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Abstract 

In this paper I extend the work of Bernhardt and Donnelly (2019) dealing with modern explicit tontines, as a way of providing income under 
a specified bequest motive, from a defined contribution pension pot. A key feature of the present paper is that it relaxes the assumption of 
fixed proportions invested in tontine and bequest accounts. In making the bequest proportion an additional control function I obtain, 
hitherto unavailable, closed-form solutions for the fractional consumption rate, wealth, bequest amount, and bequest proportion under a 
constant relative risk averse utility. I show that the optimal bequest proportion is the product of the optimum fractional consumption rate 
and an exponentiated bequest parameter. Typical scenarios are explored using UK Office of National Statistics life tables, showing the 
behaviour of these characteristics under varying degrees of constant relative risk aversion.  

1. Explicit Modern Tontines 

In a recent paper, Bernhardt and Donnelly (2019) model an explicit modern and ideal tontine with a 
bequest motive. It is ideal in that it assumes that there are an infinite number of members of the 
tontine. It is explicit in the sense that a member receives in the interval (𝑡, 𝑡 + 𝑑𝑡) a longevity credit 
of 𝜆(𝑡)𝑋(𝑡)𝑑𝑡 where 𝜆(𝑡) is the mortality rate and  𝑋(𝑡) is the size of the pension pot at age 𝑡. The 
longevity credit arises through the death of other members of the group in that time interval. When 
the individual dies his/her pension pot is distributed to other members of the tontine in such a way 
that the scheme is actuarially fair. A distinctive feature of the Bernhardt and Donnelly paper is that it 
includes a bequest motive. Thus a proportion 1 − 𝛼 of the current pension pot is assigned to a 
bequest account that does not attract longevity credits, while the remaining proportion 𝛼 is assigned 
to the tontine account. On the death of the member, the tontine account is shared out amongst 
members of the tontine. In contrast, the bequest account passes to the estate of the member. With 
such a bequest motive, the longevity credit becomes 𝛼𝜆(𝑡)𝑋(𝑡)𝑑𝑡. The problem is to determine an 
optimum fractional consumption rate, 𝑐(𝑡), expressed as a proportion of the pension pot value 
(wealth), 𝑋(𝑡). At all times the amounts in the tontine and bequest accounts are respectively  𝛼𝑋(𝑡) 
and (1 − 𝛼)𝑋(𝑡). A proportion 1-𝑤(𝑡) of the pension pot is invested in a riskless asset which grows 
at rate 𝑟 and the remaining proportion 1 − 𝑤(𝑡) is invested in a risky asset whose return in (𝑡, 𝑡 +
𝑑𝑡) is (𝜇 − 0.5𝜎4)𝑑𝑡 + 𝜎𝑑𝑊(𝑡) where 𝜇 > 𝑟 and {𝑊(𝑡)} is the Wiener process. Because of the 
risky asset, transfers between the tontine and bequest accounts must be made continuously to 
maintain the proportion	𝛼.  

The individual chooses {𝑐(𝑡)} in such a way as to maximize the expected utility over a 
lifetime. Specifically, the utility gained through consumption (withdrawal) in (𝑡, 𝑡 + 𝑑𝑡) is 
𝑈[𝑐(𝑡)𝑋(𝑡))]𝑑𝑡 while the contribution to the individual’s utility through death at age 𝜏 say, is 
𝑏𝑈[(1 − 𝛼)𝑋(𝜏)] where 𝑏 > 0 is a parameter that expresses the strength of the bequest motive. 
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Following the approaches of Merton (1970), Richard (1975), and others, the utility function chosen is 
from the constant relative risk aversion family with a power utility function 

𝑈(𝑥) = AB

C
																				                                                              (1) 

for 𝛾 < 1|≠ 0 . This has a constant relative risk aversion of 1 − 𝛾 . 

