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Abstract

We examine pension buyout transactions and longevity risk securitization in
a common framework, emphasizing the role played by asymmetries in capital re-
quirements and mortality forecasting technology. The results are used to develop
a coherent model of intermediation of longevity exposures, between defined benefit
pension schemes and capital market investors, through insurers operating in the
pension buyout market. We derive several predictions consistent with the recent
empirical evidence on pension buyouts, and offer insights on the role of buyout
firms and regulation in the emerging market for longevity-linked securities. A
multi-period version of the model is used to explore the effects of longevity risk
securitization on the capacity of the pension buyout market.

1 Introduction

In the last decade, the liabilities of corporate pension schemes have reached unprece-
dented levels, owing to substantial increases in life expectancy, low interest rates and
underperformance of backing assets. Pension trustees have addressed the deterioration
of funding levels in different ways, working on the asset side, the liability side, or both.
On the asset side, there has been a stronger focus on asset-liability management, which
has translated into ‘de-risking’ strategies tilting asset allocations away from equities and
toward liability hedging.1 On the liability side, there have been closures of schemes to
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Risk). We thank the participants in those seminars and conferences for very helpful suggestions that led
to an improved version of the paper. Any errors are our own responsibility.
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1In the UK, for example, liability-driven investment (LDI) has become very popular. LDI strategies
often involve the use of over-the-counter derivatives and hedging programmes.
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new members as well as to new accruals to cap liabilities.2 The Global Financial Crisis
(GFC) of 2008-09 has accelerated this process, and led to a number of fund terminations.
Even if liabilities are locked in at the closure date, there still remains the problem of
meeting the pension payments as they fall due. This is no easy task, given the typical
size3 and duration of pension liabilities. Some pension schemes have therefore opted for
more radical solutions, such as the buyout of (part of) their liabilities, that is the transfer
of their exposures to a counterparty, typically an insurer. The buyout market4 took off
in the UK in 2006, when a new monoline insurer, Paternoster, sealed the first deal with
the Cuthbert Heath Family plan. Although the default of Lehman Brothers dampened
the exuberance of buyouts in 2008-09, because of the impact on the corporate bond mar-
ket, the recovery has been strong, with business volumes totalling GBP 8bn in 2010 and
GBP 12bn in 2011, the highest annual levels so far.5

From the point of view of employers, buyouts are the most direct way to take liabilities
off their balance sheet. Even if buyout costs are financed by borrowing, a regular loan
replaces all the risks entailed by pension liabilities and can be more comfortably man-
aged. Still, buyouts are (perceived as) very expensive and have prevented many schemes
from adopting this solution. There are several reasons for this disconnect between the
buy and sell side of pension buyouts. On the demand side, pension plan sponsors and
trustees come from a tradition of lenient accounting and regulatory standards that have
systematically downplayed the size and volatility of pension liabilities. On the supply
side, the market has very quickly shown signs of capacity constraints, due to the strict
solvency rules imposed on buyout firms and the limited success of standardized solutions
(such as longevity indices and population-based longevity derivatives). For example, the
GFC generated considerable mark-to-market losses in the portfolios6 of insurers that had
been particularly successful in securing large deals in the early stages of the market,
preventing them from taking on further liabilities.7

The first contribution of this paper is to formalize the trade-offs at play in the pension
buyout market, providing a rationale for why bulk buyouts have been prevalent in the

2According to Hewitt Associates “more than half of all [private-sector] employers surveyed at the
start of this year [2009] were considering closing their final salary pension schemes to existing members,
effectively freezing retirement benefits at today’s levels” (‘Final salary pension threat’, Financial Times,
June 5, 2009).

3To give an example, the liabilities of ‘small’ pension schemes in companies in the FTSE100 index
are in the GBP100m-1bn bracket.

4As is common in practice, we use the term ‘buyout market’ to indicate the range of solutions available
to a pension plan to transfer risk to another institutions. This means that we do not distinguish between
transactions involving buy-outs (transfer of some of all the liabilities of a pension plan, together with the
responsibility to meet them, to another institution), buy-ins (purchase of bulk-annuities to insure some
of all the liabilities of the pension plan while retaining responsibility for them), or bespoke longevity
swaps (swaps linked to the mortality experience of the pension plan).

