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Abstract

This paper uses survivor fan charts to illustrate the prospective density functions of future male survival rates. The fan charts are based on a
version of the Cairns–Blake–Dowd model of male mortality that provides a good fit to recent mortality data for England and Wales. They indicate
that although none of us can escape the Grim Reaper, survivorship uncertainty is greatest for males aged a little over 90, confirming that there
exists a ‘toxic tail’ for those institutions, such as annuity and pension providers, which are obliged to make payments to them for as long as they
live. We also find that taking account of uncertainty in the parameters of the underlying mortality model leads to major increases in estimates of
the widths of the fan charts.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

There is an ongoing debate about whether human longevity
will continue to improve in the future as it has done in the
recent past. In the ‘optimists’ camp are demographers such
as Vaupel et al. (1998), Tuljapurkar et al. (2000), Oeppen
and Vaupel (2002), and Tuljapurkar (2005), who argue that
there is no natural upper limit to the length of human
life. In the ‘pessimists’ camp are demographers, such as
Olshansky et al. (1990, 2001, 2005), Mizuno et al. (2004), and
Loladze (2002), who argue that future life expectancy might
level off or even decline due to lifestyle and environmental
factors, such as obesity and the decreased food-derived health
benefits associated with higher levels of atmospheric CO2.
Other demographers, like de Grey (2006), are critical of the
extrapolative forecasting approach adopted by the optimists, but
still accept the possibility that scientific advances and the socio-
political responses to them might lead to substantial increases
in life expectancy over the next century.

This controversy has major financial and economic
implications. As people live longer, there is an increasing
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burden on those committed to caring for them. For example,
pension and annuity providers are obliged to make payments
to their policyholders for as long as they live. Until relatively
recently, financial planners had assumed that aggregate
longevity was improving predictably: annuity providers
believed they could protect themselves against longevity risk
by holding a diversified annuity book and relying on the law
of large numbers to ensure that annuitants died off on average
when expected. However, this confidence in the predictability
of aggregate longevity has been severely shaken in the last few
years by the emerging pensions crisis and events such as the
failure of Equitable Life, the world’s oldest life office, in the
UK in 2000.1

The view that longevity will continue to increase is
supported by the results in Table 1. The Table shows projected
likely survival probabilities based on the Cairns–Blake–Dowd
(CBD, 2006) stochastic mortality model calibrated to English
and Welsh male mortality data between 1982 and 2002.
These survival probabilities are estimated using Monte Carlo

1 Equitable Life sold deferred annuities with guaranteed mortality rates, but
failed to predict the improvements in mortality between the date the annuities
were sold and the date they came into effect (see, e.g., Blake (2001, 2002)).
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simulation with two alternative specifications, one assuming
that the parameters of the model are estimated with certainty,
and the other allowing for possible parameter uncertainty.2

In the case of certain parameters, Table 1 shows that a man
aged 65 in 2002 has a 43.6% probability of reaching 85 and
a 24.3% probability of reaching 90. In the case of parameter
uncertainty, the corresponding probabilities are a little higher,
at 44.2% and 25.3%, respectively. The Table also shows some
conditional survival probabilities: for example, the probability
of an individual who reaches 85 surviving to 90 is 55.8%
with no parameter uncertainty and 57.1% with parameter
uncertainty. The general picture is therefore one of continuing
strong survivorship, with high probabilities of surviving into
and beyond the 80s, and with the effect of parameter uncertainty
being to increase likely survival probabilities due to the
influence of the positive drift term in the equations generating
the parameters.3, 4

2. The uncertainty of future survivorship

These projections of likely future survival probabilities,
while interesting, reveal nothing about the uncertainty attached
to future survivorship. One way to represent such uncertainty
is through fan charts. These are charts of projected probability
densities over each year in a specified forecast period and show
the likely confidence interval to which a dynamic quantity may
belong in a particular future year. Survivor fan charts provide
an excellent framework for illustrating not only the most likely
future outcomes, but also the degree of quantitative uncertainty
surrounding future survival rates. The best-known fan charts are
the Bank of England’s inflation fan charts, which have been
used with considerable success by the Bank in its efforts to
promote public debate on UK monetary policy.5

Fig. 1 shows survivor fan charts for men who were 55 years
old in 2002, calibrated to the CBD model. The fan chart on the
left-hand half of the Figure assumes parameters to be known,
while that on the right-hand side makes allowance for them to
be uncertain. For each fan chart, the highest and lowest bounds
show the central 90% prediction interval over the forecast
horizon,6 the next highest and next lowest mark the bounds
of the central 80% prediction intervals, and so on, while the
innermost bounds show the central 10% prediction interval.
The shading also becomes stronger as the prediction intervals
narrow. We can therefore interpret the degree of shading as

2 The model and how parameter uncertainty is taken into account is explained
in the Appendix. Cairns (2000) has more on parameter uncertainty in general,
and Olivieri (2001) provides a good discussion the impact of parameter
uncertainty on mortality-linked products such as life annuities.