 

2. Derivation of Optimal Consumption 

With this background and with a time preference rate of 𝜌 applied to utilities accruing at future 
times, I define a value function, similar to that in Bernhardt and Donnelly (2019), namely 

𝑉(𝑡, 𝑥) =
max

{M(N),O(N),P(N):NRS}
𝔼U∫ exp	[−∫ [𝜆(𝑢) + 𝜌]𝑑𝑢]N

S
Z
S {𝑈[𝑐(𝑠)𝑋(𝑠)] + 𝑏𝜆(𝑠)𝑈[(1 − 𝛼)𝑋(𝑠)]}𝑑𝑠\𝑋(𝑡) = 𝑥]  

         (2) 

where the pension pot value (wealth function) follows 

^_(S)
_(S)

= U𝑟 + (𝜇 − 𝑟)𝑤(𝑡) + 𝛼(𝑡)𝜆(𝑡) − 𝑐(𝑡)]𝑑𝑡 + 𝜎𝑤(𝑡)𝑑𝑊(𝑡)                             (3) 

and where {𝑊(𝑡)}  is the Wiener process. The control functions are constrained so that 𝑤(𝑠) ≥
0, 1 ≥ 𝛼(𝑠) ≥ 0, 𝑐(𝑠) ≥ 0 for all 𝑠 ≥ 𝑡. The proportion of funds invested in the risky asset might 
exceed 1. I allow for this possibility by assuming, for theoretical expediency, that borrowing is 
possible at the risk-free rate	𝑟. Replacing the utility (1) by 𝑈(𝑥) = (𝑥C − 1)/𝛾 in (2) will yield the 

same optimal control values. Since lim
C→e

ABfg
C

= ln 𝑥, we identify this as the utility function for this 

limiting case.  

A significant departure from the approach of Bernhardt and Donnelly (2019) is that I replace 
their constant 𝛼 by an age dependent control function 𝛼(𝑡). There are two reasons for this. Firstly, 
choosing 𝛼 dynamically will lead to a higher expected utility. Secondly, we shall see that under the 
reasonable assumption that 

𝑏
i

ijB k𝑟 + lfm
gfC

− C
4
nofm

p
q
4
n g
gfC

q
4
r < 1                                                                            (4) 

 this leads to a closed-form solution for 𝑐(𝑡) and 𝑋(𝑡), whereas the constant  𝛼 case does not.1 

Following Bernhardt and Donnelly (2019), the optimum strategy is obtained using a dynamic 
programming Hamilton-Jacobi-Bellman approach, by solving  

[𝜆(𝑡) + 𝜌]𝑉(𝑡, 𝑥) = max
M,P,O

s(PA)
B

C
+ 𝑏𝜆(𝑡) [(gfO)A]

B

C
+ tu(S,A)

tS
+ 𝑥 tu(S,A)

tA
[𝑟 + 𝑤(𝜇 − 𝑟) + 𝛼𝜆(𝑡) − 𝑐] +

g
4
𝑥4𝜎4𝑤4 tvu(S,A)

tAv
w 2                                                                        

 
1 For the logarithmic utility but not for the general power utility, for the case where 𝛼 is fixed rather than dynamically controlled, 
Bernhardt and Donnelly (2019) obtain a closed-form solution for 𝑐(𝑡) but not for 𝑋(𝑡). 
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(5) 

where I have now augmented the optimization to include the control 𝛼.  

Taking the first and second derivatives of the expression in braces with respect to 𝑐 gives a 
maximum at 

(𝑐∗𝑥)Cfg𝑥 − 𝑥 tu
tA
= 0                                                                                                           (6) 

which, with the hope that 𝑐∗ is independent of 𝑥, is suggestive of a trial solution of the form 

𝑉(𝑡, 𝑥) = P∗BjiAB

C
.                                                                                                                 (7) 

The first order condition on 𝑤 gives 

𝑥 tu
tA
(𝜇 − 𝑟) + 𝑤𝑥4𝜎4 t

vu
tAv

= 0.                                                                                        (8) 

From (7),  t
vu
tAv

< 0 , which implies that the stationary point is a maximum, and that consequently  

𝑤∗(𝑡)(𝜇 − 𝑟) = n g
gfC

q nofm
p
q
4

.                                                                                         (9) 

Note that 𝑤∗(𝑡) is independent of 𝑡 and so henceforth is expressed as 𝑤∗. Further, when 𝛾 > 1 −
ofm
pv