5See, for example, “LCP Pension Buy-ins, Buy-outs and Longevity Swaps 2012”, Lane Clark & Pea-
cock LLP, April 2012: http://www.lcp.uk.com/news--publications/publications-and-research/
2012/lcp-pension-buy-ins-buy-outs-and-longevity-swaps-2012/.

6Buyout firms are usually heavily invested in corporate bonds, to earn a premium on treasuries and
match the duration profile of the liabilities.

7Paternoster had to close to new business in May 2009 after its main shareholders - Deutsche Bank
and private equity firm Eton Park - refused to increase shareholder capital (‘Pensions pain’, Financial
Times, July 7, 2009). Paternoster was acquired by Rothesay Life, the pensions insurance unit of Goldman
Sachs, in December 2010.

2

http://www.lcp.uk.com/news--publications/publications-and-research/2012/lcp-pension-buy-ins-buy-outs-and-longevity-swaps-2012/
http://www.lcp.uk.com/news--publications/publications-and-research/2012/lcp-pension-buy-ins-buy-outs-and-longevity-swaps-2012/


early stages of the market and why buyout prices may still be perceived as very expensive
by pension plans.8 The second contribution is to understand the role that longevity risk
securitization and mortality-linked securities may have in the context of pension buy-
outs. The reason why, until and after the GFC, buyouts attracted substantial capital
from major investors is that insurers have superior expertise in forecasting and managing
longevity-linked cashflows, can reap natural hedging and diversification benefits offered
by their stock of exposures, and can use buyout premiums to support effective asset-
liability management strategies, while earning an attractive return on capital. Still, the
global net exposure to longevity risk of pension plans is well beyond the capacity of the
global insurance and reinsurance markets.9 As suggested by Blake and Burrows (2001)
and Blake et al. (2012), there is therefore an opportunity for capital market investors to
act as hedge suppliers, thus increasing capacity and contributing to a more transparent
pricing of longevity risk. A wide investor base (institutional and insurance-linked secu-
rities investors, and endowment, family, sovereign wealth and hedge funds) has become
interested in the longevity space, because it is thought to be virtually uncorrelated with
traditional asset classes, but is still waiting for them to be packaged in investible formats
delivering maximal diversification benefits. Since the bulk of global longevity exposure
is carried by defined benefit pension schemes, understanding the dynamics of the pen-
sion buyout market is important, as it is an origination market that could provide the
foundations for the development of a liquid market in longevity-linked securities.

Our analysis of buyout transactions and longevity risk securitization focuses on two
key frictions: asymmetric information on longevity risk and differential capital require-
ments. We begin by looking at pension funds willing to access the buyout market to
offload their liabilities. The presence of specialized firms with superior skills in forcast-
ing and hedging mortality-linked cashflows creates an adverse selection problem for less
informed insurers which need to charge more than the fair value in order to offset the
expected cost of ending up with a lemon (i.e., they face a buyer’s curse). This effect is
amplified by the higher capital requirements in general faced by buyout firms. We show
that, in this situation, it is never optimal for uninformed pension funds10 to buy out
separate components of their liabilities (e.g., different age ranges or cohorts). Rather it
is optimal not only to pool longevity exposures, to prevent informed insurers from cherry
picking, but also to pool longevity exposures with exposures to other sources of risk (in-
terest rate, inflation, etc.) in order to dilute the effects of the asymmetric information
associated with longevity risk.11

We then consider the point of view of informed holders of longevity exposures (such

8The following comments give an idea of market views: “There’s a disconnect between what pension
schemes are willing to pay to protect themselves from longevity risk and what the firms are quoting”
Richard Jones (Punter Southall); “I think overwhelmingly longevity solutions are solutions in search of
a problem. An awful lot are outrageously expensive.” Con Keating (Brighton Rock). See ‘Paying for a
longer life’, Financial Times, June 1, 2008.

