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Abstract

One of the key motivations in the construction of ever more so-
phisticated mortality models was the realisation of the importance of
“cohort effects” in the historical data. However, these are often dif-
ficult to estimate robustly, due to the identifiability issues present in
age/period/cohort mortality models, and exhibit spurious features for
the most recent years of birth, for which we have little data. These
can cause problems when we project the model into the future. In
this study, we show how to ensure that projected mortality rates from
the model are independent of the arbitrary identifiability constraints
needed to identify the cohort parameters. We then go on to develop
a Bayesian approach for projecting the cohort parameters, which al-
lows fully for uncertainty in the recent parameters due to the lack of
information for these years of birth, which leads to more reasonable

∗Material in this paper was presented under the title “Projecting mortality: Identi-
fiability with trend changes and cohort effects” at the 17th International Congress on
Insurance: Mathematics and Economics in July 2013 in Copenhagen, Denmark. We are
grateful to participants at this conference, and to Matthias Börger, Frank van Berkum,
Andrew Cairns, Pietro Millossovich and Andrés Villegas for useful discussions regarding
this work.
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projections of mortality rates in future.
JEL Classification: C11, C15, C32
Keywords: Mortality modelling, age/period/cohort models, identifi-
cation issues, projection, consistency, cohort parameters

1 Introduction

One of the key motivations in the construction of ever more sophisticated
mortality models was the realisation of the importance of “cohort effects” in
the historical data, as described in Willets (1999, 2004). These are lifelong
mortality effects, which systematically raise or lower the observed mortality
rates for individuals born in the same year. Often, these cohort effects can
be linked to the specific life histories of the individuals in question and can
relate to events such as epidemics, changes in lifestyles such as the rise and
fall of smoking rates, increases in obesity or changes in the provision of med-
ical care. While the specific attribution of cohort effects to these events is
still controversial in some quarters (for instance, see Murphy (2009, 2010)),
there is clear evidence to show that mortality models which include parame-
ters to capture the effect of year of birth give closer fits to the historical data
than those lacking such parameters (for instance, see Cairns et al. (2009) and
Haberman and Renshaw (2011)).

However, the inclusion of cohort parameters in age/period/cohort mor-
tality models brings with it significant problems. First, the collinearity
of the dimensions of age, period and cohort (i.e., the fact that period =
yearofbirth + age) generates complicated identifiability issues in sophisti-
cated mortality models, which require both additional identifiability con-
straints in order to fit the model to data and extra care to be taken to ensure
that the choice of these constraints does not affect the projection of future
mortality rates. These are discussed in a general context in Hunt and Blake
(2015f).

Second, we encounter the problem that cohort parameters for the most
recent years of birth are estimated on the basis of relatively little data. This
means that many of the features we see for these years of birth may be spuri-
ous and caused by a combination of the limited information and difficulty in
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accurately specifying an appropriate age/period structure for the model at
younger ages. The second of these factors is reduced by using the “general
procedure” for constructing a mortality model, proposed in Hunt and Blake
(2014) as a method for selecting the appropriate age/period terms in a mor-
tality model. However, this procedure alone will not deal with the limited
information we have regarding the most recent cohorts. The spurious features
observed for recent years of birth can lead to unreasonable projections of fu-
ture mortality rates as these cohort reach older ages, as shown in Cairns et al.
(2011). Furthermore, classical approaches for projecting the cohort parame-
ters also understate the uncertainty in these recent cohort parameters, and
assume that the cohort parameters estimated on the basis of historical data
are known (subject to parameter uncertainty) rather than an initial estimate
of an ongoing process.

In this study, we develop a new Bayesian approach for modelling and pro-
jecting the cohort parameters from the model constructed in Hunt and Blake
(2014). This approach gives projections of mortality rates which make suit-
able allowance for the uncertainty in the estimated cohort parameters and
ensures this uncertainty blends smoothly into our projections of parameters
for future years of birth. This approach must be performed in conjunction
with a full analysis of the identifiability issues present in the cohort param-
eters at the estimation stage, which also guarantees that the projections do
not depend on the arbitrary identifiability constraints we use when fitting the
model. We then apply this approach to the projection of the survivorship of
future cohorts, which is vital for many purposes, such as valuing annuities
and a large number of the longevity-linked securities that have been pro-
posed to date. In combination with the findings of the companion study to
this paper (Hunt and Blake (2015a)) we aim to present a range of techniques
for projecting mortality rates in future which are consistent with the features
observed in the historical data and which make full allowance for the uncer-
tainty in future projections.

We start in Section 2 by reviewing the model constructed in Hunt and Blake
(2014) for men in the UK and, in particular, the features of the cohort param-
eters from it. In Section 3, we describe the identifiability issues present in the
model with respect to the cohort parameters and the impact these have on
the time series we use to project future cohort parameters. In Section 4, we
discuss the problems encountered with using classical time series approaches
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to project the cohort parameters and the need for an approach which goes
beyond this to allow fully for the uncertainty in the fitted cohort parame-
ters. We develop such an approach in Section 5, using Bayesian techniques to
combine an assumed dynamic process for generating the cohort parameters
with the observations of each cohort to date. In Section 6, this approach is
contrasted with the classical approach for the projection of probabilities of
survival for different cohorts and the valuation of annuities. Finally, Section
7 concludes.

2 The fitted cohort parameters

We first use the general procedure (GP) to construct a suitable mortality
model for data from the Human Mortality Database (2014) for men aged 0
to 100 in the UK over the period 1950 to 2009. The GP constructs a bespoke
mortality model in the class of age/period/cohort (APC) models, discussed
in Hunt and Blake (2015h), of the form

ln(µx,t) = αx +
7

∑

i=1

f (i)(x; θ(i))κ
(i)
t + γt−x (1)

where

• age, x, is in the range [0, 100], period, t, is in the range [1950, 2009] and
therefore that year of birth, y, is in the range [1850, 2009];

• αx is a static function of age;

• κ
(i)
t are period functions governing the evolution of mortality with time;

• f (i)(x; θ(i)) are parametric age functions (in the sense of having a spe-
cific functional form selected a priori) modulating the impact of the
period function dynamics over the age range, potentially with free pa-
rameters θ(i);1 and

• γy is a cohort function describing mortality effects which depend upon
a cohort’s year of birth and follow that cohort through life as it ages.

1For simplicity, the dependence of the age functions on θ(i) is supressed in the notation
used in the remainder of this paper, but not in the model itself.
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A summary of the terms in the models and their demographic signifi-
cance2 is given in Table 1.

Term Description Demographic significance
αx Static age function Constant shape of mortality curve

f (1)(x)κ
(1)
t Constant age function Level of mortality curve

f (2)(x)κ
(2)
t Linear age function Slope of mortality curve

f (3)(x)κ
(3)
t Gaussian age function Young adult mortality

f (4)(x)κ
(4)
t “Put option” age function Childhood mortality

f (5)(x)κ
(5)
t Rayleigh age function Postponement of old age mortality

f (6)(x)κ
(6)
t Log-normal age function Peak of accident hump

f (7)(x)κ
(7)
t Gaussian age function Late middle / old age mortality

γy Cohort parameters Lifelong year of birth effects

Table 1: Terms in the final model of Hunt and Blake (2014)

In this paper, we focus on the cohort parameters fitted by the model,
shown in Figure 1.3 These represent lifelong mortality effects specific to dis-
tinct years of birth which we interpret in terms of the life histories of the
relevant cohorts in Hunt and Blake (2014). Note that we do not estimate
cohort parameters for the first and last ten years of birth in the data, due to
the limited number of observations of these cohorts.

