are  

  















=ΓΓ=
















−

3

2

1
1 1

)'(
1

*
*

*

φ
φ

φ

δδ
θ
θ

θ

Xb
M

X K
S

B

R

 ,         (46) 

where  
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The optimal proportion invested in the replicating portfolio is  

***1* SBRP θθθθ −−−= . 

From the above analysis, we get 

 

Proposition 4: When there is no nonhedgeable wage risk, under the market structure 

and optimization objective specified in this paper, the optimal pension asset 

allocation strategy for exponential terminal utility is to invest constant (optimal) 

wealth-to-wage ratios in the three assets, cash, bond and stock, and the rest of 

pension wealth in a portfolio that perfectly replicates the wage process.  

 

The financial wealth of the plan members includes both the risky portfolio and 

the riskless portfolio. The riskless (wage replicating) portfolio can be constructed 

from the three assets, with the following proportions in cash, bond and stock 
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Fig.2 shows the numerical results on optimal proportions of cash, bond and 

stock in the financial wealth over time. At the beginning of the pension plan, the 

riskless portfolio is short-sold in order to hold the optimal amount of the optimal risky 

portfolio. As the short-sale is paid off gradually by wage contributions, the optimal 

proportions of the three assets in financial wealth stabilize. With a larger δ value, the 
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optimal amount of the risky portfolio is smaller, hence less short-sale at the beginning 

of the pension plan.  

Optimal Proportions of Cash, Bond and Stock in 
Financial Wealth for Exponential Utility, δ=20
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Optimal Proportions of Cash, Bond and Stock in 
Financial Wealth for Exponential Utility, δ=200
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Fig.2 Optimal proportions of cash, bond and stock in financial wealth over 

the lifespan of pension plan. The parameters in Table 1 are used in the 

numerical simulation. The results are from 100 simulations. A. δ=20. B. 

δ=200. 
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Fig. 3 shows the numerical results on wealth-to-wage ratio invested in the 

three assets for the financial wealth of the pension plan. With assumptions on the 

financial market and wage process in the present paper as well as in Battocchio and 

Menoncin (2004), the largest proportion is invested in the stock. The larger the δ 

value, the smaller the expected terminal wealth-to-wage ratio. 

Cash, Bond and Stock Financial Wealth to Wage 
Ratio for Exponential Utility, δ=20
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Cash, Bond and Stock Financial Wealth to Wage 
Ratio for Exponential Utility, δ=200
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Fig.2 The optimal wealth-to-wage ratio invested in cash, bond and stock 

for financial wealth over the lifespan of pension plan. The parameters in 

Table 1 are used in the numerical simulation. The results are from 100 

simulations. A. δ=20. B. δ=200. 
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The present results on optimal asset allocation strategy for exponential 

terminal utility indicate a stochastic lifestyle strategy due to the contributions from 

wage income, consistent with earlier studies by Bodie et al (1992), Campbell and 

Viceira (2002), Deestra et al (2003); Battocchio and Menoncin (2004), and Cairns et 

al (2006). The present study assumes the same asset return and wage processes as 

those in Battocchio and Menoncin (2004), but they failed to include the investment in 

a “riskless” portfolio, which in their case should replicate the price index. Their 

results correspond to my initial results in section 3 when the investment in the 

“riskless” portfolio is not included. Therefore, they might have made a mistake in 

treating the pension wealth invested in “risky” assets as the total pension wealth. This 

is shown in their numerical simulations. Battocchio and Menoncin did not specify the 

initial pension wealth value in their numerical simulations. Since the initial wage is 

100 and the contribution rate 12%, it is very unlikely that the average realized pension 

wealth at t=0 or soon after can be as high as >23. Given that both the expected wage 

growth and the mean interest rate are higher than inflation growth, 12% wage incomes 

(with an initial wage of 100) invested in riskless assets over 40 years should generate 

a real wealth of at least 480. The numerical simulation by Battocchio and Menoncin, 

however, only generated a terminal real wealth of <30 after 40 years’ contribution and 

investment, much lower than the initial one period wage of 100 (Battocchio and 

Menoncin 2004). 