3 See Eq. (A.2) in the Appendix.
4 Similar findings have been reported by other studies using simulations

based on alternative mortality models (see, e.g., Renshaw and Haberman (2008)
who use a version of the Lee–Carter model).

5 The first inflation fan chart was published by the Bank of England in 1996
(Bank of England, 1996), and inflation fan charts have been published in each
of the Bank’s quarterly Inflation Reports ever since. For more on the fan charts
and their implications for public policy, see King (2004).

6 This means that we can be 90% confident that future survivorship on any
given date will lie between these bounds, and 5% confident that it will lie on
either of the two tail regions.

Table 1
Projected survival probabilities

Survival to age x Probability assuming:
Parameters certain Parameters uncertain

Survival probabilities for males aged 65 in 2002

70 90.8 90.8
75 78.4 78.5
80 62.5 62.8
85 43.6 44.2
90 24.3 25.3
95 9.3 10.2
100 1.9 2.4
105 0.2 0.2
110 0.0 0.0

Survival probabilities for males aged 65 in 2002, conditional on reaching 85

90 55.8 57.1
95 21.4 23.2
100 4.4 5.4
105 0.3 0.5
110 0.0 0.0
115 0.0 0.0

Survival probabilities for males aged 65 in 2002, conditional on reaching 100

105 7.7 9.6
110 0.1 0.3
115 0.0 0.0

Notes: Projected survival probabilities reported to 1 decimal point, and
calculated as the median projection using 10 000 Monte Carlo simulation
trials with the mortality model of Cairns et al. (2006) calibrated on
GAD data over the period 1982–2002. The estimated parameters are:
µ̂ = [−0.0668961480 0.0005904540]

T, V̂ = [0.006114509 −

0.0000939164; −0.0000939164 0.00000150933], A(0) = [−10.95043
0.10582754]

T for the certain parameter case, and µ̂ = [−0.0668961480
0.0005904540]

T, V̂ = [0.006114509 − 0.0000939164; −0.0000939164
0.00000150933], A(0) = [−10.95043 0.10582754]

T for the uncertain
parameter case.

reflecting the likelihood of the outcome — the darker the
shading, the more likely the outcome.7

Both fan charts show that longevity risk – the uncertainty
of future survivorship – is very low for the first 20 years,
but increases markedly after age 75 and reaches a maximum
for ages in the early 90s. Thereafter, it falls off as the cohort
becomes extremely old and the survival rate approaches zero.
The chart also shows that allowing for parameter uncertainty
has a relatively small (positive) effect on the central projection
of the future survival rate, but has a very pronounced effect
on the width of the fan chart bounds.8 For example, at age
90, the 90% prediction interval lies between a little under 0.2
and about 0.35 if we ignore parameter uncertainty and is about
[0.15, 0.45] if we allow for it. The proportion of men who
will survive to their late 80s and early 90s is therefore highly
uncertain. For annuity providers, this represents a ‘toxic tail’

7 Details of the calculations underlying the mortality fan charts are given in
the Appendix.

8 The principal reason for this increased width is uncertainty in the
underlying trend rather than in the volatility of mortality rates. As our time
horizon increases, uncertainty in the trend dominates all other sources of risk in
influencing the width of the fan chart in panel (b).
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(a) Survivor fan chart for males aged 55: parameters certain. (b) Survivor fan chart for males aged 55: parameters uncertain.

Fig. 1. Survivor fan charts for 55-year old males. Notes: Each chart shows the central 10% prediction interval with the heaviest shading, surrounded by the
20%, 30%, . . . , 90% prediction intervals with progressively lighter shading. The bounds of the 90% prediction interval are indicated by black lines for greater
visibility. Estimated using 10 000 Monte Carlo simulation trials with the mortality model of Cairns et al. (2006) calibrated on GAD data over the period
1982–2002. The estimated parameters are: µ̂ = [−0.0668961480 0.0005904540]

T, V̂ = [0.006114509 − 0.0000939164; − 0.0000939164 0.00000150933],
A(0) = [−10.95043 0.10582754]

T for the certain parameter case, represented by the left-hand fan chart, and µ̂ = [−0.0668961480 0.0005904540]
T,

V̂ = [0.006114509 − 0.0000939164; −0.0000939164 0.00000150933], A(0) = [−10.95043 0.10582754]
T for the uncertain parameter case, represented by

the right-hand fan chart. The plotted black lines are the bounds of the central 90% prediction interval.