Given our desire for the cohort parameters to have the demographic sig-
nificance discussed in Hunt and Blake (2015h), we would like our projections
of the cohort parameters to have the following properties:

• The cohort parameters should represent genuine lifelong mortality ef-
fects, rather than being mis-classified age/period effects resulting from
an incorrect specification of the model. This is an especially large prob-
lem for the most recent years of birth, since cohort parameters for these
years are only estimated on the basis of data at younger ages, where it

2Demographic significance is defined in Hunt and Blake (2015h) as the interpretation
of the components of a mortality model in terms of the underlying biological, medical or
socio-economic causes of changes in mortality rates which generate them.

3For a discussion of the period parameters and methods for projecting them, see
Hunt and Blake (2015a).
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Figure 1: Cohort parameters

is more difficult to properly specify the age/period terms in a model.
We deal with this by using the general procedure to sequentially select
age/period terms which capture all the significant age/period structure
in the data, before adding a set of cohort parameters to the model.

• The cohort parameters should lack trends, i.e., have Eγy = 0 uncon-
ditionally for all y for both past and future years of birth. This is
consistent with the notion that the cohort effects represent a devia-
tion from the level of mortality for a “typical” cohort. We achieve this
through careful choice of our identifiability constraints, as discussed in
Section 3.

• The projected cohort parameters should be stationary, in the sense
that the variability of the cohort parameters around the central trend
should not change with time. We do not believe there is any compelling
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reason to suppose that the variability in the lifelong mortality factors
should be any greater for future cohorts than for those observed to
date. This is also consistent with the belief that cohort effects may
persist for several years or decades, but should not result in permanent
changes in the level of mortality, otherwise they should be re-classified
as period effects.

• The projected cohort parameters should be independent of the period
effects. For a full discussion of this issue, see Hunt and Blake (2015f).
In addition, we believe that cohort effects have very different demo-
graphic significance from the period effects and so an assumption of
independence is both practical and parsimonious.

• The projection method used for the cohort parameters should take
account of “unusual” birth cohorts, such as those in 1919/1920 and
1946/1947. Based on the analysis of Richards (2008) and Cairns et al.
(2014), we believe that the unusual mortality rates associated with in-
dividuals born in these years are not due to genuine cohort effects, but
are artefacts of the data. These are caused by the atypical and uneven
pattern of births occurring in these years as a result of the demobilisa-
tions of soldiers after the First and Second World Wars, respectively,
which, in turn, led to a mis-estimation of the size of the exposed pop-
ulation for those years of birth. A Third World War lies outside the
scope of any mortality model to project, and will primarily and most
immediately be felt as a period rather cohort effect on mortality rates.
Therefore, it seems reasonable not to allow for similar cohort effects to
re-occur in future. Nevertheless, the observed cohort effects will per-
sist in observed mortality rates in future. We accommodate this by
allowing for indicator variables to capture the outliers in these years
and deal with them in the historical parameters without affecting our
estimates of the time series used to project the parameters into the
future.

There is currently no well-established method for projecting the cohort
parameters. A number of techniques are discussed in Cairns et al. (2011).
Many of these fit time series from the ARIMA family in order to make pro-
jections. The classical approach to projecting the cohort function is to use
Box-Jenkins methods to fit a preferred time series process to the historical co-
hort parameters and then to use this process to project them into the future.
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The limitations of this approach in obtaining projected parameters which
have consistency between the past and future are discussed in Section 4. In-
stead, we discuss how projections of the cohort parameters can be obtained
using a Bayesian approach which allows adequately for the uncertainty in
the parameters in Section 5.

3 Identifiability issues when projecting cohort

parameters

Many mortality models are not fully identified. This means that we can
find transformations of the parameters in the model which leave the fitted
mortality rates unchanged.4 To uniquely specify the parameters, we impose
identifiability constraints. These constraints are arbitrary, in the sense that
they do not affect the fit to data, but they do allow us to impose our desired
demographic significance on the terms in the model. These issues are dis-
cussed in detail in Hunt and Blake (2015e) and Hunt and Blake (2015f).

Using the results of Hunt and Blake (2015f), we observe that the following
transformations involving the cohort parameters leave the fitted mortality
results unchanged5

{α̂x, κ̂
(1)
t , κ̂

(2)
t , κ̂

(3)
t , γ̂y} = {αx − a0, κ

(1)
t , κ

(2)
t , κ

(3)
t , γy + a0} (2)

{α̂x, κ̂
(1)
t , κ̂

(2)
t , κ̂

(3)
t , γ̂y} = {αx + a1(x− x̄), κ

(1)
t − a1(t− t̄), κ

(2)
t , κ

(3)
t ,

γy + a1(y − ȳ)} (3)

{α̂x, κ̂
(1)
t , κ̂

(2)
t , κ̂

(3)
t , γ̂y} = {αx − a2((x− x̄)2 − σy + σt), κ

(1) − a2((t− t̄)2 − σt),

κ
(2)
t + 2a2(t− t̄), κ

(3)
t , γy + a2((y − ȳ)2 − σy)} (4)

The degrees of freedom represented by the free parameters a0, a1 and a2 in
these transformations need to be used to impose three identifiability con-
straints on the cohort parameters when fitting the model. We choose these

4These are called “invariant transformations” in Hunt and Blake (2015e,f) for this rea-
son.

5Here, X is the number of ages in the data, x̄ = 1
X

∑

x x and σx = 1
X

∑

x(x− x̄)2, and
similarly for t̄, ȳ, etc. Also note that, to aid understanding of these complex relationships,
Equations 2, 3 and 4 do not incorporate the normalisation factors required on the age
functions in order to ensure that

∑

x |f
(i)(x)| = 1 ∀i. These will need to be included

before the model is fitted to data.
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to be
∑

y

nyγy = 0 (5)

∑

y

nyγy(y − ȳ) = 0 (6)

∑

y

nyγy((y − ȳ)2 − σy) = 0 (7)

where ny is the number of observations of each cohort in the data. The
justification for these constraints is that they appear to remove polynomial
trends up to quadratic order in the cohort parameters at the fitting stage,
so that they conform better with the demographic significance described in
Hunt and Blake (2015h) and in Section 2, i.e., that the cohort parameters
should be centred around zero and not have any long-term trends.

However, it is important to note that the choice of these constraints is
arbitrary and it is important that they do not affect our projections of mor-
tality rates. We see that Equation 2 adds a constant to γy, Equation 3 adds
a term linear in year of birth to γy and Equation 4 adds a term quadratic in
year of birth to γy. These can be combined and written as

γ̂y = γy + a0 + a1(y − ȳ) + a2
(

(y − ȳ)2 − σy

)

= γy + AXy (8)

where Xy =
(

1, y, y2
)⊤

. This transformation converts one set of fitted
parameters (using one set of identifiability constraints) into an alternative
set of parameters (which satisfy a different set of identifiability constraints).
These two sets of parameters, γy and γ̂y, are equivalent: they give the same
fitted mortality rates and so there is no statistical reason for preferring one
over the other.

As discussed in Hunt and Blake (2015f), identifiability under this trans-
formation means that we need to allow for linear and quadratic trends within
the cohort parameters, even if they are not apparent visually. The desire for
a stationary distribution around these central, deterministic trends leads us
to use an ARMA time series process of the form

Φ(L)(γy − βXy) = Ψ(L)ǫy (9)
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where β is a matrix of regression coefficients found from analysing the fitted
parameters and L is the lag operator. We can see that this is well-identified
by applying the transformation in Equations 8 to Equation 9 to obtain an
equivalent set of parameters, which we then substitute into Equation 9 to
give

Φ(L)(γ̂y −AXy − βXy) = Φ(L)(γ̂y − β̂Xy) = Ψ(L)ǫy (10)

Doing this has changed the numerical values of the regressors in β, but noth-
ing fundamental about the time series, such as the moving average and au-
toregressive terms, Φ and Ψ. Hence, if the time series process was appro-
priate for γy, it is also appropriate for γ̂y and, therefore, appropriate for all
different sets of identifiability constraints. Hence, this time series model is
well-identified.