9Recent studies suggest a figure of over USD 20tr, and quantify the net exposures to longevity risk
from defined benefit pension schemes as being forty times larger than the combined net exposures of
annuity providers and life assurance portfolios in the US and the UK (see Biffis and Blake, 2010b, and
references therein).

10That is, pension funds that have not conducted an in depth quantitative analysis of their longevity
exposure.

11See Subrahmanyam (1991), Gorton and Pennacchi (1993), DeMarzo (2005) for models demonstrating
how risk pooling can reduce adverse selection costs to uninformed traders.
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as (re)insurers and buyout firms) that may have originated in the buyout market or the
retail market (e.g., annuities). Because of capital requirements, and the returns that
can be generated by operating in the buyout market, there is an incentive to securitize
the exposures to diversify risk and free up capital (see Cowley and Cummins, 2005, for
an overview of insurance securitization). Issuers of longevity-linked securities, however,
may face a downward sloping demand curve, as investors fear the buyer’s curse when
acquiring assets from more informed sellers and hence lower the quantity purchased at
the equilibrium price. We use parts of the analysis carried out in Biffis and Blake (2010a)
to show how issuers can mitigate the cost of adverse selection by retaining part of the
longevity exposure and by suitably designing longevity-linked securities, providing links
with products that have recently appeared in the market.

In the final part of the paper, we unify the two perspectives to develop a coherent
story of the informed intermediation of longevity exposures. In particular, we use a
multiperiod model to illustrate the limits to growth in the buyout market arising from
lack of capacity on the supply side, and inefficient pricing of risk as seen from the demand
side. In contrast, we show how longevity risk securitization and longevity-linked securities
might offer an effective way for insurers to leverage their capital and increase returns,
providing, in turn, greater capacity in the pension buyout market. Hence, there is a
natural role for buyout firms to act as aggregators of the pension liabilities of small
companies and to intermediate the transfer of longevity exposures originating from the
pension buyout market to capital market investors.

The model also offers normative insights on the potential role of regulation in longevity
space. The adverse selection problem faced by unsophisticated pension plans (a seller’s
curse) and less informed insurers (a buyer’s curse) in the buyout market suggests that
disclosure of detailed information on pension liabilities can be a double-edged sword. On
the one hand, transparency could provide a more level playing field for pension plans
and buyout firms. On the other hand, naive information disclosure may exacerbate the
adverse selection problem by making informed buyers even more informed. There is an
opportunity here for regulators to align the broad actuarial assumptions used in pension
accounting with a more realistic assessment of longevity risk, while leaving the burden
of more granular risk assessment on buyout firms and the choice of detailed informa-
tion disclosure on pension funds and their advisors. This could favour the aggregation
of liabilities and bulk buyouts while narrowing the gap between buy-side and sell-side
valuations due to differences in regulatory environments. Transparency can in turn have
a beneficial effect in the secondary market, as it mitigates the adverse selection problem
faced by investors acquiring longevity-linked securities issued by buyout firms. Here,
specialized insurers can use their information advantage to suitably pool and tranche
longevity exposures in order to dilute and minimize the costs of information asymme-
try. Regulators can therefore play an important role, for example by requiring rating
agencies to use sufficiently granular data to assess the risk profile of securitized products,
or by providing incentives to disclose and use detailed information from the very same
internal models used to demonstrate the capital resilience of buyout firms in the primary
market. Hence, the stricter regulation faced by insurers in the primary market, while
making buyout transactions more expensive, may still provide the natural framework for
promoting greater transparency in the secondary market. This could, in turn, increase
buyout capacity and lead to a more efficient sharing of longevity risk.
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The paper is organized as follows. In the next section, we outline a stylized model
of pension liabilities and longevity exposures. In the following section, we examine the
pension buyout market and outline the main characteristics of the demand side (pension
funds willing to buy out their liabilities) and supply side (buyout firms willing to take
on pension liabilities). We introduce a simple equilibrium model that links the salient
features of buyout prices to asymmetries in information and capital requirements. In Sec-
tion 4, we change perspective and look at holders of pension and insurance liabilities who
are willing to securitize their exposures to diversify risk and free up capital. We use a sig-
naling game of Walrasian equilibrium (as in DeMarzo and Duffie, 1999; DeMarzo, 2005)
to understand the equilibrium securitization and the design of longevity-linked securities,
providing links with current innovations in insurance-linked securities. Section 5 develops
a multi-period model that brings together the insights of the previous sections and allows
us to develop a coherent model of informed intermediation of longevity exposures. In
particular, we demonstrate the long run beneficial effect of liability aggregation in the
buyout market and in the secondary market for longevity-linked liabilities. Concluding
remarks are offered in Section 6. An appendix provides further details.

