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Abstract

This paper shows that the three principal types of funded pension scheme (defined benefit, defined contribution and targeted
money purchase) are related through a set of options on the underlying financial assets held in the fund. The value of these
options depends on both contribution inflows and the financial asset allocation chosen by the fund manager. The option values
can therefore be used to assess both the appropriateness of the funding level and the effectiveness of the asset allocation in
achieving the objectives of asset-liability management. In particular, they can be used to determine the probability of scheme
insolvency. ©1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

A funded pension scheme is composed of a pension fund plus a pension annuity. What differentiates one type
of pension scheme from another is the set of rules governing the calculation of benefits when the scheme member
retires. The simplest type of scheme is the defined contribution ( DC) scheme: this uses the full value of the fund’s
assets to determine the amount of pension which, depending on the success of the fund manager, might be high or
low. The defined benefit (DB) scheme, in contrast, calculates the benefit in relation to factors such as final salary,
length of pensionable service and age of member, rather than to the value of the assets in the fund. For example,
a typical UK scheme provides a pension equal to one-sixtieth (1.67%) of final salary for each year of pensionable
service up to a maximum of 40 years’ service; thus the maximum pension is two-thirds of final salary. In the case
of a targeted money purchase (TMP) scheme, the aim is to use a defined contribution scheme to target a particular
pension at retirement (which may be the same as that resulting from a final salary scheme), but which also benefits
from any upside potential in the value of the fund assets above that required to deliver this target level. In other
words, the TMP scheme aims to provide a minimum pension but not a maximum pension.
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Fig. 1. A defined contribution pension scheme.

In Section 2, we examine the relationship between the three schemes in terms of the differing sets of options
implicit in their structure, ! while Section 3 shows how these options are valued. In Section 4, we investigate the
rewards and risks faced by members, sponsors and fund managers from their participation in the different types of
scheme. The option composition of the pension schemes and the reward-risk preferences of the pension scheme
participants both provide a guide to the most suitable form of pension fund management as discussed in Section
5. Properties of the options can be used to measure the success of this fund management strategy, in particular, by
providing an estimate of the probability of scheme insolvency for any given level of funding or asset allocation. In
Section 6, we illustrate the strategy using hypothetical data, and we draw conclusions in Section 7.

2. The option composition of pension schemes

The differences between the schemes on the retirement date of the member are shown in Figs. 1-3. Fig. 1 shows
that the present value of the DC pension on the retirement date depends entirely on the value of the fund assets on
that date. Fig. 2 shows that the present value of the DB pension (L) is independent of the value of the fund assets,
while Fig. 3 shows that the TMP pension has a minimum present value of L, but is higher if asset values exceed L.

Fig. 4 shows that the DB pension can be replicated using a long put option (2) and a short call option (—C) on
the underlying assets of the fund (A), both with the same exercise price (L). The put option is held by the scheme
member and written by the scheme sponsor, while the call option is written by the member and held by the sponsor.
On the retirement date of the member, which coincides with the expiry date of the options, one of the options is
(almost) certain to be ‘exercised’. If the value of the assets is less than the exercise price, so that the scheme is
showing an actuarial deficit, the member will exercise his or her put option against the sponsor who will then be
required to make a deficiency payment (L — A). If, on the other hand, the value of the assets exceeds the exercise
price, so that the scheme is showing an actuarial surplus, the sponsor will exercise his or her call option against the
member and recover the surplus (A — L). A member of a DB scheme therefore bears no asset market risk.

! The original treatment of pension fund liabilities as options is contained in Bagehot (1972), Sharpe (1976) and Treynor et al. (1976).
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Fig. 2. A defined benefit pension scheme.

TMP

Value of financial assets

Fig. 3. A targeted money purchase pension scheme.

It is clear from this how DB and DC schemes are related. A DC scheme is invested only in the underlying assets.
A DB scheme is invested in a portfolio containing the underlying assets (and so is, in part, a DC scheme) plus a put
option minus a call option on these assets:

DB=L=A+P-C=DC+P-C. (D
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Fig. 5. The option composition of a targeted money purchase pension scheme.
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Fig. 5 shows that the TMP pension can be replicated using a long (protective) put option ( 2) on the underlying
assets of the fund (A) with an exercise price (L). The put option is held by the scheme member and written by the
scheme sponsor. On the retirement date of the member, which again coincides with the expiry date of the option,
the option will be exercised if the value of the assets is less than the exercise price. The effect of the option is to
place a floor on the value of the pension received by the member. The present value of the TMP pension on the
retirement date is the larger of the two present values provided by the DC and DB schemes, whatever the value of
the underlying assets:

TP =A+ P=MAX(A,L)=MAX(DC,DB)=C + L. 2)

This implies that a TMP scheme is equivalent to a call option (or floor) held by the member on the underlying
pension fund assets with an exercise price L plus a riskless pure discount bond with a maturity value of L.> The
call option will only be exercised if, on maturity, A exceeds L.

3. Valuing the options

We can now examine in more detail the structure of the pension schemes, and, in particular, show how the options
are valued. We will concentrate on a DB scheme and assume throughout that the conditioning date is the start-up
date of the scheme (¢ = 0), so that all values dated ahead of t = 0 will be expected values conditioned on information
available atr = 0.

We will assume that the expected value of a scheme member’s pension assets at any date ¢ will equal the expected
value of the accumulated financial assets (F;) plus the expected discounted value of the remaining contributions until
the retirement date (X,).> These, in turn, will depend on the member’s starting income (Yy), the contribution rate
as a proportion of income into the scheme (y), the expected future growth rate in income (gy) (which for simplicity
we assume to be constant for the whole period), the expected yields on the investments in financial assets purchased
with the contributions (r ), the rate of tax relief on contributions (t),* the number of years of pensionable service
(T') and the one-year survival probabilities from date + = 0 (p;). Assuming that the appropriate discount rates used
to discount the remaining contributions are the expected returns on financial assets held during the relevant period
(which will depend on the fund managemeat strategy pursued by the scheme as described in Section 5), the expected
value of a member’s pension assets at any date ¢ is given by: >

! k—1 ! r k—1
Yo(1 Yo(1
At=Ft+Xr=ZPkV o(l +8v) l—[ (L+re) + Z 1434 O(k +8r) Ci=1LT (3
k=1 -t j=h+1 v (T = Ol Tjm (1 + 7))

where the symbol [ ] represents the product of the terms immediately to the right (except for terms associated with
J > t which are set to unity since we assume that all cash flows arise at the end of the relevant period).