The specific nature of the time series can be set by choosing the poly-
nomials Φ(L) and Ψ(L). Classically, these are selected via a modified Box-
Jenkins process, which takes care to include the βXy term. Alternatively, we
can work backwards from our desired demographic significance of the cohort
parameters to select Φ(L) and Ψ(L), whilst also including the βXy term to
ensure that the process is well-identified.

For instance, an AR(1) process, with Φ(L) = 1−ρL and Ψ(L) = 1, might
be felt to be consistent with the desired demographic significance as it is
stationary, parsimonious, but still allows for persistent cohort effects. AR(1)
processes are often used for the cohort parameters in mortality models, for in-
stance in Cairns et al. (2011). In order to make this well-identified, however,
we could choose to project using an AR(1) process around a quadratic trend
by including a βXy term. This is the “AR(1) process around a quadratic
drift” process discussed in Hunt and Blake (2015f) for the model of Plat
(2009).

When we project using the AR(1) process around a quadratic drift, we
obtain Eγy = βXy unconditionally. Consequently, it might be felt that there
is a conflict between the need for the time series process to be well-identified
and our desired demographic significance for the cohort parameters, namely
that they lack trends. We need to allow for quadratic trends in order to give
well-identified projections, but we would like these trends to be zero (i.e.,
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we would like to have β = 0) based on our (subjective) demographic sig-
nificance. Clearly, the need to have well-identified projections which do not
depend upon arbitrary identifiability constraints is more important. How-
ever, it is possible to achieve both aims simultaneously.

As shown by Equation 10, the value of β found depends upon the iden-
tifiability constraints imposed. In Hunt and Blake (2015f), we argued that
the choice of identifiability constraints is arbitrary, and no one set of iden-
tifiability constraints is preferable on statistical grounds to any other. We
also know that the transformation in Equation 8 allows us to change between
different, equivalent sets of parameters (i.e., different arbitrary identifiability
constraints) without changing the historical fit to data, whilst using well-
identified projection processes for the period and cohort parameters means
that the arbitrary choice of identifiability constraints will not affect the pro-
jected mortality rates. We therefore propose the following approach.

First, we fit the model as in Section 2, imposing the constraints in Equa-
tions 5, 6 and 7. These constraints are convenient when fitting the model as
they are simple to apply (by regressing the cohort parameters on the relevant
deterministic trends) and do not depend upon what time series process we
subsequently use to project the period and cohort parameters.

Second, we select an appropriate time series process for the cohort param-
eters, working backwards from our desired demographic significance for the
parameters and the need for the process to be well-identified, as discussed
in Hunt and Blake (2015f). For illustrative purposes, we select the AR(1)
around quadratic drift process discussed above.

Third, we fit an AR(1) around quadratic drift to the fitted cohort pa-
rameters. In doing so, we find β =

(

0.74, −2.45× 10−4, 1.16× 10−5
)

.
Numerically, these regression coefficients are small, however it is important
to note that they are not equal to zero. We note that there is a constant
level for the cohort parameters and, in the long run, the small quadratic trend
in the cohort parameters will result in the projected cohort parameters di-
verging significantly from zero, which conflicts with our desired demographic
significance.

One might be tempted to test β for statistical significant and potentially
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set it to be zero on these grounds. However, the magnitude of β is entirely
dependent upon the identifiability constraints used, i.e., even if β is small, we
see from Equation 10 that β̂ = β+A can be arbitrarily large depending upon
the value of A. Therefore, any decision to ignore β would also be entirely
dependent upon the arbitrary identifiability constraints. Thus, we are unable
to test β and set it to zero if it proves statistically insignificant, since the
results of any statistical tests on them would also depend upon the arbitrary
identifiability constraint. Hence, the choice of time series to use for γy cannot
be motivated by arguments based on statistical significance or goodness of
fit, but must be determined by the identifiability issues present in the model,
in order to avoid generating poorly-identified projections of mortality rates
that depend on the arbitrary constraints imposed when fitting the model.

However, since the value of β depends upon the identifiability constraints,
we can impose β = 0 by choosing a new set of identifiability constraints. To
do this, we use the transformations in Equation 8, with A = −β found above.
This gives an equivalent set of historical parameters, with the original con-
straints in Equations 5, 6 and 7 over-ridden by the new constraint, β̂ = 0 by
construction. Imposing β = 0 in this fashion does not change our fitted mor-
tality rates (since it merely involves using the invariant transformations), nor
does it affect the projected mortality rates, since all the time series processes
used for the period and cohort parameters are well-identified. However, it
will ensure that our projected cohort parameters have the subjective demo-
graphic significance we desire for them from Hunt and Blake (2015h), namely
that they lack deterministic trends.

The identifiability constraint β = 0 could not have been imposed when
fitting the model to data, since it depends on knowing which time series pro-
cess we would use to project the cohort parameters a priori.6 It therefore
makes sense - and is certainly more convenient - to use the original set of

6In principle, if the final time series processes are known in advance or determined by
a trial two-step sequential estimation of the model and time series processes, it is possible
to fit the model and time series processes to data jointly in a one step process. This can be
done either using maximum likelihood techniques, as in Dowd et al. (2011), or Bayesian
Markov chain Monte Carlo techniques, as in Pedroza (2006). However, such techniques
are complicated to implement and so are not practical when using sophisticated mortality
models or if the model is intended to be used for different datasets, where different time
series processes might be appropriate.

12



identifiability constraints (Equations 5, 6 and 7), to fit the model to data
and analyse the fitted cohort parameters. Once we have done this and cho-
sen an appropriate time series process to project the cohort parameters, the
fitting constraints can be revisited and we can switch to the more convenient
set of identifiability constraints for projecting the model. Because all sets
of fitted parameters give the same fitted mortality rates, and because using
well-identified projection methods for both the period and cohort parameters
means that, when we project any of these sets of parameters, we obtain the
same projected mortality rates, we are free to switch between them at any
stage of the analysis depending on which set of identifiability constraints is
most convenient at the time. This is discussed in depth in Hunt and Blake
(2015f).

4 The classical time series approach to pro-

jecting cohort parameters

When fitting time series models to the cohort parameters, many authors use
Box-Jenkins methods to select an appropriate model. Even when allowing
for the identifiability issues in the cohort parameters discussed in the pre-
vious section, these methods implicitly assume that the observed values of
the time series are all known with the same degree of certainty. However, we
have considerably less information about the latest cohorts than the earlier
ones. It is therefore important to use methods which apply less weight to
the later cohorts when estimating any time series parameters. Therefore, the
classical Box-Jenkins framework is not appropriate.

To demonstrate this, consider the pattern of cohort effects shown in Fig-
ure 1 and, in particular, the most recent downward trend in the parameters
dating from around 1975. Fitting a time series using standard Box-Jenkins
methods would give these 25 years’ worth of data points the same weight as
the parameters covering the period from 1920 to 1945, for instance. However,
the cohort effects for the most recent years of birth are considerably more
uncertain for two reasons.

First, we have observed these cohorts for less time and so have fewer
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annual observations of them. For example, we have only 30 observations of
the cohort born in 1980 in our data, whilst we have 90 observations of the
cohort born in 1920. We recognised this was an issue in fitting the model
to the extent that we did not attempt to estimate parameters for years of
birth with fewer than ten observations. It would, therefore, be inconsistent
to then disregard this issue when we come to project the cohort parameters.