 , then 𝑤∗ > 1. In that case, borrowing to allow over investment in the risky asset raises the 

probability of running down the pension pot to near zero at an early age, alongside a small 
probability of large wealth at an advanced age. These aspects are consistent with a low relative risk 
aversion, 1-𝛾. Finally, the first order condition on 𝛼 is  

−𝑏𝜆(𝑡)𝑥[(1 − 𝛼)𝑥]Cfg + 𝜆(𝑡)𝑥 tu(S,A)
tA

= 0                                                               (10) 

And, differentiating again, it is seen that this is a maximum. Using (7) this gives 

1 − 𝛼∗(𝑡) = min z𝑐∗(𝑡)𝑏
i

ijB, 1{ .                                                                                  (11) 

Let us assume that 𝑏 is of a magnitude such that 𝑐∗(𝑡)𝑏
i

ijB < 1 for all 𝑡. Substituting (7), (9), 
and (11) into (5)  

[𝜆(𝑡) + 𝜌]𝑉(𝑡, 𝑥) = 𝑐∗(𝑡)𝑉(𝑡, 𝑥) + 𝜆(𝑡)𝑐∗(𝑡)𝑉(𝑡, 𝑥)𝑏
i

ijB + 𝑉(𝑡, 𝑥)(𝛾 − 1) i

P∗(S)
^P∗(S)
^S

+

𝛾𝑉(𝑡, 𝑥)[𝑟 + 𝑤∗(𝜇 − 𝑟) + 𝛼(𝑡)𝜆(𝑡) − 𝑐∗(𝑡)] + u(S,A)
4

𝛾(𝛾 − 1)𝜎4𝑤∗4, 

(12) 

that is 

 
2 Bernhardt and Donnelly (2019) suggest a value function 𝑉(𝑡, 𝑥) = ℎ(𝑡)𝑥C and 𝑐(𝑡) = (𝛾ℎ(𝑡))

i
ijB but there appears to be an error in that 

these do not satisfy their Chini equation labelled equation (9) in their paper. However, if 𝑐(𝑡) = (𝛾ℎ(𝑡))
i

Bji that does lead to their 
equation (9).  
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i

P∗(S)
^P∗

^S
= 𝑐∗(𝑡) z1 + 𝑏

i
ijB𝜆(𝑡){ − 𝑘(𝑡)                                                                        (13) 

where 

𝑘(𝑡) = 𝑟 + 𝜆(𝑡) + lfm
gfC

− C
4
nofm

p
q
4
n g
gfC

q
4
.                                                                 (14) 

Equation (13) is a Bernoulli differential equation with solution 

𝑐∗(𝑏, 𝛾, 𝑡) = g
~(�,C,S)

                                                                                                          (15) 

where 

𝑚(𝑏, 𝛾, 𝑡) = ∫ [1 + 𝑏
i

ijBZ
S 𝜆(𝑢)]𝑒f[�(�)f�(S)]𝑑𝑢                                                        (16) 

and where 𝐾(𝑡) = ∫ 𝑘(𝑦)𝑑𝑦S
e . Now define 

𝛽 = 𝑘(𝑡) − 𝜆(𝑡) = 𝑟 + lfm
gfC

− C
4
nofm

p
q
4
n g
gfC

q
4
.                                                          (17) 

Given that 𝜆(𝑡) is increasing in 𝑡, 

𝑚(𝑏, 𝛾, 𝑡) = �[1 + 𝑏
i

ijB

Z

S

𝑘(𝑢)]𝑒f[�(�)f�(S)]𝑑𝑢 − 𝑏
i

ijB	𝛽 � 𝑒f[�(�)f�(S)]
Z

S

𝑑𝑢

= 𝑏
i

ijB + z1 − 𝑏
i

ijB	𝛽{� 𝑒f[�(�)f�(S)]
Z

S

𝑑𝑢 = 𝑏
i

ijB + z1 − 𝑏
i

ijB𝛽	{𝑚(0, 𝛾, 𝑡). 