2 We assume here that the target pension with the TMP scheme is the same as that with the DB scheme, but this need not be the case in general.
It is also clear that the TMP scheme is equivalent to an endowment insurance scheme (see, e.g., Gemmill, 1993, Section 10.3). In the US, it is
known as a floor-offset scheme.

3 This paper uses the implicit lifetime contract method or prospective benefits funding method of determining pension liabilities and assets (see,
e.g., Disney and Whitehouse, 1996, or Haberman and Sung, 1994). This method assumes that the member will work until normal retirement
age and then draw a pension until death. This contrasts with the accrued benefits funding method which determines pension liabilities and assets
only up to the date of accrual and disregards likely future service (see, e.g., Institute and Faculty of Actuaries, 1984).

4 We assume for simplicity that the tax rates are the same for the member and the Sponsor.

5 This is consistent with conventional practice by the economics profession (e.g., Tepper, 1981). However, other economists have used the
after-tax rate of return on corporate bonds, e.g., Copeland (1984). This is more in line with the practice of the accountancy profession which
recommends using the yield on long-term government bonds (see, e.g., Federal Accounting Standard 87 and International Accounting Standard
19).
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With a DB scheme, the liabilities at retirement depend on the expected pension at retirement (Z), the expected
growth rate in the pension (gz) and the one-year survival probabilities in retirement (pr.,). Suppose that the
retirement pension, Z, is equal to some proportion (6, e.g., two-thirds) of the expected income at retirement (Yo (1 +
gy)T~1). Therefore, the expected value of the liabilities at any date 7 is given by: ¢

L i z[”gz}k ! r=1,T @)
= Pr+ik ) =1, I
I B [t (1 +7)

k=1

The expected actuarial surplus with a DB scheme is defined as the difference between (3) and (4):
SKZAI_LI’ r=19r (5)

With a DC scheme, Eq. (3) equals the present value of both the assets and liabilities, so that there is no actuarial
surplus. With a TMP scheme, the liabilities are the larger of Eqs. (3) and (4), but, as with a DC scheme, there is no
surplus.

The options embodied in the DB and TMP schemes have the following characteristics. They are European options,
since they cannot be exercised before the retirement date. ' In addition, the underlying asset does not make payouts
prior to the expiry date of the option. However, the most important feature of the options is that the exercise price
is not constant, as in the standard Black—-Scholes model (Black and Scholes, 1973), but is equal to the value of
the liabilities. The appropriate option valuation model is based on a modification to the Black—Scholes framework
which recognises that the options in Eq. (1) or Eq. (2) are exchange options, i.e. options to exchange risky assets at
an exercise price that is indexed to the uncertain value of the liabilities (see Fischer, 1978; Margrabe, 1978).

The value of the call option in Eq. (1) is given by:

Cr = N(d1)A, — N(d2,)L,, ©6)
where:
dl, = In(A,/L;) +0.503,(T — z)’ o
os/T —t
d2, =dl, —ogT — 1, ®
o} =0} +0}, — 204, t=1,T 9

N(d1,) and N(d2,) are normal distribution functions evaluated at d1, and d2,, respectively. Eq. (9) is the variance
(ag‘,) of the surplus (5) (i.e. (square of) surplus risk) which depends on the standard deviations of the rates of return
on assets (o'4,) and liabilities (o), and the covariance between returns on the assets and liabilities (o 47,). 8

We need to consider the most appropriate way of modelling the components of (9). This would appear to involve
identifying sources of variability (hopefully small in number) common to both assets and liabilities. What follows
is the simplest possible stylised framework for achieving this. Inevitably, substantial simplifying assumptions are
involved. Where these assumptions do not correspond well with reality, a more realistic, but also a more complex,
framework would be needed. We will suppose that the key sources of volatility facing both assets and liabilities are
the volatilities attached to interest rates and growth rates, and that these volatilities will be scaled by the different

6 The discount rates from the retirement date onwards are the discount rates (rB) on riskfree government bonds with a maturity of around 15
years (on the grounds that such bonds are used to finance annuities). The discount rates from the retirement date back to date r are the same as
those used for discounting projected contributions, namely the expected returns on the financial assets in the pension fund. This accords with
conventional actuarial practice.

7 More sophisticated versions of the model could contain options which allow for earlier termination of the pension scheme on the grounds of
redundancy (exercised by the sponsor) or ill-health (exercised by the member), etc.

8 See also Leibowitz (1986b), who argues that liabilities can be treated as short positions in assets and liability returns can be treated in a
commensurate way
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durations of the assets and liabilities (see Macaulay, 1938). We also allow for there to be specific components to
the asset and liability volatilities.

From Eq. (3), we can see that the volatility of the rate of change in the value of pension assets depends on their
duration, which equals the weighted sum of the durations of the existing financial assets (Df;) and of the remaining
contributions (Dy,):°

T
(k — npryYo(l + gy)*~!
Da=aDp+ (1 —a)Dy =D+ (1~a) | Y YO8 |, r=LT  (0)

g (1= T)an_l;zu.-l(] +7E)

(where o, = F;/(F; + X,) is the weight of the existing financial assets in total pension assets at time 7), and the
standard deviations of the rates of change in the yields on financial assets (o;) and in the growth rate in earnings
(0g). As a first-order approximation, the variance of pension asset returns is given by:

oh = Da07 + o)+, 1=1T (1

where 74 is the specific risk on pension asset returns. ! We assume for simplicity that: financial asset returns and
growth rates are uncorrelated; the standard deviation of the rate of change in financial asset returns is constant
over time; and the standard deviations of earnings growth (gy), pensions growth (gz), and later inflation (g;) and
dividend growth (gg) are all constant over time and equal to each other (which implies that the four growth rates
differ, if at all, by constant amounts). These are clearly very strong assumptions and are unlikely to hold exactly in
the real world. Nevertheless, they are useful assumptions to make if we wish to derive a tractable model.