Second, these cohorts comprise young people whom we would not expect
to have died in large numbers during the period we have been observing
them. Not only are we making estimates based on fewer observations, but
these observations are associated with very few deaths. As a consequence,
any conclusions on the mortality in these most recent cohorts is subject to
very considerable uncertainty.

We can see this more formally by considering the Fisher information ma-
trix under maximum likelihood estimation assuming the death count, Dx,t,
for each age and period is a conditionally Poisson-distributed random vari-
able, which will give a lower bound for the standard deviation of our param-
eter estimates via the Cramér-Rao bound:

I(γy) = −E

[

∂2L

∂γ2
y

]

=
∑

x

Wx,y+x Ec
x,y+x µx,y+x

=
∑

x

Wx,y+x EDx,y+x (11)

≥
1

Var(γy)

where Ec
x,t are the observed central exposures to risk and Wx,t are a set

of weights for each age and period. This shows that the variance of a co-
hort parameter is inversely proportional to the number of deaths expected
to date for that year of birth. The observed cohort parameters are there-
fore unavoidably heteroskedastic. In contrast, Box-Jenkins methods assume
that the observations of the time series process under investigation are either
known with certainty or estimated with the same degree of uncertainty, and
so Equation 11 invalidates the traditional approach to selecting a time series
model in these circumstances.
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There are two potential “classical” methods which could be used to resolve
this issue:

• We could fit an ARIMA time series process using a weighted least
squares approach, and explicitly give less weight to cohort parameters
felt to be more uncertain when estimating the time series parameters.

• We could allow for parameter uncertainty in our estimates of the his-
torical cohort effects, for instance, by using Bayesian techniques (as
in Pedroza (2006)) or by residual bootstrapping (as in Koissi et al.
(2006)).

Both of these methods make some attempt to correct for the higher level of
uncertainty in the recent cohort effects when we come to select a time series
process and estimate the parameters within it.

However, classical approaches assume that the existing parameter esti-
mates will not be revised in the light of the new information that future
data will contain. This, therefore, still assumes that there is a discontinuity
between the “known” historical parameters used to estimate the process and
the unknown future parameters which are projected, as shown in Figure 2
using an AR(1) process for the cohort parameters.7 This discontinuity leads
to a sharp increase in the modelled level of uncertainty in the parameters
between the historical parameters and the projected parameters.

This is not reasonable for the cohort parameters, because we will con-
tinue to observe cohorts born recently for decades into the future and use
these observations to revise the estimated cohort parameters on an ongoing
basis. To illustrate, the last fitted cohort parameter we have is for year of
birth 1999 and the first projected cohort parameter is for 2000. The clas-
sical approach would assume that γ1999 is known with certainty whilst γ2000
needs to projected. However, we will continue to observe both cohorts for
nearly a century, and so our current estimate of γ1999 should be considered an
approximation based on partial information and subject to future revision.
In addition, we possess only slightly more information for estimating γ1999

7Note that, for consistency with Figure 4, this uses the same identifiability constraints
as are later applied in Section 5.

15



Year of Birth
1850 1900 1950 2000 2050 2100

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
γ

y

Figure 2: 95% fan chart of the projected cohort parameters using the classical
time series approach
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than γ2000 and so the assumption that one is known whilst the other is un-
known is inconsistent with the data we possess. In order to obtain a desired
consistency between the historical and projected cohort effects, we use the
Bayesian approach described in Section 5 which is capable of allowing for the
incomplete nature of the information we have regarding cohorts which are
currently alive when projecting the cohort parameters.

5 A Bayesian approach for projecting the co-

hort parameters

From Section 4, we see that we must be careful when allowing for the un-
certainty in the cohort parameters, since our estimates to date will be based
only on incomplete information. In attempting to allow for this uncertainty,
it therefore makes sense to develop a process that is consistent with the na-
ture of our observations of each cohort.

We do this using a Bayesian technique, since Bayesian methods are well
suited to the situation where there is inherent uncertainty in parameter es-
timates based on partial information, but there are prior views regarding
the process generating the data. Bayesian methods have been used exten-
sively to fit various mortality models to data, for instance in Pedroza (2006),
Cairns et al. (2006), Reichmuth and Sarferaz (2008) and Mavros et al. (2014),
often using Markov chain Monte Carlo (MCMC) techniques. However, they
have not been used to model the underlying processes generating the cohort
parameters. Accordingly, the fitted values of γy from models with cohort
parameters fitted using MCMC techniques will suffer from exactly the same
issues as those described in Section 4. Instead, we construct a Bayesian
framework for the cohort parameters from the ground up, starting by speci-
fying the underlying data generating process of each individual cohort param-
eter and then incorporating a (well-identified) time series process governing
the evolution of the cohort parameters across years of birth.
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5.1 The data generating process

We start by noting that our dataset gives us a limited number of observations
for each cohort, each of which gives us a small amount of information regard-
ing the mortality effects specific to that cohort. We also note that the value
of each observation is proportional to the fraction of the cohort which dies at
that age, with ages with many deaths providing relatively more insight than
ages experiencing few deaths. We formalise this intuition as follows.

Consider a cohort born in year y where a proportion, dx, of the total co-
hort dies at age x (assuming ages in the range [1, X ] and no other decrements
from the population other than death, such as migration). For simplicity, dx
is assumed to be the same for all cohorts.8 Therefore, by the time the cohort
has reached age x, we have seen a proportion, Dx =

∑x

ξ=1 dξ, of the cohort

die. Trivially, DX =
∑X

ξ=1 dξ = 1.

We start by assuming that each observation of cohort y at age x gives us
a packet of information, γx

y , relating to the cohort-specific mortality effects.
We assume

γx
y |Γy, σ

2 ∼ N

(

Γy,
σ2

dx

)

(12)

where Γy is the common mean of the information packets for year of birth
y. We assume that the information packets are conditionally independent
of each other, apart from sharing a common mean. This implies that an
observation of a cohort at age 50 only depends upon the observation of the
same cohort when it was aged 40 via the mean, Γy, and so observations of
the γx

y can be used to estimate this unknown variable. We will assume a
prior distribution for Γy based on the time series structure for the cohort
parameters considered in Section 5.2.

What we are primarily interested in, however, is the “ultimate” cohort
parameter, γy. This is the lifelong mortality effect experienced by the cohort,
and is constructed from the packets of information observed at each age.
Because the ultimate cohort parameter is a lifelong effect, it will only be

8In practice, we take dx to be given by the fitted mortality rates in the final year of the
data. However, the results are relatively insensitive to the choice of dx as long as these
reflect a plausible pattern of deaths from a cohort across different ages.
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known fully at the extinction of the cohort (i.e., at time y +X), and will be
unobservable at any time before this. We assume that the ultimate cohort
parameter is given by the weighted sum of the information packets, with the
weights given by the schedule of deaths for the cohort, i.e.,

γy =
X
∑

x=1

dxγ
x
y (13)

From this, we find the distribution of the ultimate cohort parameter, assum-
ing we have observed no information packets to date (e.g., for cohorts which
have yet to be born)

γy|Γy, σ
2 ∼ N(Γy, σ

2) (14)

Thus, Γy is also the mean of the ultimate cohort parameter, as well as the
mean of the information packets. Note that the packets are all a lot more
variable than the ultimate cohort parameter, since dx will tend to be small
(since typically less than 5% of people in a cohort die at each age).

As stated previously, before the extinction of the cohort, γy is unobserv-
able. However, we will have partial information regarding its value, based
on the packets of information observed to date. The challenge, therefore, is
to find the distribution of the ultimate cohort parameter given the partial
information we have at time t. We will typically assume that t is fixed at the
current year of observation (i.e., the last year of the dataset).9 At this time,
we have received the first t− y packets of information, i.e., γx

y , x ∈ [1, t− y].