2 Pension liabilities and longevity exposures

Pension liabilities include pensions in payment and deferred benefits to active members.
Letting zero denote the current date, assume that payments are made at integer dates
1, 2, . . ., so that aggregate liabilities can be written as

S =
∞∑

h=1

Sh, (2.1)

with each Sh representing the random outflows at time h. The realization of each Sh may
depend on interest rates, inflation, and the mortality experience of the pension scheme.
In this paper, we focus on the latter source of uncertainty. We assume that there is a
random signal Y that provides relevant information on how to correctly estimate S. For
example, Y could represent the output of a superior mortality forecasting model, or a
report on the health profile of the scheme members.

Conditional on the realization of the signal, an informed agent can formulate a
private valuation of S by computing p(Y ) := E[S|Y ], which we rewrite as p(Y ) =∑∞

h=1 E[Sh|Y ] =
∑∞

h=1 ph(Y ), with ph(Y ) := E[Sh|Y ]. Although Y can belong to a
generic measurable space (e.g., the space of demographic reports), we require p(Y ) to be
continuous and to have distribution supported in a compact interval [p, p], with 0 ≤ p < p.
We further assume that S admits the representation

S = p(Y ) + ε =
∞∑

h=1

(ph(Y ) + eh) , (2.2)

with ε =
∑∞

h=1 eh a zero-mean error term, independent of Y . We assume that there
is a single riskless asset yielding an interest rate normalized to zero, so that expression
(2.2) quantifies the pension liabilities in present value terms. We interpret p(Y ) as a
demographic (systematic) trend component, and allow ε to capture other (idiosyncratic)
demographic risks, as well as financial risks.
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To understand the role of longevity risk in (2.2), it is useful to provide an interpretation
of the liabilities in terms of survival rates. Following Biffis and Blake (2010a), consider
a cohort of m members in the pension scheme at the current time. Denote their random
remaining life times by τ 1, . . . , τm, and suppose that members are entitled to an amount
αh at each later date h = 1, 2, . . ., conditional on survival. The aggregate value of the
liabilities can then be written as

S =
∞∑

h=1

m∑

i=1

αh1{τ i>h}, (2.3)

with 1H the indicator function, equal to unity if the event H is true, zero otherwise.
Abstracting from financial risks and heterogeneity of pension accounts, let αh = 1/m for
all h. If death times are conditionally i.i.d. τ , given Y , then for a large enough pool of
individuals we can invoke the Strong Law of Large Numbers (e.g., Schervish, 1995) and
write

S =
∞∑

h=1

(
1

m

m∑

i=1

1{τ i>h}

)
∼=

∞∑

h=1

E[1{τ>h}|Y ] =
∞∑

h=1

P(τ > h|Y ). (2.4)

We therefore obtain a representation of the exposure in terms of the survival rates of
the scheme members at different time horizons. From (2.2), we can write P(τ > h|Y ) =
ph(Y ) + eh, so that each term ph(Y ) can be interpreted as a private estimate of the
survival probability P(τ > h|Y ), while eh can be seen as an unsystematic error term.
Restricting the private signal to affect ph(Y ) means that by observing Y , we can identify
a trend component in survival rates, by far the most challenging source of uncertainty in
mortality projections (see Cairns et al., 2008, for an overview).