If we view the total real pension wealth of Battocchio and Menoncin (2004) as 

the real pension wealth invested in the three risky wealth, their optimal real wealth 

(wealth-to-price index ratio) in the risky assets is horizon dependent, whereas in the 

present study the optimal wealth-to-wage ratio is constant. The difference arises 

because of the need to hedge wage and inflation risks in their study. They find that the 

optimal real pension wealth (invested in the three “risky” assets) consists of a constant 

component and a horizon dependent component. In their numerical simulation, they 

use an absolute risk aversion coefficient δ=20 and an initial wage Y(0)=100, which 

implies a relative risk aversion coefficient γ=200 at least (with contribution rate 

π=10% of wage income). Battocchio and Menoncin noted that for smaller δ (with 
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respect to initial wage Y(0)), the optimal strategy is practically constant through time 

(2004). The use of wealth-to-wage ratio and the model formulation in this paper 

removes the need to hedge wage and interest rate risks, leading to a constant optimal 

wealth-to-wage ratio that needs to be invested in the three risky assets. 

 Another difference between my present results and those of Battocchio and 

Menocin (2004) is that they found three components (preference-free hedging, 

speculative, and state variable dependent hedging) in the general expression of the 

optimal composition, whereas the present results only have two (speculative and state 

variable dependent hedging). As explained earlier, the preference-free hedging 

component may arise from their incorrect treatment of wage and inflation 

contributions to the real wealth (wealth-to-price index ratio). In the present study, the 

state variable dependent hedging component in the proportions invested in the three 

“risky” assets disappears because the use of wealth-to-wage ratio as formulated in this 

paper removes the need to hedge interest rate and wage risks. The model used by 

Battocchio and Menoncin (2004) still needs to hedge wage and inflation risk even 

when formulated correctly (that is, Y
p

u
π

= and Λ=0 in their real wealth growth SDE 

dZXdtuMXtdX )''()'()( Λ+Γ++= θθ ). Therefore, they found that the value 

and portfolio composition of the optimal real wealth (wealth-to-price index ratio) 

invested in the three risky assets is time/horizon dependent, whereas the present study 

shows that the optimal value and portfolio composition of the optimal wealth-to-wage 

ratio invested in the three risky assets is horizon independent. 

5. Conclusion 

This paper has solved the optimal portfolio problem under stochastic interest 

rate and wage income for DC pension plan members with exponential utility, using 

three assets, cash, bonds and stock. The terminal utility of a pension plan holder is 

assumed to be a function of terminal pension wealth-to-wage ratio. The general 

results of the present paper differed from earlier findings (Battocchio and Menoncin 

2004; Cairns et al 2006). The use of stochastic wages makes assets that do not co-vary 
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perfectly with wage risky. Under the present model assumptions, it is found that the 

optimal composition in “risky” assets contains two components: a speculative 

component proportional to both portfolio Sharpe ratio and the inverse of the 

Arrow-Pratt relative risk aversion index, and a hedging component dependent on the 

state variable parameters. 

When the expected terminal utility is an exponential function of 

wealth-to-wage ratio, a closed form solution is derived for the optimal asset allocation 

problem when a wage replicating portfolio exists. The hedging component dependent 

on the state variable parameters disappears and the optimal portfolio composition and 

the investments in the “risky” assets have constant optimal pension wealth-to-wage 

ratio. Using wealth-to-wage ratio, as the argument of the expected terminal utility, in 

the present study removes the dependence of instantaneous conditional expected 

change per unit time (the expression multiplying with dt in the SDE) on the state 

variables, so that the need to hedge against the fluctuations in the state variables 

disappears. The preference free hedging component in Battocchio and Menoncin 

(2004) seems to result from their incorrect treatment of wage income and price index 

in their real wealth growth process. It seems that excluding a true riskless asset 

(portfolio) and working directly with optimal wealth instead of optimal proportions  

also lead to incorrect numerical simulation results in Battocchio and Menoncin 

(2004).  

To summarize, this  paper derives a close form solution of the optimal asset 

allocation problem for DC pension plan members with exponential terminal utility 

that is a function of wealth-to-wage ratio, when a wage replicating portfolio exists; the 

optimal portfolio composition is horizon dependent while investments in cash, bonds 

and stocks have constant optimal wealth-to-wage ratio. 
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