We, therefore, define the partial sum of the packets, γ
y
(t) =

∑t−y

x=1 dxγ
x
y . The

distribution of this partial sum in the absence of any observations of the
cohort is given by

γ
y
(t)|Γy, σ

2 ∼ N
(

Dt−yΓy, Dt−yσ
2
)

(15)

Unlike the individual information packets, γx
y , the partial sums, γ

y
(t),

are, in principle, observable at time t and could be found from the available
data. However, they are not the same as the estimated cohort parameters

9In Hunt and Blake (2015c), this is relaxed and the year of observation is allowed
to change to reflect the impact of new observations on the previously estimated cohort
parameters.
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found when fitting a mortality model to the available data at time t. This is
because the expected value of the partial sums depends upon Dt−y, i.e., the
proportion of the cohort expected to have died to date, and so we observe
very small values of γ

y
(t) for cohorts which have just been born, but consid-

erably larger values for older cohorts (for fixed Γy). This is inconsistent with
the assumption, implicit in the majority of APC mortality models, that the
cohort parameters have the same scale.10

To deal with this, we define “interim” cohort parameters, γy(t) =
1

Dt−y
γ
y
(t).

From Equation 15, we see that the γy(t) have distribution

γy(t)|Γy, σ
2 ∼ N

(

Γy,
1

Dt−y

σ2

)

(16)

Not only do the γy(t) have means independent of Dt−y, they have variances
which are inversely proportional toDt−y, the number of deaths expected from
the cohort to date, which is consistent with Equation 11 and the analysis of
Section 4.

Accordingly, we identify the interim cohort parameters, γy(t), with the
cohort parameters estimated by the model in Section 2 and shown in Figure
1. Hence, we are able to obtain values of γy(t) by fitting the APC model
to data. The interim cohort parameters, γy(t), are therefore assumed to be
known at time t, as opposed to having the distribution in Equation 16, and
similarly the partial sums, γ

y
(t), are also assumed to be known at time t. It

is trivial to move between the fitted γy(t) and the partial sums, γ
y
(t), which

are more fundamental in the analysis.

We can use the knowledge of γy(t) (and γ
y
(t)) to update the distribution

for the ultimate cohort parameter, γy, by conditioning on the partial infor-
mation we have to time t. To do this, we note that, for times in the interval

10This is a consequence of having a simplified age/cohort structure and setting β
(0)
x = 1,

discussed in Hunt and Blake (2015h).
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y ≤ t < y +X

γy =

t−y
∑

x=1

dxγ
x
y +

X
∑

x=t−y+1

dxγ
x
y

= γ
y
(t) +

X
∑

x=t−y+1

dxγ
x
y (17)

Therefore, from Equation 12, we find

γy|γy
(t),Γy, σ

2 ∼ N(γ
y
(t) + (1−Dt−y)Γy, (1−Dt−y)σ

2) (18)

Thus, we have found the distribution of the ultimate cohort parameters for
year of birth, y, conditional on our observations of the cohort to date and its
prior expected value. However, we have not made any assumptions regarding
the form that this prior expectation should take and, in particular, how this
expected value relates to the values for neighbouring cohorts.

5.2 Time series dynamics

The dependence of the ultimate cohort parameters, γy, upon the preceding
cohorts is given by the time series process driving the dynamics of the cohort
parameters. These assumed time series dynamics act as a prior distribution
in the Bayesian approach. Working backwards from our desired demographic
significance for the cohort parameters, we said, in Section 3, that an AR(1)
process around a quadratic drift can provide relatively parsimonious projec-
tions in line with our desire for stationary but persistent cohort parameters.
Writing the AR(1) process around a quadratic drift in distributional terms
gives

γy|γy−1, β, ρ, σ
2 ∼ N

(

βXy + ρ(γy−1 − βXy−1), σ
2
)

(19)

Comparing this with Equation 14, we see that using the AR(1) process
around a quadratic drift is equivalent to setting Γy = βXy+ρ(γy−1−βXy−1).

11

This choice for Γy also feeds through into the distributions both of the partial
sums, γ

y
(t), in Equation 15 to give

γ
y
(t)|γy−1, β, ρ, σ

2 ∼ N
(

Dt−y(βXy + ρ(γy−1 − βXy−1)), Dt−yσ
2
)

(20)

11The model could, theoretically, be extended to allow for more lags and an AR(p)
structure via a different choice for Γy.
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and of the information packets, γx
y , in Equation 12 to give12

γx
y |γy−1, β, ρ, σ

2 ∼ N

(

βXy + ρ(γy−1 − βXy−1),
σ2

dx

)

(21)

To incorporate both sources of information regarding the ultimate cohort
parameter, γy (i.e., the partial information observed to date for the cohort
and that from the cohort parameter for the previous year of birth using the
time series structure), we substitute the expression for Γy into Equation 18,
to obtain

γy|γy
(t),γy−1, β, ρ, σ

2 ∼

N
(

γ
y
(t) + (1−Dt−y)(βXy + ρ(γy−1 − βXy−1)), (1−Dt−y)σ

2
)

(22)

This expression gives the distribution of the ultimate cohort parameter for
cohort, y, given our observations of the cohort parameter to date and the
previous ultimate cohort parameter, γy−1. It can, therefore, be considered as
the posterior distribution in the Bayesian approach, since it takes the prior
distribution given by the time series dynamics in Equation 19 and updates
it by incorporating the information observable in γ

y
(t). This posterior dis-

tribution can be used for simulation purposes, especially when it is rewritten
in the form

γy = γ
y
(t) + (1−Dt−y)(βXy + ρ(γy−1 − βXy−1)) + ǫy (23)

ǫy ∼ N(0, (1−Dt−y)σ
2)

We refer to this as the “updating equation”, which we can use to simu-
late sample paths for the ultimate cohort parameters, γy, over the range
t − X < y < Y (where Y is the last cohort in the data for which we have
estimated a cohort parameter).

If we were to write Equation 23 using the interim cohort parameters,
γy(t), estimated by the model, instead of the partial sums, γ

y
(t), we can see

that the expectation of the ultimate cohort parameter is of the form of a

12While the distribution for γx
y is not used here, it is necessary when updating the

estimates of the cohort parameters for additional data, as done in Hunt and Blake (2015c).
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weighted sum of the fitted parameter based on observations of the cohort to
time t and the expected value from the time series dynamics

Eγy|γy
(t), γy−1, β, ρ, σ

2 = Dt−1γy(t) + (1−Dt−y)(βXy + ρ(γy−1 − βXy−1))

In this form, the approach can be compared to a “credibility analysis” of
the cohort parameters as discussed in Chapter 7 of Kaas et al. (2001), since
our estimate of the true parameter is formed as a weighted average of our
observed parameter and what would be predicted by the time series. These
weights, i.e., the proportion of each cohort expected to have died by the
observation date, are shown in Figure 3. We can see that we place a high
degree of confidence in our estimates of the cohort parameters before c. 1930
(i.e., individuals currently aged around 80), but this falls rapidly for younger
cohorts. For these, the second term in Equation 23 will dominate.
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Figure 3: Deceased proportion of cohort, Dy
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While useful for simulation purposes, Equation 22 is not the end of the
story, since it is still conditional on knowing the previous ultimate cohort
parameter, γy−1. However, for the majority of cohort parameters, the previ-
ous ultimate cohort parameter will also be unknown at time t. Nevertheless,
it is possible to solve Equation 22 iteratively to remove the dependence on
γy−1 and obtain the distribution for the cohort parameter γy at time t, based
solely on the observations made to date. We do this by writing

γy|Ft,y, β, ρ, σ
2 ∼ N(M(y, t), V (y, t)) (24)

where Ft,y represents the sum total of information known at time t about
cohorts up to and including year of birth y, i.e., {γ