(18) 

Therefore 

𝑐∗(𝑏, 𝛾, 𝑡) = g

�
i

ijB��gf�
i

ijB��~(e,C,S)
 .                                                                             (19) 

Now  

𝑐∗(𝑏, 𝛾, 𝑡)𝑏
i

ijB = �
i

ijB

�
i

ijB��gf�
i

ijB�	�~(e,C,S)
                                                                       (20) 

and so assuming that 1 − 𝑏
i

ijB𝛽 > 0, as in equation (4), then 𝑐∗(𝑏, 𝛾, 𝑡)𝑏
i

ijB < 1, which was the 

assumption made following result (11). The condition 1 − 𝑏
i

ijB𝛽 > 0 is not restrictive for most real-
world situations.  

Note that with a logarithmic utility function, we set 𝛾 = 0, giving 𝛽 = 𝜌 and 𝑘(𝑡) = 𝜆(𝑡) +
𝜌. Thus when 𝑏 < 𝜌fg we find that  

𝑐∗(𝑏, 0, 𝑡) = g
��[gf�l	]~(e,e,S)

= g

��[gf�l	] ∫ �j∫ [�(�)��]���
� ^��

�

                                     (21) 
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which is, perhaps surprisingly, identical to result (14) in Bernhardt and Donnelly (2019), who 
optimise for a fixed rather than dynamic 𝛼, and dynamic 𝑐(𝑏, 0, 𝑡). According to result (11), the 
dynamic proportion invested in the bequest account is simply 𝑏𝑐∗(𝑏, 0, 𝑡). 

 

3. Evolution of Wealth, Discounted Bequest Value and Discounted Monetary Consumption rate 

Returning to the general power utility, I now obtain a closed-form solution for the wealth equation 
under the combined optimal consumption, bequest proportion, and risk/riskless proportion. Using 

the fact that when		1 − 𝑏
i

ijB𝛽 > 0 we have from result (11) that  1 − 𝛼∗(𝑡) = 𝑐∗(𝑡)𝑏
i

ijB , then 

𝑑𝑋(𝑡)
𝑋(𝑡)

= �𝑟 + (𝜇 − 𝑟)𝑤∗ + z1 − 𝑐∗(𝑡)𝑏
i

ijB{ 𝜆(𝑡) − 𝑐∗(𝑡)� 𝑑𝑡 + 𝜎𝑤∗𝑑𝑊(𝑡)

= n𝑟 + (𝜇 − 𝑟)𝑤∗ + 𝜆(𝑡) − 𝑐∗(𝑡) z1 + 𝑏
i

ijB𝜆(𝑡){q 𝑑𝑡 + 𝜎𝑤∗𝑑𝑊(𝑡). 

(22) 

But from (13) 

 𝑐∗(𝑡) z1 + 𝑏
i

ijB𝜆(𝑡){ = ^ln[P∗(S)]
^S

+ 𝑘(𝑡)                                                                        (23) 

and so 

𝑑𝑋(𝑡)
𝑋(𝑡)

= �𝑟 + (𝜇 − 𝑟)𝑤∗ + 𝜆(𝑡) −
𝑑 ln[𝑐∗(𝑡)]

𝑑𝑡
− 𝑘(𝑡)� 𝑑𝑡 + 𝜎𝑤∗𝑑𝑊(𝑡)

= �𝑟 − 𝛽 + (𝜇 − 𝑟)𝑤∗ −
𝑑 ln[𝑐∗(𝑡)]

𝑑𝑡
� 𝑑𝑡 + 𝜎𝑤∗𝑑𝑊(𝑡) 

(24) 

where 𝑐∗(𝑡) = 𝑐∗(𝑏, 𝛾, 𝑡). 