(a) Survivor fan chart for males aged 65: parameters certain. (b) Survivor fan chart for males aged 65: parameters uncertain.

Fig. 2. Survivor fan charts for 65-year old males. Notes: As per Fig. 1.

(a) Survivor fan chart for males aged 75: parameters certain. (b) Survivor fan chart for males aged 75: parameters uncertain.

Fig. 3. Survivor fan charts for 75-year old males. Notes: As per Fig. 1.

that can have lethal implications for the annuity provider’s
financial health.9 Figs. 2 and 3 give the comparable fan charts
for the cohorts of men aged 65 and 75 respectively in 2002.

9 The credit for inventing this colourful phrase goes to Tom Boardman of
the (UK) Prudential. He used it in his April 2006 address to Longevity Two:
The Second International Conference on Longevity Risk and Capital Market
Solutions Conference in Chicago, but did not include it in his paper published
in the conference proceedings (Boardman, 2006).

These show the same features as the earlier fan charts, but
also reveal that future survival rates for older cohorts are
more uncertain than those for younger cohorts, other things
being equal. They also confirm that allowing for parameter
uncertainty has a very major impact in widening the dispersion
of estimated fan charts. As a rough rule of thumb, allowing
for uncertain parameters nearly doubles the dispersion of each
of our fan charts over the age ranges where there is serious
uncertainty about future survival rates. Failing to allow for
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parameter uncertainty, therefore, leads to fan chart forecasts
that are far too narrow and grossly underestimate longevity
risk.10

3. Economic and financial implications

To further illustrate the economic and financial implications
of this analysis, Table 2 shows the fair prices of current
and future annuities under the (more realistic) parameter
uncertainty version of the CBD model.11 The price of a life
annuity at different future dates is a good index of the cost of
increased longevity. The Table presents annuity price results
for males aged 55, 65 and 75 at future horizons of 5, 10, 15
and 20 years ahead. The upper part of the Table gives results
assuming interest rates equal to 4% both now and in the future,
and these results are very clear: expected annuity prices are set
to rise in response to increased longevity, and these rises are
positively related to both the age of the men and the length of
the horizon. The expected increases vary from 3.8% (for age
55 and T = 5) to 18.0% (for age 75 and T = 20). Thus, the
future cost of providing for increased longevity is predicted to
rise considerably.

The Table also presents the bounds of the 90% prediction
intervals for the rates of change of future annuity price relative
to their current values. These bounds are wide and again
increase with both age and horizon. They are also particularly
wide for 75 year olds which highlights the ‘toxic tail’ effect. For
instance, at a horizon of 20 years, the rate of change of annuity
prices for 75-year-old men has a 90% prediction interval equal
to [−0.2%, 32.7%]. The cost of providing for future longevity
is also clearly very uncertain.

To add another nail to the coffin, the bottom half of the Table
shows the comparable results if interest rates should fall to 3%
at the end of the horizon periods. These show that a fall in
interest rates is likely to produce additional major increases
in annuity prices. Such a fall would increase future annuity
prices by at least 10% and typically considerably more, for any
given longevity scenario. This reminds us that annuity prices
are very interest-rate sensitive, and tells us that a conjunction
of improved future longevity and lower future interest rates is
likely to be especially costly.

4. Conclusions

We have shown that fan charts provide a very useful
and intuitive means of representing quantitatively measurable
uncertainty (or ‘risk’). As such, they also have many obvious
related uses. For example, they can be used to obtain estimates

10 Of course, in interpreting the fan chart forecasts, we also need to be on
our guard against possible biases in the model: (1) the longevity forecasts
have a possible downward bias in so far as they do not take account of future
improvements due to medical science (e.g., miracle cures of major illnesses)
that we cannot predict; (2) the forecasts have a possible upward bias in that they
ignore important factors such as the impact of obesity that threaten to increase
future mortality but have not yet fed through into the mortality data on which
our model is calibrated. Readers who have strong views on these issues might
wish to take them into account in interpreting the fan charts.
11 More details of the algorithms used to generate Table 2 are provided in

Dowd et al. (2007).

of VaR or expected shortfall risk measures; they can be used for
reserving and setting capital requirements; and they can be used
for pricing, hedging and general risk management purposes.