υ
(t) υ ≤ y}, and M(y, t)

and V (y, t) are the mean and variance functions, respectively. From Equation
22 and Bayes Theorem, we work backwards to give

γy|Ft,y, β, ρ, σ
2 ∼ N

(

γ
y
(t) + (1−Dt−y)(βXy + ρ(M(y − 1, t)− βXy−1)),

(1−Dt−y)σ
2 + (1−Dt−y)

2ρ2V (y − 1, t)
)

⇒ M(y, t) = γ
y
(t) + (1−Dt−y)(βXy + ρ(M(y − 1, t)− βXy−1) (25)

V (y, t) = (1−Dt−y)σ
2 + (1−Dt−y)

2ρ2V (y − 1, t) (26)

This gives us iterative equations for the mean and variances functions, respec-
tively, for the ultimate cohort parameters, based on the information observed
to date. This can be solved to give

M(y, t) =
∞
∑

s=0

[

s−1
∏

r=0

(1−Dt−y+r)

]

ρs
[

γ
y−s

(t) + (1−Dt−y+s)β(Xy−s − ρXy−s−1)
]

(27)

V (y, t) =
∞
∑

s=0

[

s−1
∏

r=0

(1−Dt−y+r)
2

]

(1−Dt−y+s)ρ
2sσ2 (28)

in closed form. We adopt the convention that empty products equal unity
(i.e.,

∏s−1
r=0(1 − Dt−y+r) = 1 for s = 0). It is also important to note that,

although these are written as infinite sums, they will in fact terminate, since
DX = 1.

So far, this analysis has assumed that we know the parameters of the
underlying time series dynamics, i.e., Equation 24 is conditional on knowing
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the values of β, ρ and σ2. In practice, these parameters have to be estimated
from the fitted cohort parameters, once we find the predictive distribution
for γ

y
(t)|Ft,y−1, i.e., the observed γ

y
(t), given all previous γ

υ
(t). This can be

calculated using Bayes Theorem and Equation 20 to give

γ
y
(t)|Ft,y−1, β, ρ, σ

2 ∼ N (Dt−y(βXy + ρ(M(y − 1, t)− βXy−1)),

Dt−yσ
2 + ρ2D2

t−yV (y − 1, t)
)

(29)

This predictive distribution gives us the distribution of an observable
quantity, γ

y
(t), in terms other observable quantities, γ

υ
(t) for υ < y (in

M(y − 1, t)), and the unknown time series parameters. This means that we
can use quasi-maximum likelihood methods to estimate β, ρ and σ2. As dis-
cussed in Section 3, in general, we will observe non-zero values for β, which
is undesirable given our demographic significance for the cohort parameters.
We, therefore, use the invariant transformations in Equations 2, 3 and 4 to
set β = 0, as discussed in Section 3. This also has the benefit of simplifying
both the expression for M(y, t) in Equation 27 and the projections of the
cohort parameters considerably.

So far, we have only considered the situation where we have two sources
of information for each cohort, the observations to date and the time series
structure. In order to project the cohort parameters into the future (i.e.,
beyond year of birth Y ), we do not have any observations to date and there-
fore we simply use the AR(1) structure to generate projections. To project
beyond the last fitted cohort parameter (assumed to be known for the time
being), the AR(1) process gives

γY+η|γY , ρ, σ
2 ∼ N

(

ρηγY ,
1− ρ2η

1− ρ2
σ2

)

To remove the dependence on γY , which will be unknown in practice, we use
Bayes Theorem to obtain

γY+η|Ft,Y ∼ N

(

ρηM(Y, t),
1− ρ2η

1− ρ2
σ2 + ρ2ηV (Y, t)

)

(30)

The variance in Equation 30 contains two parts. First, the variability from
projecting the time series, which increases to a constant σ2(1 − ρ2)−1 as
η → ∞ as expected. Second, there is the variability from the fact that our
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initial value γY is unknown: this source of variability decays exponentially.
However, as V (Y, t) < σ2(1 − ρ2)−1,13 this means that our confidence inter-
vals for γY+η increase with time towards a limit.

As with Equation 22, it is helpful to rewrite Equation 30 in the form of
an updating equation

γY+η = ργY+η−1 + εy

εy ∼ N(0, σ2)

which can be used for generating sample paths. Again, we see that this is
simply the time series process for an AR(1) process and is similar to Equa-
tion 23, but with Dt−y = 0 and β = 0, i.e., we are forecasting cohorts for
which there have been no observed deaths to date.

Figure 4 shows a fan chart of the values of the cohort parameters using this
method, with the fitted parameters indicated by a dotted line for comparison.
We note that the cohort parameters have three regimes:

1. y ≤ t−X (i.e., y ≤ 1909): our data has a complete set of observations
regarding the cohort and therefore we do not have any uncertainty in
the cohort parameters (i.e., γy = γ

y
(t) = γy(t)).

2. t − X < y ≤ Y (i.e., y ∈ [1910, 1999]): we have partial observations
for each cohort and, therefore, γy is not known with certainty but is
constructed from the observations to date and the time series dynam-
ics. However, older cohorts are considerably less variable as we have a
greater number of observations for these years of birth (and observa-
tions including ages where a larger proportion of the cohort is expected
to die). In contrast, the uncertainty in the parameter estimates grows
rapidly for more recent cohorts.

3. Y < y (i.e., y ≥ 2000): we have no observations for these years of birth
and so the projected cohort parameters are based solely upon the time
series dynamics assumed.

13Mathematically, this is a consequence of Dt−Y > 0. More intuitively, it can be seen
that σ2(1 − ρ2)−1 is the variability of a cohort parameter under the prior distribution
from the AR(1) time series without any additional information from the data to refine the
parameter estimate.
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Figure 4: 95% fan chart of the projected cohort parameters using the
Bayesian approach
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It is important to note that, despite the qualitative differences between
these three regimes, the confidence interval showing the uncertainty in the
parameters blends smoothly between the fitted and the projected parameters,
with no sharp discontinuity at the regime boundary. This is in contrast to
the classical approaches discussed in Section 4, which have the uncertainty of
the cohort parameters increasing sharply at the boundary between estimated
cohort parameters, y ≤ Y (assumed known) and projected cohort parame-
ters, y > Y (projected using the time series). This is important in many
applications, such as projecting annuity values for valuing longevity-linked
securities, as discussed in Hunt and Blake (2015g).

We also note from Figure 4 that the expectation of the ultimate cohort
parameter, M(y, t) (given by the centre of the confidence interval in Figure
4), can be significantly different from the cohort parameters estimated from
data to time t, γy(t). For instance, the interim cohort parameters for years of
birth after 1950 often lie outside the 95% prediction interval for the ultimate
cohort parameters. This should not concern us unduly, however, since these
most recent interim parameters are estimated on the basis of relatively little
historical data and so we give them very little weight in our analysis, as shown
in Figure 3. Therefore, we are not surprised if the ultimate cohort parameter,
revealed once the cohort is fully extinct, is significantly different from this
initial estimate. In contrast, classical approaches assume that the unusual
behaviour exhibited by the cohort parameters for the most recent years of
birth is genuine. This may give projections of mortality rates which are not
biologically reasonable.14 Indeed, it is a virtue of the Bayesian approach that
it can balance the evidence presented by these limited observations of the co-
hort with the time series process generating the cohort parameters to give
ultimate cohort parameters that agree with our demographic significance.

However, since the interim cohort parameters were fitted (along with the
other parameters in the model) on the basis of maximising the goodness of
fit to data, using the Bayesian approach will have fitted mortality rates that
give a worse fit to the historical data. However, the reduction in the good-
ness of fit is relatively marginal,15 as the difference between the two is only

14Introduced in Cairns et al. (2006) and defined as “a method of reasoning used to es-
tablish a causal association (or relationship) between two factors that is consistent with
existing medical knowledge”.