9 The duration of the financial assets is equal to the value-weighted sum of the durations of the individual assets in the portfolio, see Blake
(1995), Chapter 13), (Eq. (11). The duration measure is highly sensitive to the underlying model of the term structure of interest rates used, as
shown by (Boyle, 1978). For example, models with parallel yield curve shifts result in long-term assets having substantially greater durations
then models with mean reversion. Nevertheless, Reitano (1991) has shown that there is an ‘equivalent parallel yield curve shift’ corresponding
to any underlying yield curve shift and this enables conventional Macaulay-type measures of duration to be used.

1o Eq. (11) is derived as follows., Assume that in (3) the rr; are expected to be constant over time and the p; are fixed at p, and define
d = pyYy/(1 — 7). Fort = 0, Ap in (3) can be written:

T

d(1 + gy)f
Ag=Xo = ————
0= ; (A +rpk

The elasticity of Ag with respect to (1 + r¢) is given by

8A0 (Ltrp) 1 ~kd(1+gy)t - b
8(1+rp) Ao Ag (rpp —

The elasticity of A with respect to (1 4 gy) is given by

T k
S840 (I+gv) lzkd(l+gy) _

s1+gr) Ao Ao (+rpf —
The total differential of Aq can be written:
dAg 840 (I+rp) drf 8Ap  (1+gy) dgy drp dgy
_— + +eéa=—Dpy| ——— — —— | +e€a.
Ao 8(1+rp) Ao (+rp) dl+gy) Ay (1+gy) (A +re)  (1+gy)

where we include a serially and contemporaneously uncorrelated specific risk component to the rate of return on pension assets, The volatility
of the rate of return on pension assets is given by

Uio = D‘:“O (ar2 + cr;) + 7]%.

Note that ar2 and Ué are the volatilities of the rates of change in interest rates and growth rates, rather than the volatilities of their levels so that
these will take relatively low values. Similar derivations apply for a[z4 »t > 0, and for Ji, and 044, in (13) and (14) below.
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In a similar way, the volatility of the rate of change in the value of the pension liabilities depends, from Eq. (4)
on their duration (see, e.g., Langetieg et al., 1986):

o0 k
kprokZ (14 gz
D, = T—-t, t=1,T 12
Lt kE_l I T+ re +( ) (12)

As a first-order approximation, the variance of the liability returns is given by
of,=Dj (et +0)+ni. t=1T (13)

where the standard deviation of the growth rate in the pension is o, and 7, is the specific risk on liability returns.
The covariance between asset and liability returns is given by:

oar: = DasDpi(o? + Ué) + 714, t=1T (14)

where 74, is the covariance between the specific risks on asset and liability returns.
The value of the put options in Egs. (1) and (2) is derived from put—call parity as (using Egs. (5) and (6)):

Pr=Ct+L[—At=C;—Sr=(l—N(dzp))Lt_(l—N(dlt))A], tzl,T (15)

Two important features of Eqs. (6) and (15) are that the option values do not depend explicitly on the riskless rate
of interest as in the standard Black—Scholes model, and that the appropriate definition of risk is not the risk, given
by (11), attached to the pension assets (3), but the risk, given by (9), attached to the pension surplus (5). Both these
features follow because the pension liabilities provide a natural hedge for the pension assets against both interest
rate and growth rate risks.

The rationale for the first feature comes from the Black~Scholes innovation of constructing a riskless hedge
portfolio. In order to do this, it is necessary to hedge against changes in both the value of the underlying assets and
the exercise price. Changes in asset values are hedged by holding the assets. The cost of this hedge is equal to the rate
of return on the assets. However, because the assets themselves are held in the portfolio, the return from the portfolio
exactly offsets the cost of the hedge against changes in asset values. Therefore, the rate of return on assets does not
appear in the option pricing formula. Because the hedge portfolio is riskless and generates the riskless rate of return,
only the riskless rate of interest appears in the standard Black-Scholes formula. Changes in the exercise price are
hedged by holding in the portfolio assets whose returns are perfectly correlated with changes in the exercise price,
i.e. with changes in the value of the liabilities. This is achieved by holding, as part of the main portfolio, a portfolio
of assets that exactly tracks any changes in the value of the liabilities. We will denote this portfolio the liability
immunising portfolio (LIP) and we will assume that it is possible for us to construct such a portfolio. While the LIP
will be a risky component of the total portfolio, it will be riskless relative to the liabilities that it is immunising and
so it too will generate the riskless rate of return. Therefore, the rate of return on the hedge portfolio is 0, since the
return on the liability hedge exactly offsets the return on the asset hedge.

The rationale for the second feature comes from the fact that pension asset and liability values respond to shocks
in a similar way. In Eqgs. (3) and (4), we assumed that the main sources of shocks are unexpected changes in yields
and growth rates (in earnings or pensions, say). So, for example, an unexpected increase in yields reduces the
present values of both assets and liabilities, while an unexpected increase in growth rates has the opposite effect.
The volatilities of yields and growth rates are common to both assets and liabilities. The differential effects of these
volatilities on the variances of asset and liability returns comes from the differing durations of assets and liabilities
(see (10) and (12)), as seen in Eqgs. (11),(13) and (14). Substituting these into Eq. (9), we get:

0% = (Dar — DL)* (0 + 00y + 05 + 1 — 2042, t=1,T. (16)

This shows that the volatility of the surplus depends on the squared duration gap between assets and liabilities, the
variances of the rate of change in yields and growth rates, and the relationship between the specific risks on assets
and liabilities. If the financial asset portfolio is constructed to have returns that are perfectly correlated with changes
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in the value of the liabilities, then ni = n% = n4L, and the terms involving  in (16) vanish; such a portfolio would
be a LIP. If, in addition, the duration of the assets is kept equal to that of the liabilities, then surplus risk can be
eliminated altogether. It is the convenient structure of Eq. (16) that justifies the simplifying assumptions that we
have made above. A more complex version of (16) would be needed if these assumptions were not valid, but it is
unlikely that surplus risk could be eliminated completely in this more general framework.