Solving this subject to an initial condition that 𝑋(𝑠) = 𝑥N we obtain for 𝑡 > 𝑠 

𝑋(𝑡) = A�P∗(N)�
n�j��(�j�)�∗j�.� v�∗vq(�j�)� �∗¡(�j�)

P∗(S)
                                                        (25) 

and 

𝔼U𝑋(𝑡)] = A�P∗(N)�(�j��(�j�)�
∗)(�j�)

P∗(S)
.                                                                                 (26) 

The stochastic bequest amount, discounted by the time preference rate, and expressed as a 
proportion of the initial wealth, is given by 

𝐵𝑆(𝑏, 𝛾, 𝑡) = �j�(�j�)[gfO∗(S)]_(S)
A�

= 𝑏
i

ijB𝑐∗(𝑠)𝑒(mf�fl�(ofm)M∗)(SfN)𝑒pM∗¤(SfN)fe.¥pvM∗v(SfN)       (27) 

while the corresponding stochastic monetary consumption rate is 
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𝐼𝑆(𝑏, 𝛾, 𝑡) = �j�(�j�)P∗(�,C,S)_(S)
A�

= 𝑐∗(𝑠)𝑒(mf�fl�(ofm)M∗)(SfN)𝑒pM∗¤(SfN)fe.¥pvM∗v(SfN).                (28) 

Thus, the bequest amount on death is a fixed multiple, 𝑏
i

ijB , of the monetary consumption 
rate at all ages. So, an investor who is not sure how to set 𝑏 can simply be asked what multiple of 
yearly income he/she would like to bequeath. The expected (discounted) bequest and monetary 
consumption rates are   

𝐵(𝑏, 𝛾, 𝑡) = �j�(�j�)[gfO∗(S)]𝔼U_(S)]
A�

= 𝑏
i

ijB𝑐∗(𝑠)𝑒(mf�fl�(ofm)M∗)(SfN)                                        (29) 

and  

𝐼(𝑏, 𝛾, 𝑡) = �j�(�j�)P∗(�,C,S)𝔼U_(S)]
A�

= 𝑐∗(𝑠)𝑒(mf�fl�(ofm)M∗)(SfN).                                                  (30) 

If an investor wishes to aim for a level expectation of discounted income and bequest amounts, we 
see that both are simultaneously achievable when  

𝑟 − 𝛽 − 𝜌 + (𝜇 − 𝑟)𝑤∗ = 0.                                                                                          (31) 

 

4. Numerical Results 

We use UK Office of National Statistics life tables3 to calculate 𝑐∗(𝑏, 𝛾, 𝑡), 𝐵(𝑏, 𝛾, 𝑡),	and 1 −
𝛼∗(𝑏, 𝛾, 𝑡) for a male (appendix 1) and female (appendix 2) who start decumulating their pension pot 
at age 𝑠 = 65 years. We take	𝜌 = 𝑟 = 0.02, 𝜇 = 0.05, and 𝜎 = 0.2, all per year. We examine 
bequest motives in the range 𝑏 ∈ [0,7] and constant relative risk aversions in the range	1 − 𝛾 ∈
(0,∞). With these values the proportion of current wealth invested in the risky asset is 𝑤∗ =
�.��j�.�v
�.vv(ijB)) and so this does exceed 1 when	𝛾 > 0.25. The narrative below is made with respect to 

appendix 1 only, as the broad pattern is repeated for females in appendix 2. 

Figure 1.1: Male, 𝜸 = 𝟎. 𝟖 

The conspicuous feature here is the potential for huge bequest amounts, albeit with infinitesimally 
small probabilities, for those living beyond age 95, for every non-zero 𝑏. This is possible by 
borrowing for over-investment in the risky asset, and crucially, by having in the early years, very low 
consumption proportions coupled with small proportions in the bequest account. This is so the 
pension pot benefits from large longevity credits in the early years. It is only in the later years, 
assuming survival, that proportions in the bequest amount are raised significantly. To do otherwise 
would result in large amounts in the pension pot on death at an advanced age, but most of it going 
into longevity credits to other members of the tontine.  

Figure 1.2: Male, 𝜸 = 𝟎. 𝟓 

There is still over-investment in the risky asset, that is 𝑤∗ = 1.5, with impressive expected bequest 
amounts at all ages. In this case the value of 𝑏 differentiates the expected bequest amounts more so 

 
3https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetabl
esunitedkingdomreferencetables/current/nltuk1315reg.xls 
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than in figure 1.1. Compared with figure 1.1, note the increased consumption proportions and 
higher proportions in the bequest account, even in the early years.  