3 The pensions buyout market

An important feature of the pensions buyout market is that, in the early stages, buyout
quotes were perceived as very expensive by pension funds and this prevented many of them
from accessing the market. The buyout transactions taking place would often transfer
assets and liabilities in bulk to the insurer,12 and highly specialized firms succeeded in
acquiring most of the business. Partial buyouts and pure longevity hedging solutions
have initially been rarer, but have become more common as the the population of hedge
suppliers has widened and pension trustees and advisors have understood the key frictions
affecting the market, and have invested in data collection and disclosure.

We introduce a simple model of pension liability buyouts that is able to capture most
of these features. Assume that pension funds and buyout firms are both risk neutral, but
face different funding requirements. In particular, pension funds are subject to a more
lenient funding regime than insurers, stands in place of formal capital requirements,13

12“We quote for mortality only buyouts [insurance against people living longer than expected], but
we tend to find that when people want a quote for a mortality buyout, they end up comparing it to a
bulk buyout [a complete buyout of all pension liabilities] and go for that instead”, Mark Wood, CEO of
Paternoster; see ‘Paying for a longer life’, Financial Times (June 1, 2008).

13For example, when pension liabilities are marked-to-market according to international accounting
standard IAS19, assumptions on mortality improvements are not as strong as for Solvency II requirements
or IFRS4 reporting. Moreover, as long as the sponsor is solvent and has a good business model, its pension
scheme can run a deficit for up to 10 years in the UK.
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whereas insurers need to meet restrictive solvency rules.14 We consider a pension liability,
S, admitting representation (2.2), with buyout firms required to scale up the estimate of
their liability exposure by a factor η > 1, meaning that they need to hold an amount of
capital equal to ηE[S] > E[S] when taking over the exposure S.15 If the pension funds’
discount factor is normalized to one, we can interpret the difference η−1 as the additional
regulatory cost per unit of liability incurred by insurers.

We can think of a buyout deal as being sealed on the basis of an auction. Buyout firms
are provided with experience data for the exposure being offered for sale and are given
a limited time period to produce a quote. Despite holding S, and being in a position to
monitor the exposure over time, a pension fund is unlikely to have acquired the modelling
capability needed to understand its longevity exposure. We therefore assume that it is
uninformed. On the other hand, buyout firms have developed considerable expertise in
modelling and managing longevity-linked cashflows, and are able to use the data provided
to produce an informed estimate of the future liability cashflows. Moreover, these firms
can aggregate smaller exposures into larger pools to make cash outflows more predictable.
We let buyout firms differ in their skills in forecasting mortality improvements. We
postulate that the distribution of the signal Y is available to every market participant, but
its actual realization can only be observed by a subset of firms with superior forecasting
technology upon examination of the data. To streamline even further, we assume that
both pension funds and ‘less well-informed’ buyout firms are simply uninformed.16 We
denote by β ∈ (0, 1) the fraction of buyout firms that are informed, and assume that
they are endowed with capital c ≥ 0 before operating in the market. Equivalently, we
can think of a single informed firm participating in a fraction β of the transactions, or
interpret β as the probability that an informed insurer participates in a buyout auction.

In the context of a first-price sealed-bid auction (a common buyout mechanism),
suppose that the uninformed firms bid a positive insurance premium π to take over the
liability S, and this premium is such that the uninformed firms recover at least the capital
charges. Upon observing the realization y of Y , the informed insurers would accept taking
over the liability for a price π only if they expected the buyout to be profitable, π ≥ p(y),
and if they had enough capital to meet the regulatory constraint17 c + π − ηp(y) ≥ 0.
As a result, informed insurers would accept the liability for a premium π only if their
private valuation p(y) did not exceed a threshold x∗ ∈ [p, p] given by the highest private
valuation x satisfying

π ≥ x, (3.1)

c+ π − ηx ≥ 0. (3.2)

In words, constraints (3.1)-(3.2) ensure that the exposures can be purchased at a non-
negative discount. Constraint (3.1) will be slack for low levels of capital: if c = 0, for
example, the informed agent would buy exposures with a private valuation at most equal

14See the standard IFRS4 for market-consistent valuation of insurance liabilities and the Solvency II
proposal for capital requirements.

15The Solvency II standards would require ηE[S] to be calibrated to the 99.5th percentile of the
exposure over a one-year horizon.