4. The pension scheme preferences of members, sponsors and fund managers

We are now in a position to examine the preferences for the three types of pension scheme by members, Sponsors
and fund managers.

From the member’s viewpoint, the schemes have different costs, different expected returns and different risks.
Suppose that a typical member’s reward-risk preferences can be represented by an isoelastic utility function with
a constant relative risk aversion parameter 8 (see, e.g., Merton, 1969). ' This suggests that the risk-reward indif-
ference curves for the three types of scheme are given as follows:

Upg = gy — 3o, (17)
for the DB scheme,

Upc = rp — 3BID%, (07 + 63) + mj] (18)
for the DC scheme, and
Utmp = rer = (Pt/Li(T = 1)) = 3B[(Das — D)7 + o) + n + 17 — 2na1] (19)

for the TMP scheme, using Eq. (2).

The DB scheme offers the lowest expected return equal to the anticipated growth rate in the member’s earnings,
with risk measured by the volatility of those earnings. The DC scheme offers the highest expected return equal to
the expected return on financial assets (which for the dynamic efficiency of the economy as a whole must exceed
gv), but also has the highest risk. The TMP scheme has a lower expected return than the DC scheme because of the
cost of buying the protective put option, but as a consequence has lower risk.

The ranking of preferences depends on the degree of risk aversion as follows:

—oo < B<p, = Upc>Urwp > Ups,

Biu<B=<px = Urwp > Upc > Ups,
Bu<B=<pBx = Urmp > Ups > Upc,
By <B=<o00 = Ups>Urmp > Upc, (20)
where:
2P /LT -0
Bu = B '2( 5 7 1)
(2Da:Dry — Dy )(of + 05) +2naL — 07
2(rp — 8y)
Bor = , (22)
t l)i,(ar2 + aé) + r]f1 - og
Ba 2(rre — (P /L(T — 1) — gy) R 23

 (Dar = DL)X(0F + 02 + (% + 1} — 21a1) — 02

! While the original Black-Scholes model and its off-shoots such as the Fischer-Margrabe model being used here were derived under the
assumption that investors are risk-neutral, it is possible to show that a risk-neutral valuation of the option is still valid if, as we are assuming, the
average scheme member exhibits constant relative risk aversion (see,e.g., Rubinstein, 1976; Breeden and Litzenberger, 1978; Brennan, 1979).
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Fig. 6. Members’ preferences over different pension schemes.

Both B, and S3; will be positive and it is likely that By, is also positive, although if the duration of the assets
is less than half that of the liabilities, 81, will be negative. Individuals who are highly risk averse will prefer the
DB scheme, those who are substantial risk takers will prefer the DC scheme, while those who are moderately risk
averse and possibly even moderately risk taking will choose the TMP scheme. However, if the durations of assets
and liabilities are continuously equalised, Eq. (23) shows that the TMP scheme will always be preferred to the DB
scheme. This is demonstrated in Fig. 6.

Given these preferences by members for the different schemes, how are the risks shared between members,
sponsors and fund managers? With a DC scheme, the position is straightforward: all the risk attached to the pension
fund assets is borne directly by the member and none by the sponsor or fund manager, although in the long term the
latter two will go out of business if they systematically deliver poor performance. With a DB scheme, the member
bears no financial risk: he or she receives a pension that is based on some pre-set formula regardless of the value of
the financial assets at retirement. All the downside risk is borne by the scheme sponsor; but the sponsor retains all
the upside potential if asset performance is better than expected. The fortunes of the fund manager will be highly
correlated with the extent to which deficits or surpluses are created. With a TMP scheme, all the downside risk is
borne by the sponsor, while all the upside potential is retained by the member.

5. The optimal management of pension fund assets

We will again concentrate on a DB scheme and assume that the objective of the sponsors of such a scheme is to
manage the pension assets over time so as to minimise the following function of surplus risk (16), subject to the
constraints that the surplus (5) is O on the maturity date of the scheme and never falls below 0 prior to the maturity
date:

T
MinJ; = Y #H ey, 1=1T (24)
! k=t
subject to:
SI=AI—LI‘201 t=1, T—'l, (25)

Sr=Ar—Ly=0. (26)
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In (24), § is a discount factor lying between 0 and unity which allows for the possibility that surplus risk arising
in the distant future might be of less concern to the scheme sponsor than surplus risk arising in the near term; we
will, however, assume that the sponsor is equally concerned with surplus risk whenever it arises over the life of the
scheme, so we set § = 1. Eq. (24) is minimised with respect to a set of control variables £2, which will be specified
in more detail below.

Minimisation of surplus risk in a DB scheme is the rationale underlying asser—liability management (ALM),
otherwise known as surplus (or shortfall or solvency) risk management (see, e.g., Leibowitz, 1986c, Leibowitz and
Henriksson, 1987, Kritzman, 1988 and Bodie, 1991) and, for a recent overview, van der Meer and Smink, 1993).
In contrast, the objective of the sponsors of a TMP scheme is to minimise the risk of generating a shortfall, while
the sponsors of a DC scheme are not concerned either with the surplus or with surplus risk, but instead can choose
the asset structure over time that maximises the member’s utility function, given his or her degree of relative risk
aversion (as in (18)).

There are two principal techniques for ALM: immunisation (Redington, 1952; Boyle, 1978) and portfolio insur-
ance (Leland, 1980; Gatto et al., 1980; Brennan and Solanki, 1981; Leland and Rubinstein, 1981). The purpose of
classical immunisation is to generate an assured return on the pension assets over the investment horizon. This is
achieved by eliminating surplus risk, which, from Eq. (16), requires structuring the pension assets to have both the
same duration as the liabilities and returns that are perfectly correlated with changes in the value of the liabilities,
i.e. investing in a LIP. With classical portfolio insurance, in contrast, the sponsor seeks to lay off the downside risk
that he or she faces from the exercise of the put that was sold to the member through the creation and management
of a protective put option, while preserving the upside potential of the asset portfolio. However, the scheme member
faces the opposite risk and may wish to protect his or her downside risk through the creation and management of
a protective call option. We can therefore conceive of a portfolio insurance strategy (which we call bi-directional
portfolio insurance) that attempts to eliminate the downside risks of both the sponsor and the member, but this will
be at the cost of eliminating the upside potential in both cases. However, the fund management strategy needed to
achieve bi-directional portfolio insurance will be identical to that required for classical immunisation as we now
show.