Figure 1.3: Male, 𝜸 = 𝟎. 𝟐𝟓  

This is still a relatively low level of risk aversion as evidenced by the fact that the pension pot is fully 
invested in the risky asset (𝑤∗ = 1). The withdrawal proportions are not that different from those in 
the case of figure 1.2, while there is the prospect of moderate and increasing bequest amounts at all 
ages. 

Figure 1.4: Male, 𝜸 = 𝟎. 𝟎𝟎𝟎𝟏, the log utility 

There is still a large proportion invested in the risky asset (𝑤∗ = 0.75) which some may think is still 
indicative of low risk aversion. Compared with figure 1.3 there is generally little difference in the 
consumption proportions, particularly after the early years, and, as expected with somewhat higher 
risk aversion, smaller proportions are invested in the bequest account at all ages and for all bequest 
motives. A notable feature is that the expected bequest amount, although increasing with age, is 
remarkably stable.  

Figure 1.5: Male, 𝜸 = 𝟐𝟑j𝟑√𝟕𝟑
𝟑𝟐 = −𝟎. 𝟎𝟖𝟐𝟐𝟓  

This is the solution that simultaneously gives a level expectation of discounted monetary 
consumption rate and discounted bequest amount, as determined by result (31). These are 

respectively multiples  𝑐∗(65) and   𝑏
i

i.�´vv�𝑐∗(65) of the pension pot value at age 65. 

b 0 0.5 1 2 3 4 5 6 7 
Monetary consumption rate p.a. (%) 6.71 6.55 6.41 6.19 5.95 5.75 5.57 5.40 5.24 
Bequest amount (%) 0 3.45 6.42 11.7 16.4 20.7 24.7 28.3 31.7 
 

Given a life expectancy at age 65 of approximately 19 years, it can be seen that this appears to be a 
fair trade-off between bequest and consumption. Indeed, one might almost suggest that delivering 
level discounted outcomes is the most neutral of all relative risk-averse strategies. 

Figure 1.6: Male, 𝜸 = −𝟎. 𝟓   

In this case one half of the pension pot is invested in the risky asset. With increased risk aversion, 
expected bequest amounts are smaller than in previous cases. For the first time, the expectations of 
bequest and monetary consumption rate, both discounted, are decreasing with age. Naturally, the 
initial monetary consumption rate at age 65 is larger than for the previous cases, which were less 
risk-averse. 

Figure 1.7: Male 𝜸 = −𝟐 

Increased risk aversion is responsible for the lower (𝑤∗ = 0.25) investment in the risky asset and 
lower bequest amounts. This is accompanied by larger monetary consumption rates at age 65 than 
in previous scenarios, particularly with higher bequest motives. Thus 𝑐(7, −2,65) = 0.0627, 
𝑐(0, −2,65) = 0.0659, compared with say  𝑐(7,0,65) = 0.0502, 𝑐(0,0,65) = 0.0651. Monetary 
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consumption rates at age 65 depend less upon the strength of the bequest motive when compared 
with say figure 1.2, a low risk aversion scenario.  

Figure 1.8: Male 𝜸 = −𝟔. 𝟓 

This represents very high risk aversion, leading to 10% invested in the risky asset. Bequest amounts 
are small with an emphasis on securing income in the early years at the cost of reductions for long 
survivors. 

Figure 1.9: Male 𝜸 = −∞ 

With extreme risk aversion, everything is invested in the riskless asset. At age 65 the monetary 
consumption rate is the same regardless of the strength of a positive bequest motive, while at large 
ages it is significantly larger when there is no bequest motive. 

Figures 2.1-2.9: Corresponding results for UK females 

Figure 3.1 Distribution of discounted wealth at age 95 for female initiating withdrawal at age 65 
with 𝒃 = 𝟑, 𝜸 = 𝟎. 𝟑, 𝝁 = 𝟎. 𝟎𝟓, 𝒓 = 𝝆 = 𝟎. 𝟎𝟐, 𝝈 = 𝟎. 𝟐. 