15We find log-likelihoods of −3.09× 10−4 using the estimated parameters and −3.25×
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significant for the most recent cohorts, for which we have relatively little
data to fit the model. However, this worsening of the goodness of fit is more
than compensated by the more plausible projections and increased allowance
for uncertainty in these parameter estimates. In addition, the use of the
Bayesian approach for the cohort parameters may appear inconsistent with
the use of the other fitted age and period functions in the model. However,
these other parameters are estimated over a wide range of years of birth and
so are not significantly affected by the changes to the most recent years of
birth caused by using the Bayesian approach for the cohort parameters.16

Finally, we also see that the pattern of the fitted cohort parameters shown
in Figure 1 after 1950 (i.e., a rapid increase and then decrease in cohort mor-
tality relative to the baseline) is smoothed out, since it is not based on suf-
ficient observations to be credible. Therefore, using the Bayesian approach
will tend to avoid the issues found in Cairns et al. (2011), where distinctive
patterns in the most recent cohort parameters lead to projected mortality
rates which are not biologically reasonable.

In summary, we propose a new Bayesian approach for projecting the co-
hort parameters, which involves updating a prior distribution for them based
on assumed time series dynamics with the partial observations we have for
each cohort from the available data. This is similar conceptually to a cred-
itability analysis of the form familiar to actuaries. In addition, we have
ensured that these projections are well-identified, in the sense that the pro-
jected mortality rates do not depend upon any arbitrary set of identifiability
constraints imposed. Although this approach is complicated, it yields pro-
jections of the cohort parameters which we believe are more plausible and
also allow for the uncertainty in the historical cohort parameters as we have
only partial data regarding them.

10−4 using the expectation of the ultimate parameters, which is mainly due to worsening
the fit to mortality data at age zero. This may indicate that the most recent fitted cohort
parameters attempt to overfit data at this unusual age, rather than capturing genuine
lifelong mortality effects.

16In principle, the other age/period terms in the model could be re-estimated subsequent
to finding M(y, t). In practice, however, this was not done in this study.
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6 Cohort uncertainty and valuing survivor se-

curities

Allowing fully for the uncertainty in the cohort parameters is vital for many
practical purposes when projecting mortality rates. For instance, we see that
many of the projections in Cairns et al. (2011) that were judged to be not
biologically reasonable were due to unusual features in the most recent co-
hort affecting the forecast mortality rates.

We also find that the uncertainty in the fitted and projected cohort pa-
rameters is important in the valuation of most longevity-linked securities and
derivatives. An example of this is demonstrated in Hunt and Blake (2015g)
for the Swiss Re Kortis bond, where the payoff of the bond is critically de-
pendent upon the cohort parameters passing through a specific age range at
the redemption date. Most common examples of this, however, can be found
in securities which depend upon the survivorship of a cohort over time, since
mis-estimation of the specific cohort parameter for the relevant cohort will
be compounded as the cohort ages. Survivor securities include

• “longevity zeros”: zero-coupon bonds which pays out a principal at
a single future date, dependent upon the survivorship of a specified
cohort from inception at time t0 to maturity - proposed in Blake et al.
(2006) and used in Hunt and Blake (2015b,c);

• “s-forwards”: forward contracts on longevity zeros - proposed in Dowd
(2003), Blake et al. (2006) and by the Life and Longevity Markets;
Association17

• “s-caps” and “s-floors”: options on the survivorship of a specified co-
hort - proposed in Dawson et al. (2010) and issued in the form of
“survivor straddles”, called Longevity Experience Options (LEOs) by
Deutsche Bank (see Fetiveau and Jia (2014));

• “survivor bonds”: coupon-only bonds whose coupon payments are pro-
portional to the survivorship of a specified cohort and whose maturity
coincides with the death of the last surviving member of this cohort,
which can be thought of as a series of longevity zeros - proposed in

17http://www.llma.org/.
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Blake and Burrows (2001), an example of which was marketed by BNP
Paribas on behalf of the European Investment Bank in 2004, although
this was ultimately unsuccessful; and

• “index-based survivor swaps”: a swap agreement where the fixed leg is
based on the expected survivorship and the floating leg is the realised
survivorship of a specified cohort over the life of the swap, which can
be thought of as a series on s-forwards - proposed in Dowd (2003);
Dowd et al. (2006).18

In addition, individual annuities will also suffer from these issues (although
these are not strictly securities as they are not traded),19 and so uncertainty
in the cohort parameters is a key issue when reserving for annuity books for
life insurers.

To illustrate the impact of uncertainty in the cohort parameters, we com-
pare two different approaches:

1. the classical approach, which uses an AR(1) process to project the fu-
ture cohort parameters, but which assumes the fitted cohort parameters
are known with certainty; and

2. the Bayesian approach, which uses an AR(1) process as the prior dis-
tribution in Section 5.2, but which allows for uncertainty in both the
fitted and projected cohort parameters.

To project the period parameters in the model, we use the well-identified
random walk with drift described in Hunt and Blake (2015a), i.e.,

κ
(i)
t =

{

κ
(i)
t−1 + µ

(i)
0 + ǫ

(i)
t if i 6= 1

κ
(i)
t−1 + µ

(i)
0 + µ

(i)
1 t + ǫ

(i)
t if i = 1

(31)

However, since the period parameters explain the majority of the historical
structure in the observed mortality rates, uncertainty in their projection is

18Note that the bespoke survivor swaps entered into by pension schemes also suffer
from these issues as well. However, there are a number of other practical issues regarding
bespoke survivor swaps which are considerably more important when modelling them, as
discussed in Hunt and Blake (2015i).

19Although, historically, annuities were traded contracts and the UK government has
recently proposed establishing a secondary annuity market.
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large compared with the uncertainty in the cohort parameters (which may
be one reason why this source of uncertainty has received relatively little
attention to date). Hence, for clarity, we start by setting ǫ

(i)
t = 0, which

projects the period parameters deterministically for each approach to pro-
jecting the cohort parameters, and introduce stochastic projections of the
period parameters later. We finally allow for parameter uncertainty by using
the residual bootstrapping technique of Koissi et al. (2006) to provide mul-
tiple realisations of the fitted parameters, to which the time series are refitted.

Figure 5 shows the impact of allowing for uncertainty in the cohort pa-
rameters on the 10-year survival probability from age 65, 10p65, for different
years of birth, allowing sequentially for different risk factors. First, Figure
5a shows the projected survival probabilities if the cohort parameters are
projected using classical methods and the period parameters are projected
deterministically. We note that the median survival probabilities are not
particularly smooth, since they are strongly influenced by the unusual pat-
terns in the parameters for the relevant cohorts. We also see that there is
no uncertainty in the projections arising from the classical time series meth-
ods, since these are years of birth for which we have fitted cohort parameters
which are not projected.