Classical immunisation requires the surplus risk to be 0. However, when the surplus risk is 0, the values of the
call and put are related solely to the size of the surplus (see Egs. (6)—(9) and Eq. (15)). So if the pension scheme is
being fully funded on a year-by-year basis and the asset portfolio is being continuously immunised to liabilities (so
that the surplus is 0), the puts and calls both have a zero value since neither will be exercised. The pension scheme’s
fund manager can therefore replicate the payoff patterns of the put and call options (i.e. implement bi-directional
portfolio insurance) by ensuring that the liabilities are immunised continuously over time using assets invested in
aLIP.

However, as we shortly show, it will be impossible to invest in a LIP for the whole investment horizon, so the
optimal asset allocation strategy will need to use a mixture of financial assets: equities, index bonds and, possibly,
conventional fixed-interest bonds.

We will assume that the realised returns on these assets are determined by the following variation on the standard
linear market model in finance:

re, =re +7Dg + e, ry=[pr(1+g)+gl+aDy+ey, rg=ri+nDg+eg, t=1T (27

where 7 is the (stochastic) duration risk premium, Dg, Dy, and Dg, are the (deterministic) durations of equities,
index bonds and conventional bonds, respectively, rr is the (constant) nominal rate on treasury bills, pr is the
(constant) real rate on treasury bills and g is the expected inflation rate; expected returns are denoted rg, r;, and
rg:. We further assume that the specific components of the returns on assets, €g;, €, and €g,, have the following
properties: they have zero mean, constant variance, and are serially and contemporaneously uncorrelated with each
other, but that ¢, is perfectly correlated with the rate of change of the liabilities, so that 7712 = n% = nyz. This
is because index bonds (whose values are perfectly correlated with changes in the price level) are assumed to be
perfectly correlated with pension liabilities (whose values are perfectly correlated with changes in the wage level),
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because changes in wages and prices are, in turn, assumed to be perfectly correlated. Comparing (27) with the
standard market model, 7 corresponds with the market risk premium (and, like the market risk premium, is assumed
to be identical across securities) and duration corresponds with beta.

The motivation for this model again lies with the desire to utilise common sources of variability between assets and
liabilities. In Section 3, we argued that the volatility of interest rates and growth rates would be key common sources
of volatility. We will therefore assume that the variances of the returns on equities, index bonds and conventional
bonds, and the covariances between them can be modelled as follows:

ok =Di(o} +op) + g, oj, = D(o; +op) +ui,  op, = Dol +nd,
oey = DEDy(o} +0,).  ops = DgDpo?, o1 = D + Dg,07, (28)

where ng, 71, and ng are the specific risk components of the returns on equities, index bonds, and conventional
bonds. From (27) and (28), it is clear that the variance of x is given by (a + 0’2) the variance of the market portfolio
in the market model is replaced by the sum of the variances of its components in this model. Notice that the variance
of fixed-income bond values depends only on the variance of interest rates.

We will assume for simplicity that the duration of equities is constant and given by

Dg = iri (29)
FE — &E
which holds under the assumption that gg, the expected growth rate in dividends, is constant. '2 However, we
will assume that index and conventional bonds with different durations are available for inclusion in the optimal
portfolio.

Egs. (24)-(26) constitute a dynamic programming problem, the solution to which we now outline. The first task is
to find the equilibrium contribution rate over the life of the scheme. This is given by the the value of y that generates
a zero surplus to the scheme on the member’s retirement date (i.e. that satisfies (26)). So the first component of §2,
is the contribution rate y. However, it so happens that with a constant contribution rate satisfying (26), the scheme
will show an actuarial surplus in each year prior to retirement, so that (25) will automatically be satisfied for all 7.
This result arises because of the backloading of benefits and hence contributions in DB schemes. In other words,
a year of pension entitlement accruing late in the life of a scheme is more expensive to fund since its associated
contribution has less time to benefit from compounded returns than a year of entitlement accruing early in the life
of a scheme. For the surplus to be 0 in each period, the contribution rate would have to start off at a very low level,
but would rise exponentially over the life of the scheme and end up well above the average for the whole period.
If the contribution rate is held constant for the whole period at the level needed to fully fund the pension, then a
surplus will build up early on, only to be run down to 0 as the member approaches retirement (for more details, see
Blake and Orszag, 1997, Section 4.2 and Hemming, 1998, Appendix I).

The second task is to choose the financial asset allocation to minimise (24), conditional on the properties of the
individual asset categories. Given its time-separable nature, (24) can be minimised on a year-by-year basis. We will
show that the optimal portfolio of financial assets chosen by the fund manager will be determined in a sequence
of up to three stages over the lifetime of the scheme, with the length of each stage depending on the relationship
between the durations of the pension liabilities and pension assets (Samuelson (1989) has called this investment
strategy age-phasing and it is also now known as lifestyle fund management).

To begin with, the duration of the pension liabilities will greatly exceed that of the pension assets (financial assets
plus remaining contributions). This is because: the duration of the remaining contributions is lower than that of the
liabilities, initially the weight of financial assets in total pension assets will be negligible, and also there do not
exist financial assets with sufficiently high durations to compensate for this. It will therefore be impossible to invest

12 See, e.g., Boquist et al. (1975). As calculated using this formula, the duration of equities will be substantially higher than that for bonds: it
assumes that gg does not respond to changes in rg. Not all investigators believe that equity duration is as great as implied by this formula, e. g.,
Leibowitz (1986a).
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entirely in a LIP from the start of the scheme. The objective at the first stage therefore is to build up the duration
of the financial assets as quickly as possible. This involves investing the entire portfolio of financial assets in the
highest duration assets of all, i.e. in equities. ' The second component of §2; is therefore Dg. The first stage is
characterised by the following inequality holding:

Dyy2Day=aDe+ (1 —a)Dx;,, 1=1Ti, (30)

with (30) holding as an equality at 77 which marks the end of the first stage.