With a low constant relative risk aversion of 0.7, 𝑤∗ = i�
i¼ indicating over-investment in the risky 

asset. Consequently, the distribution is highly skewed with a high probability of running the pension 
pot to near zero value, even though the expected value at age 95 is 62% of its value at age 65. 

Figure 3.2 Distribution of discounted wealth at age 95 for female initiating withdrawal at age 65 
with 𝒃 = 𝟑, 𝜸 = −𝟐, 𝝁 = 𝟎. 𝟎𝟓, 𝒓 = 𝝆 = 𝟎. 𝟎𝟐, 𝝈 = 𝟎. 𝟐. 

Here, the risk aversion is much higher at 3. The result is a lower expected value of 16% of initial 
value, but with a more symmetric distribution, giving in practice some assurance of a small bequest 

5. The problem of pure decumulation with a bequest motive 

It is relevant to consider the problem of pure decumulation (i.e. no tontine) of a pension pot under a 
bequest motive, by forcing 𝛼(𝑡) to be zero. In that case 

𝑉(𝑡, 𝑥) = max
{M(N),P(N):N½S}

𝔼U∫ exp	[−∫ [𝜆(𝑢) + 𝜌]𝑑𝑢]N
S

Z
S {𝑈[𝑐(𝑠)𝑋(𝑠)] + 𝑏𝜆(𝑠)𝑈[𝑋(𝑠)]}𝑑𝑠\𝑋(𝑡) = 𝑥]       

(32) 

subject to 

^_(S)
_(S)

= U𝑟 + (𝜇 − 𝑟)𝑤(𝑡) − 𝑐(𝑡)]𝑑𝑡 + 𝜎𝑤(𝑡)𝑑𝑊(𝑡) .                                             (33) 

The Hamilton-Jacobi-Bellman approach gives 

[𝜆(𝑡) + 𝜌]𝑉(𝑡, 𝑥)

= max
M,P

¾
(𝑐𝑥)C

𝛾
+ 𝑏𝜆(𝑡)

𝑥C

𝛾
+
𝜕𝑉(𝑡, 𝑥)
𝜕𝑡

+ 𝑥
𝜕𝑉(𝑡, 𝑥)
𝜕𝑥

[𝑟 + 𝑤(𝜇 − 𝑟) − 𝑐]

+
1
2
𝑥4𝜎4𝑤4 𝜕

4𝑉(𝑡, 𝑥)
𝜕𝑥4

À . 



9 
 

 

    (34) 

The first and second order conditions on 𝑐 and 𝑤 are as before, as is the expression for 𝑉(𝑥, 𝑡). 
Substituting these into (33) 

i

P∗(S)
^P∗

^S
= 𝑐∗(𝑡) + �Á(S)P∗(S)ijB

gfC
− 𝜓(𝑡)                                                                         (35) 

where  

𝜓(𝑡) = 𝑘(𝑡) + CÁ(S)
gfC

.                                                                                                        (36) 

Equation (35) is a Bernoulli differential equation only when 𝛾 = 0 or 𝑏 = 0, so closed-form 
solutions are possible only in these cases. Stamos (2008) considers decumulation of pooled annuity 
funds with no bequest motive and has derived, for the degenerate case of only one member in the 
pool, an identical result to (35-36) for 𝑏 = 0, his equation (32). Similarly, he has derived a closed-
form solution, again for 𝑏 = 0, his equation (34), for the special case of a pool of infinite size, which 
is the same as my tontine solution, 𝑐∗(0, 𝛾, 𝑡), shown in (15). When 𝛾 = 0, equations (35-36) do 
admit the closed-form solution (21) even when 𝑏 ≠ 0. It is exactly the same as the tontine solution, 
that is results (13) and (14) with 𝜓(𝑡) = 𝜆(𝑡) + 𝜌. Therefore, we conclude that for a logarithmic 
utility with bequest motive, the optimal fractional consumption for pure decumulation and tontine 
are the same. Further, subtracting 𝛾fg from the utility function and taking the limit as 𝛾 → 0 gives 

the expected lifetime utility as  𝑉(𝑡, 𝑥) = ÃÄA
P∗(�,e,S)

 . 