This paper has focused on survivor fan charts, and the
message they give is very simple. The healthcare system,
pension funds, life companies and, indeed, the state itself, are
all heavily exposed to longevity risk. Their exposure to this
risk – especially their exposure to the ‘toxic tail’ of those who
survive into their 90s – therefore needs to be managed, and
those institutions that fail to heed this warning are likely to
face a very uncertain future themselves, especially if interest
rates fall further. However, the news is not all bad. Annuity
and pension providers can at least take comfort from one fact:
even though longevity is improving, it still looks as though no-
one in the foreseeable future will live to the ripe old age of
Methusalah.12
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Appendix. The mortality model used to generate the fan
charts

The survivor fan charts discussed in this paper are based on
an underlying stochastic mortality model set out by Cairns et al.
(2006). Let q(t, x) be the realized mortality rate in year t + 1
(that is, from time t to time t + 1) of a cohort aged x at time 0.
We assume that q(t, x) is governed by the following two-factor
Perks stochastic process:

q(t, x) =
exp [A1(t + 1) + A2(t + 1)(t + x)]

1 + exp [A1(t + 1) + A2(t + 1)(t + x)]
(A.1)

where A1(t + 1) and A2(t + 1) are themselves stochastic
processes that are measurable at time t+1 (see Perks (1932) and
Benjamin and Pollard (1993)). Now let A(t) = (A1(t), A2(t))′

and assume that A(t) is a random walk with drift:

A(t + 1) = A(t) + µ + C Z(t + 1) (A.2)

where µ is a constant 2×1 vector of (positive) drift parameters,
C is a constant 2 × 2 lower triangular Choleski square root
matrix of the covariance matrix V , and Z(t) is a 2 × 1 vector
of independent standard normal variables. Cairns et al. (2006)
show that this model provides a good fit to UK Government
Actuary’s Department (GAD) data for English and Welsh males
over 1961–2002. For each set of parameter values, we simulated
10 000 paths of A1(t + 1) and A2(t + 1), and then used these in
(A.1) to obtain 10 000 simulated paths of q(t, x) over a chosen
horizon.

Now let S(t, x) be the survival rate at time t of a cohort aged
x in year 0. For any given x , S(0, x) = 1 and S(t, x) should

12 Book of Genesis 5:27: ‘And all the days of Methuselah were nine hundred
and sixty and nine years: and he died.’
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Table 2
Projected future annuity prices

Age Current fair annuity price Horizon (years)
T = 5 T = 10 T = 15 T = 20

(a) Results assuming all interest rates = 4% both now and at future time T

% Change in expected future annuity price at time T relative to current annuity price
55 17.2 3.8 5.7 7.4 8.9
65 12.9 5.6 8.4 11.0 13.3
75 8.3 7.5 11.2 14.7 18.0

Central 90% prediction interval for % rate of change in projected future annuity price relative
to current annuity price

55 [1.12, 6.3] [2.0, 8.8] [2.8, 11.1] [3.5, 13.3]

65 [5.6, 9.9] [1.6, 14.0] [2.3, 17.8] [3.3, 21.4]

75 [−1.5, 15.3] [−1.2, 21.2] [−1.0, 26.9] [−0.2, 32.7]

(b) Results assuming all current interest rates = 4% and all interest rates at time T = 3%

% Change in expected future annuity price at time T relative to current annuity price
55 17.2 18.3 20.6 22.8 24.8
65 12.9 16.5 19.9 23.0 25.9
75 8.3 15.2 19.4 23.3 27.1

Central 90% prediction interval for % rate of change in projected future annuity price relative
to current annuity price

55 [14.8, 21.5] [15.7, 24.9] [16.7, 27.9] [17.6, 30.8]

65 [10.6, 21.8] [11.6, 26.9] [12.4, 31.4] [13.6, 35.9]

75 [5.0, 24.0] [5.3, 30.8] [5.4, 37.3] [6.2, 43.9]

As per the Notes in Table 1 pertaining to the parameter uncertain model. All annuity prices are calculated as the net present value of the expected survivor payments
predicated on a 10% loading factor.

diminish as t gets bigger and eventually go to 0 as t gets very
large. Given any path of q(t, x) as obtained above, we then
obtain a corresponding path of S(t, x) from the relationship
between mortality and survival rates, i.e., from

S(t + 1, x) = (1 − q(t, x))S(t, x). (A.3)

For each given t and x , the quantiles of S(t, x) were obtained
from the relevant order statistics of our ‘sample’ of S(t, x)

values, and these quantiles give us the bounds of the fan chart
intervals.
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