The objective at the second stage is to build up the investment in the LIP, while preserving the equality between
the durations of the pension assets and liabilities. The LIP will contain index bonds that are perfectly correlated
with and have the same duration as the liabilities. It will generally not be possible at the second stage to switch
immediately and fully into index bonds, since the duration of index bonds is likely to be less than that of equities; so
again the investment in index bonds will have to be built up gradually in a way that preserves the equality of duration
between assets and liabilities. The second stage is characterised by the following equality holding throughout:

Dy =Dar=a ¥ Di+o(1 =)D+ (1 —a)Dyx;, t=Ti + 1,1, (31)

where

v, = Dg — (Dpy — (1 —a))Dx) /ey
[ S DE _ Di

(32)

is the weight of index bonds in total financial assets and where D; is the maximum available duration on index
bonds. Now v takes the value O at 7| and the value unity at 75, at which point the duration of the liabilities equals
the maximum available duration on the index bonds, and this marks the end of the second stage. So the third element
of £2, is ;.

Thus far we have accumulated financial assets in such a way that, by the end of the second stage, there is
both duration-matching and perfect correlation between pension assets and liabilities. The first two stages involve
investing in the riskiest assets in order to build up duration, regardless of the degree of risk aversion of the sponsor
or member. This is counter-intuitive: we invest in the riskiest financial assets in order to reduce the risk to the
pension liabilities. At the same time, we are taking advantage of the equity risk premium (7 Dg). 14 At the third
stage, the objective is to continuously immunise liabilities using the LIP and simultaneously to achieve the desired
reward—risk configuration on any excess assets above that needed for the LIP. Conditioning at time ¢ = 0, excess
assets will only be expected to arise if the sponsor, to guarantee a margin of safety, selects a higher contribution
rate than the one needed to achieve a zero surplus at the retirement date. It is only under these circumstances that
the fund manager is in a position to take into account the degree of risk aversion of the sponsor or the member,
depending on the type of scheme. As we saw in Section 4, the lower the degree of risk aversion, the greater the
degree of risk and hence expected return that can be sustained by the fund manager. With a DB scheme, it will be
the sponsor’s degree of risk aversion that is relevant, while with DC and TMP schemes, the optimal portfolio of
financial assets will depend on the member’s attitude to risk. 1°

Once the duration of the financial assets has been built up sufficiently to equal (taking into account the duration
of the remaining contributions) the duration of the pension liabilities (so that surplus risk is 0), a highly risk averse

13 In practice, pension funds do not hold 100% of their assets in equities, but in the UK, they do hold around 80% in equities

14 There are very few five-year periods in the history of any advanced financial system over which equities have not out-performed bonds.
Further, Samuelson (1989, 1991, 1992) argues that, when security returns are mean-reverting, it is rational for long-horizon investors such as
pension funds to invest more heavily in high-risk equities than in low-risk bonds during the early years of a pension scheme and then to switch
into bonds as the horizon shortens. Indeed, it is arguable that over a long-investment horizon and with liabilities linked to growth rates in the
economy, it is fixed-income bonds rather than equities that are the genuine high-risk asset. Only when security returns are pure random walks
is it the case that the optimal asset allocation does not depend on the length of the investment horizon (see, e.g., Samuelson, 1963, and Merton
and Samuelson, 1974).

13 Note that a DC scheme operates as a stage 3 scheme throughout its entire life.
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scheme member or sponsor will be satisfied with the LIP as the only portfolio of financial assets needed. However,
a less risk averse member or sponsor might wish to take on some additional asser risk by investing in a portfolio of
risky assets, comprising equities, index bonds and conventional bonds; this is equivalent to taking on some additional
diversifiable risk in an otherwise well-diversified portfolio.

The required weights in equities, index and conventional bonds in a portfolio if it is to be mean-variance efficient
can be easily derived (see, e.g., Elton and Gruber, 1995, Chapter 6):

A = Diring Ay = Durgng
I — ) | 3
Dening + Dynind + Dening Den}n} + Dingni + Demin?
DB 2.2
B e L, t=T+ 1T (33)

~ Denin} + Duning + Demin?
The expected return on an efficient portfolio is given by
ke = AerE + Apernr Ay, =T+ 1T (34)

and its standard deviation is given by

ot = D208, + 13,08, + 10% + Do + Dpdvopy + Dphioprl.  t=Ta+ LT (35)

The optimal portfolio is found at the point along the efficient frontier where the sponsor’s (or the member’s) marginal
rate of substitution equals the price of risk:

*_rf

* rFt e
Bop = ——— = Wy, (36)
I

say, which implies that the expected return on the optimal portfolio can be determined using:
Ih =T+ w0 =ri + /B, 37

where ,u,z /B is the risk premium required by the member.

With Dg given, we have one degree of freedom in choosing either Dy, or Dg;. If the member or sponsor selects
Dy, we can calculate the required duration on the conventional bonds in the optimal portfolio, using (37),(34) and
(33), and the expected returns on assets derived from (27):

G2/t + [ (it rpm)’ — amngnie ]

D}, = Min | D, 5 , =T+ 1T, (38)
2angny
where
ki = (wDg — (1 /B)) Denini + (D}, — (u?/B) Dinkni (39)

and where Dj is the maximum available duration on conventional bonds. Using this and (33) again, we can calculate
the set of optimally changing weights in equities, conventional bonds and index bonds during the third stage between
Tr+1andT.

This concludes our derivation of the optimal ALM strategy. Before looking at an example that illustrates this
strategy, we end this section with the following observations. The first concerns the size of any surplus in the scheme
prior to retirement. The contribution rate that satisfies (26) above is the minimum possible contribution rate into
the scheme to ensure its solvency at maturity. However, we have also shown that, due to the backloading effect,
the scheme could be showing a surplus prior to maturity even if all expectations are fulfilled. So the existence of
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a surplus prior to maturity is not necessarily a sign that a scheme is overfunded. Any surplus in a level-funded
scheme prior to maturity should be calculated with reference to the ‘surplus’ from the minimum-funded scheme
considered here. Yet regulatory authorities sometimes place what appear to be somewhat arbitrary restrictions on
the permissible size of any surplus or deficit. For example, in the UK, any surplus exceeding 5% of liabilities must
be eliminated over a 5-year control period via a reduction in the contribution rate (Social Security Act 1986). Any
deficit exceeding 10% of liabilities must be reduced to below 10% within one year and any deficit up to 10% of
liabilities must be eliminated within five years via an increase in the contribution rate (Pensions Act 1995). Such
regulations may not be consistent with an ALM strategy that permits level funding over the life of a scheme.