6. Summary and Conclusions 

In this paper I have obtained closed-form solutions for the optimal fractional consumption rate, 
bequest-proportion, wealth, and risky/riskless investment ratio for a modern, ideal, explicit tontine 
with bequest motive, under a constant relative risk aversion utility function. It is shown that the first 
two are functions of the individual’s age, independently of the wealth. The optimal bequest-
proportion is a product of the optimal fractional consumption rate and an exponentiated bequest 
parameter. The derived expressions are simple enough to be computed directly within a life table 
spreadsheet, making the computations accessible to non-specialists. Some numerical results are 
given for the UK situation using the Office of National Statistics life tables, separately for males and 
females. 

How should an investor decide upon appropriate values for 1-𝛾 (risk aversion) and 𝑏 (strength of 
bequest motive)? The former could be set using 1 − 𝛾 = ofm

M∗pv
 , where 𝑤∗ is the desired proportion 

in the risky asset. Alternatively, if the objective is to achieve level expected discounted monetary 
consumption rates and bequest amounts, then one would resort to result (31) as in figures 1.5 and 
2.5. For parameter values likely to be found in real world situations, condition (4) will be satisfied, 
and in this case the model leads to a natural interpretation and setting of the bequest parameter 
through 

𝑏 = 	 n ��Å��NS	Æ~Ç�ÈS
~ÇÈ�SÆmÉ	PÇÈN�~ÊSËÇÈ	mÆS�

q
mËNÌ	ÆÍ�mNËÇÈ

. 
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It is also of interest to note that a related problem of how to decumulate a pension pot (no 
tontine) under a bequest motive, is solvable by suppressing the optimization with respect to the 
bequest proportion, in favour of forcing it to be 1. In this case, closed-form solutions for the 
fractional consumption rate and wealth are now available for the following: all bequest motives with 
a logarithmic utility function; all constant relative risk aversion utilities where there is no bequest 
motive. With a logarithmic utility, the optimal fractional consumption rate is identical to that 
obtained for the corresponding tontine. 

Bernhardt and Donnelly’s (2019) paper breaks new ground in the theory of tontines. It is of 
practical importance given a growing interest in alternatives to both annuities and pure 
decumulation of pension pots. Their paper does not allow for the more realistic dynamic 
optimization of the bequest proportion; perhaps it was thought this would unduly complicate the 
model and make it less amenable to practical application. In this paper, I have shown that the 
opposite is in fact the case and that the solution is simplified. 
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Appendix 1:  Numerical results for Males using UK ONS life tables 
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Figure 1.1: Male, 𝛾 = 0.8 
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Figure 1.2: Male, 𝛾 = 0.5 
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Figure 1.3: Male, 𝛾 = 0.25 
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Figure 1.4: Male, 𝛾 = 0.0001 
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Figure 1.5: Male, 𝛾 = −0.08225 
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Figure 1.6: Male, 𝛾 = −0.5 
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Figure 1.7: Male, 𝛾 = −2 
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Figure 1.8: Male, 𝛾 = −6.5 
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Figure 1.9: Male, 𝛾 = −∞ 
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Appendix 2: Numerical Results for Females using UK ONS life tables 

  



22 
 

 

Figure 2.1: Female, 𝛾 = 0.8 
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Figure 2.2: Female, 𝛾 = 0.5 
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Figure 2.3: Female, 𝛾 = 0.25 
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Figure 2.4: Female, 𝛾 = 0.0001 
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Figure 2.5: Female, 𝛾 − 0.08225 
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Figure 2.6: Female, 𝛾 − 0.5 
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Figure 2.7: Female, 𝛾 = −2 
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Figure 2.8: Female, 𝛾 = −6.5 
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Figure 2.9: Female, 𝛾 = −∞ 
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Appendix 3: Examples of the Distribution of Discounted Wealth at age 95 for Females 

 

The expected value of discounted pension pot at age 95 is 0.6205, median =0.31. 

 

  

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5

Probability

discounted asset value /initial asset value

Figure 3.1. Distribution of discounted wealth at age 95 for female 
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.  

The expected value of discounted pension pot at age 95 is 0.1602, median =0.155. 
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