In contrast, when using the Bayesian approach to projecting the cohort
parameters in Figure 5b, we find that the roughness in the median projected
survival probabilities has been smoothed out (due to the influence of the
time series prior assumption in the Bayesian approach), which is essential for
avoiding the implausible and potentially biologically unreasonable behaviour
of the projected mortality rates at specific ages, observed in Cairns et al.
(2011). Furthermore, there is now significant uncertainty in the projected
survival probabilities. This arises because the fitted cohort parameters for
these years of birth are no longer assumed to be known, but are treated
as being current approximations of a value which will only be known with
certainty on exhaustion of the cohort. Counter-intuitively, we find that al-
lowing for this uncertainty is more important for the older cohorts than for
the younger ones, despite us having more observations of the former to refine
our estimate of the cohort parameters. However, this is because mortality
rates are higher for these cohorts, and so the uncertainty has a relatively
larger impact on the overall survival probability.
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Figure 5: 95% confidence intervals for ten-year survival probabilities from
age 65 for different years of birth
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We then introduce the risk arising from the period parameters by pro-
jected these stochastically in Figure 5c. We observe that the uncertainty
due to the period parameters is far greater than that arising from the cohort
parameters by comparing Figure 5b with Figure 5c. This is not surprising,
since we assume that the period parameters account for the majority of the
structure in the historical data, so we should expect them to account for
the majority of the uncertainty in the projected mortality rates. Finally,
we introduce parameter uncertainty using the Koissi et al. (2006) residual
bootstrap technique in Figure 5d. Although this has not significantly in-
creased the variance of the projected survival probabilities, we note that is
has strongly affected the higher moments (such as the skewness and the kur-
tosis) of the distribution, which may be very important for risk management
purposes and the valuation of longevity-linked securities.

Measuring the uncertainty in survival probabilities will be a key determi-
nant in establishing prices for longevity zeros, s-forwards, s-caps and s-floors.
We therefore see that classical approaches to projecting the cohort param-
eters will understate the risk attached to these securities and thus lead to
erroneous valuations. Hence we believe that establishing reliable methods
for determining the uncertainty in cohort parameters is vital for establishing
a liquid market in survivor securities.

Figure 6 shows the impact of allowing for uncertainty in the cohort param-
eters on annuity values for age 65 for different cohorts (using a net discount
rate of 1% p.a.). Again, the use of the Bayesian approach gives smoother
median projected annuity values than using classical approaches, since it
gives less weight to the erratic fitted cohort parameters in recent years and
gives projections which are more biologically reasonable. We also see that
the Bayesian approach adds to the total uncertainty in the projected annuity
values, although this will be dominated by the stochastic projection of the
period parameters.

Finally, we also note from comparing Figures 2 and 4 that the Bayesian
approach gives far more plausible patterns of uncertainty in the parameters
over the range of years of birth in the data. This is essential when develop-
ing the forward mortality framework in Hunt and Blake (2015b,c,d), which
otherwise would have suffered from discontinuities in pricing securities at
the boundary between the fitted and projected cohort parameters. It is also
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Figure 6: 95% confidence intervals for annuity values for age 65 for different
years of birth
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essential when modelling some longevity-linked securities, such as the Swiss
Re Kortis bond discussed in Hunt and Blake (2015g). Therefore, we believe
that making full allowance for the uncertainty in the fitted and projected co-
hort parameters is critical for longevity-risk management and the developing
market in longevity-linked securities.

7 Conclusions

Cohort parameters are, increasingly, an important component of mortality
models. However, they are often difficult to estimate robustly from the his-
torical data, due to the identifiability issues present in age/period/cohort
mortality models and the incorrect specification of the age/period terms in
these models at younger ages. Approaches for solving both of these issues
are described in Hunt and Blake (2015f) and Hunt and Blake (2014), respec-
tively, which go a long was to dealing with these problems in analysing the
past. However, the techniques for projecting cohort parameters into the fu-
ture often fail to take into account the issues encountered when fitting them
to historical data, resulting in the biologically unreasonable projections of
mortality rates shown in Cairns et al. (2011).

In this study, we have applied the results of Hunt and Blake (2015f) in
the specific context of the model constructed in Hunt and Blake (2014) to
ensure that the projections of the cohort parameters from the model do
not depend upon the arbitrary identifiability constraints chosen by the user.
Furthermore, this freedom means that we can change these constraints at
will, choosing a convenient set of constraints when fitting the model to data,
but revising this choice subsequently in order to obtain projections of the
parameters which accord with our desired demographic significance for the
parameters.

We then discussed the need to allow appropriately for the uncertainty
that exists in the fitted cohort parameters and the importance of ensuring
that there is no discontinuity in the level of this uncertainty between esti-
mated and projected cohort parameters. To do this, we introduce a Bayesian
approach for projecting the cohort parameters in Section 5. This uses an as-
sumed time series process to act as a prior assumption for generating the
“ultimate” cohort parameters that we would see on exhaustion of the co-

36



horts in question, combined with the “interim” cohort parameters found by
fitting the model to historical data. While this approach is introduced in
the context of the model constructed in Hunt and Blake (2014), it can be
easily applied to any APC mortality model and could be extended to allow
for alternative prior assumptions for the time series prior for the ultimate
cohort parameters.

We believe that the development of these techniques is vital when valuing
and measuring the risk in longevity-linked securities and derivatives, such as
the survivor derivatives discussed in Section 6. This is also why the Bayesian
approach is vital when developing the forward mortality framework described
in Hunt and Blake (2015b,c,d). We therefore hope that the development of
appropriate techniques for assessing this uncertainty help the efficient secu-
ritisation of longevity risk and the development of the nascent market for
longevity-linked securities.

A The Bayesian approach for multiple popu-

lations

In many circumstances, we are interested in projecting multiple populations
simultaneously in a fashion which allows for the dependencies between them,
including the cohort parameters. For instance, it is natural to believe that
the cohort effects for men and women in the same population should show
significant dependence in the historical data and, therefore, be projected in
a fashion which allows for this dependence.

The Bayesian approach presented in Section 5 can be extended to allow
for multiple populations by making appropriate adjustments to the data gen-
erating process and the prior distribution for the ultimate cohort parameters.
To do this, we define

γy =
(

γ
(1)
y , . . . γ

(P )
y

)⊤

where γ
(p)
y , p = 1, . . . , P , are the ultimate cohort parameters for population

p, and similarly for the packets of information, partial sums, interim cohort
parameters, etc.
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Based on this, we generalise Equation 13 for multiple populations

γy =
X
∑

x=1

dxγ
x
y

where

dx =









d
(1)
x 0 . . .

0
. . .

... d
(P )
x









is a diagonal matrix and we define Dx =
∑x

ξ=1 dx in a similar manner as in
Section 5. By assuming

γx
y |Γy,Σ ∼ N

(

Γy,Σd
−1
x

)

we obtain multi-population analogues of Equations 14, 15, 16 and 18 which
define the multi-population data generating process.

Similar to Section 5.2, we set the prior distribution for the time series
dynamics to be a well-identified, multi-variate AR(1) process

γy|γy−1, β,R,Σ ∼ N
(

βXy +R
(

γy−1 − βXy−1

)

,Σ
)

(32)

as the analogue of Equation 19. Following a similar analysis to that per-
formed in Section 5.2, we obtain the following results

γy|γy
(t),γy−1, β,R,Σ ∼ N

(

γ
y
(t) + (I−Dt−y)

(

βXy +R
(

γy−1 − βXy−1

))

,

(I−Dt−y)Σ) (33)

γy|Ft,y, β,R,Σ ∼ N (M (y, t),V (y, t))

M(y, t) = γ
y
(t) + (I−Dt−y)(βXy +R(M(y − 1, t)− βXy−1)

(34)

V (y, t) = (I−Dt−y)Σ + (I−Dt−y)RV (y − 1, t)R⊤(I−Dt−y)
(35)

γ
y
(t)|Ft,y−1, β,R,Σ ∼ N (Dt−y(βXy +R(M(y − 1, t)− βXy−1)),

Dt−yΣ +Dt−yRV (y − 1, t)R⊤Dt−y

)

(36)
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which extend Equations 23, 25, 26 and 29 into the multivariate setting. Using
these, we can obtain estimates for the time series parameters β, R and
Σ, closed forms for M(y, t) and V (y, t) and make stochastic projections
of γy for multiple populations that are well-identified and allow fully for the
uncertainty in the cohort parameters estimated from the historical data.
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