The second point concerns the fulfilment of expectations. It is highly unlikely that expectations will be met in
full because of the uncertainty attached to growth rates and asset returns, etc. Disastrous investment performance,
for example, could lead to scheme insolvency. Fortunately, the properties of the options discussed above provide
a measure of the probability of insolvency at any date. It is well known (see, e.g., Gemmill, 1993, Section 5.3)
that 1 — N(d2,;) in (15) gives the probability that the put option ends up in-the-money, in other words gives the
probability of a deficit on the maturity date of the scheme. Further, the conditional expectation of the size of the
deficit at maturity (D7 = L7 — A7) is equal to the conditional expectation of the value of the put at maturity:

1 - N(dl,)) A
f

1 — N(d2,) r=1T @0

E(D)=E(Pr)=1L; - (
The unconditional expectation of the size of the deficit is given by the product of Eq. (40) and 1 — N(d2,), but this
just equals the current value of the put given in Eq. (15).

The scheme sponsor might be concerned that, with the current contribution rate, the size of the insolvency
probability is too high and so chooses a higher contribution rate to reduce this probability. Also, with the passage of
time, realised values for growth rates in earnings and discount rates, etc. will replace expected values and a realised
surplus different from that which was expected will emerge. For the purpose of maintaining the solvency of the
scheme, the contribution rate might have to be adjusted from time to time in order to amortise an unplanned surplus
or deficit over a specified control period. However, scheme sponsors prefer to have a stable contribution rate over
time to one that is highy volatile (see Lee, 1986). O’Brien (1986, 1987) and Haberman and Sung (1994) use a
dynamic programming framework similar to (24)—(26) to derive the optimal time path of contributions into a DB
scheme which minimises both contribution rate risk and solvency risk.

Finally, the above analysis has been conducted for a single-member scheme, but multi-member schemes are
easy to handle since they involve a straightforward case of aggregation across members, taking into account their
different stages of membership. We show in the next section that there are diversification benefits with multi-member
schemes that help reduce the chance of insolvency.

6. Example

In this section, we will illustrate the optimal asset allocation strategy using a realistic example based on typical
data for a DB scheme in the UK (see, e.g., BZW Equity-Gilt Study, 1997; Pension fund indicators, 1997; Blake,
1996; Neill, 1977).

We will assume that a male worker joins a pension scheme at age 25 years on the following terms and has survival
probabilities based on English Life Tables 15:

starting salary (Y)=£10000 p.a.

projected growth rate in salary (gy)=5.45% p.a.

years to retirement (7)=40

tax rate (7)=25%

pension fraction at retirement (8)=66.67%

projected pension at retirement (Z)=£ 54,924 p.a.
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Fig. 7. Pension liabilities and contributions.

projected growth rate in pension (gz)=4% p.a.

projected inflation rate (g1)=4% p.a.

degree of risk aversion (8)=1.25.

Financial assets with the following properties are available:

riskfree nominal nterest rate (r¢)=5% p.a.

riskfree real interest rate (pr)=1% p.a.

duration of equities (Dg)=20 years

projected growth rate in equity returns (gg)=5.45% p.a.

maximum available duration of index bonds (Di):lO years

maximum available duration of conventional bonds (Dy)=8 years

standard deviation of rate of change in yields (6;)=0.75% p.a.

standard deviation of rate of change in growth rates, etc. (0,)=0.75% p.a.

duration risk premium (7)=0.3% p.a.

specific risk on equities (ng)=10% p.a.

specific risk on index bonds (11)=5% p.a.

specific risk on conventional bonds (np)=4% p.a.

market risk premium (1£)=0.25 per percentage point of standard deviation.

Using these data, we can equate Eqgs. (3) and (4) for ¢t = T and solve for the minimum required contribution rate
(y) at 4.86% of salary.

Fig. 7 plots the present value of the liabilities and the value of the accumulated contributions during each of the
40 years’ membership of the scheme. By the 40th year, they are both valued at £ 557 729, sufficient to provide a
pension of £ 54 924 per year (indexed to inflation) for the remainder of the member’s life. Fig. 8 plots the present
value of the remaining pension contributions for each year’s membership of the scheme. This begins at £ 29726
and declines initially slowly and then very rapidly over the remaining life of the scheme.

Fig. 9 plots the durations of the pension liabilities and remaining pension contributions for each year of the
scheme. The duration gap between liabilities and remaining contributions declines from 15.8 years at the start of
the scheme to 9.6 years at the end. This gap has to be filled as rapidly as possible with financial assets, but as Fig.
10 shows, the duration of financial assets required to do this is initially substantially greater than the maximum
available duration, namely 20 years on equities. Fig. 11 shows how the duration gap is filled. It takes 31 years to
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Fig. 9. Duration of pension liabilities and contributions.

build up sufficient financial assets with sufficient duration to eliminate the gap. This is stage 1 of the ALM strategy.
The objectives of stages 2 and 3 are to build up the LIP and then to meet the reward—risk target of the member or
sponsor, while preserving the duration gap at zero. However, if, as in this case, the scheme is funded on a minimum
contribution only basis and realised investment returns do not exceed projected returns, then excess financial assets
will not build up and there will be no third stage to the strategy .

Fig. 12 shows the changing financial asset composition that achieves these objectives over the life of the scheme.
For the 31 years of stage 1, only equities are held in the portfolio of financial assets. The remaining nine years
constitute stage 2 and it takes eight of these years to build up fully the investment in the LIP: the final year has
100% weighting in the LIP. Fig. 13 shows how these portfolio weights translate into portfolio expected returns
and risks (as measured by standard deviations) over the life of the scheme. The two stages of the ALM strategy



280 D. Blake /Insurance: Mathematics and Economics 23 (1998) 263-286
1000

900

800

700

600

500

400
300
200
100

Years

OITTIIII[TT|IIII!IIYTIYIII1IIII!II!IIIIll

o] 5 10 15 20 25 30 35 40
Years in pension scheme

Fig. 10. Required duration of financial assets.

50 4 Liabilities

45 Assets ==——m~
40
35 4
304 ~
25 -
20 +
154 S

10 S~

5_4

Years

Ollll[‘ltlllllllw‘ll1lllllrlllll|11|ll|‘l

0 5 10 15 20 25 30 35 40
Years in pension scheme

Fig. 11. Duration of pension liabilities and assets.

are clearly discernible, with the effects of increasing diversification leading to risk falling substantially more than
returns during the final nine years.

Fig. 14 shows what happens to the pension fund surplus and to the values of the call and put during the life of
the scheme assuming that expectations are fulfilled. With a level contribution rate of 4.86%, the surplus takes a
value of £ 19 320 at the beginning of the scheme and this value declines monotonically over the life of the scheme
to reach a zero surplus just prior to the member’s retirement. This demonstrates clearly the effect of backloading
in DB schemes. Even if a scheme is not overfunded and is just exactly funded over its lifetime, it will exhibit an
apparent ‘surplus’ until very near the maturity date. From (15), it is clear that the surplus is equal to the difference
between the call and put values and the figure shows the relationship between the three values over time. Starting at
£ 21850, the call rises in value for the 31 years of stage 1 of the ALM, reaching a peak of £ 33 440, before falling
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Fig. 13. Portfolio expected returns and risk with minimum contributions.

rapidly in value during the nine years of stage 2 as the backloading effect comes into play. The put, in comparison,
is initially worth very little (£ 2 530), but its rate of increase in value during stage 1 is much greater than that of the
call, reaching a peak of £ 32 400 in year 31, before following the value of the call down to zero during the following
nine years. The put follows this pattern because the increasing weight of pension assets invested in highly volatile
equities during stage 1 increases the chance of insolvency if there is a sharp downturn in the stockmarket; this risk
is reduced during stage 2 as the financial assets are switched into lower risk index bonds. Despite the substantial
investment in equities, the objective of ALM is to reduce surplus risk (9) to 0 over the life of the scheme. Fig. 15
shows how this is achieved. Its pattern for the first 31 years is related to the way in which the duration gap is reduced
to 0, although for the first eight years the effect of building up an investment in equities without much immediate
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impact on reducing duration is to raise the surplus risk. Thereafter the duration gap can be preserved at 0 while the
LIP accumulates. This takes eight years to achieve and surplus risk falls linearly during this period.

When, in order to provide a cushion of safety, higher than the minimum level of contributions are made to the
scheme, then it is possible to add the third stage to the ALM strategy, and this may run in parallel with the first or
second stages rather than follow them. We review the case when the member’s contribution rate is 5.5%. Fig. 16
shows how the excess financial assets accumulate over the period. It is from these assets that an optimal portfolio
involving equities, index bonds and conventional bonds can be constructed on the basis of (33) together with the
member or sponsor’s degree of risk aversion 8. Fig. 17 shows the portfolio weights for the three asset categories
for all three stages combined. Comparing with Fig. 12, we see that the asset allocation is still dominated by the
requirements of stages 1 and 2 first to build up duration on the asset side and then, once this is equal to that of the
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Fig. 17. Financial asset composition with higher contributions.

liabilities, to switch into the LIP. Nevertheless, there is a small role for conventional bonds during the third stage to
improve risk diversification: the average holding throughout the period is 4.3%. Fig. 18 shows the combined effect
of backloading and excess funding on both the surplus and call and put values. The effect of backloading is to pull
the surplus down and this effect dominates in the early period, but eventually the influence of the excess financial
assets begins to dominate and helps to push the surplus up to £ 54 500 just prior to retirement: the sponsor exercises
the call option and withdraws the surplus just as the member retires. The pattern to the call value is explained by
the build up of high-yielding equities during stage 1, followed by the rapid switchover into lower-yielding index
bonds combined with the continued investment in equities during stage 2.

Finally, Fig. 19 shows the probabilities of scheme insolvency under different circumstances. In the case of a
single-member scheme with a minimum contribution rate of 4.86%, the probability of scheme insolvency remains
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high (above 50%) throughout the life of the scheme. The insolvency probability falls as the contribution rate rises,
but even a contribution rate of 10% still results in a high insolvency probability until well into the second half of

the scheme’s existence. However, the insolvency probability falls dramatically in multi-member schemes

16 We assume one new member joins the scheme every year.

16 even
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if only the minimum contribution rate is made into the scheme. This results from the diversification effects from
having a portfolio of members at different stages in the same scheme.

7. Conclusion

We have shown that different pension schemes can be treated as different combinations of put and call options
on the underlying assets in the scheme with exercise prices related to the value of the liabilities. For example, a
defined benefit scheme is equivalent to a defined contribution scheme plus a put option (issued by the sponsor)
minus a call option (issued by the member). This has important implications for the management of pension fund
assets. Because the option values depend on both the size and volatility of the pension fund surplus, it is natural for
pension fund managers to wish to manage both the surplus and surplus risk using the technique of asset-liability
management. ALM has to be implemented as a dynamic strategy of continuous immunisation, involving dynamic
reallocations of the asset portfolio between equities, index bonds and conventional bonds as the duration of the
liabilities changes. Initially, the optimal strategy is to build up duration by investing in equities. Once the duration
of the pension assets equals that of the liabilities, then the optimal strategy is continuous immunisation using a
liability immunising portfolio of financial assets. For an unchanged degree of risk aversion, this will lead to a
regular rebalancing of the portfolio away from equities and towards index bonds and then, if there are excess assets,
towards conventional bonds. !7 The option properties can be used to assess both the appropriateness of the funding
level and the effectiveness of the fund management strategy by providing an estimate of the probability of scheme
insolvency. Scheme sponsors who are concerned that this probability is too high can reduce it to any desired level
by raising the contribution rate into their scheme by a suitable amount.
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