16We could allow for different degrees of information, for example by working with a multi-dimensional
Y and assuming access to some of its components only. The results would be qualitatively similar.

17 In the context of Solvency II, we think of p(y) as being part of an internal model, meaning that the
insurer discloses its private valuation to the regulator.
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to π/η < π. The larger the amount of capital supporting the premium inflow π, the
greater the severity of longevity risk the insurer can bear. Anticipating that they are
more likely to end up with the pension liabilities when the trend component p(Y ) is
higher (longevity risk is more severe), the uninformed buyout firms bid more conserva-
tively to neutralize the advantage of the informed; in other words, they ask for a higher
premium to insure the pension liabilities. If they ask for less than the equilibrium price,
they will make a loss on average, since the informed firms will always get the good qual-
ity exposures; the informed offer the same price as the uninformed firms (the higher the
better), but will only bid when the exposure is of good quality. The minimum premium
they can afford to offer is the one ensuring that they recover at least the capital charges,
i.e., the minimum bid π satisfying

E
[
(π − ηS)

(
1{p(Y )>x} + (1− β)1{p(Y )≤x}

)]
= E

[
(π − ηS)

(
1− β1{p(Y )≤x}

)]
= 0. (3.3)

The second factor inside the above expectations represents the allocation to the unin-
formed firms, including i) the case when the informed’s private valuation exceeds x and ii)
the case when the private valuation does not exceed x and the informed is in the market
with probability β. The equilibrium outcome of the auction is the pair (π∗, x∗) max-
imizing the informed firms’ expected profits, while satisfying the regulatory constraint
(3.2) and ensuring that the uninformed firms recover the capital charges on average. In
equilibrium, the uninformed insurers earn zero profit, while pension funds transfer lia-
bilities at a premium18 which is sufficient to deliver the informed firms’ expected profits
(e.g., Milgrom and Weber, 1982; Engelbrecht-Wiggans et al., 1983). The asymmetries in
information and capital requirements have the following effects on equilibrium buyout
prices:

Proposition 3.1. Under the above assumptions, we have:

(i) The equilibrium buyout price, π∗, satisfies ηE[S] ≤ π∗ < p.

(ii) π∗ converges to ηE[S] as β or |p− p| go to zero.

(iii) There is a level of capital ĉ, such that π∗(c) is decreasing and x∗(c) is increasing
for c ∈ [0, ĉ], and x∗(c) = π∗(c) = π̂ for c ≥ ĉ.

From (i), we see that the buyout price entails a premium for differential capital re-
quirements (the price of an ‘insurance guarantee’19), (η−1)E[S], as well as a premium for
information asymmetry, π∗−ηE[S]. This formalizes why buyout prices may be perceived
as very expensive by pension funds, and just fair by more timid buyout firms. From
(ii), as |p − p| goes to zero, the informational advantage of the informed buyout firms
vanishes and the buyout price is reduced to incorporate only the premium for asymmetry
in capital requirements. The same effect is obtained if fewer and fewer informed buyout
firms operate in the market (β goes to zero). Finally, from (iii), we see that the extent of

18If we had explicitly modeled the incentive of pension funds to offload longevity risks, this cost would
be compensated by the value to shareholders of the resulting risk reduction and increased business
flexibility.

19Meaning that the promise that pensions will be paid is guaranteed by the insurance regulatory
framework.
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pricing above the fair value is lower when informed insurers are well capitalized, as greater
resources relax the solvency constraint (3.2) and allow the informed to target exposures
with a higher private assessment of longevity risk. This weakens the adverse selection
faced by less informed insurers and results in less severe overpricing for pension funds.
For informed firms with enough capital, the equilibrium price stabilizes, as constraint
(3.1) eventually binds and there is only a given fraction β of trades the informed can
participate in. These comparative statics results are depicted in figure 1.

< Figure 1 about here. >

In figure 2, we provide an example based on the simplest possible stylized exposure:
a survival rate S with best estimate E[S] = 70%. We assume η = 1.1, meaning that 10%
more than the liability best estimate needs to be set aside by the firm to comply with
regulations. The plot shows that, in the absence of asymmetric information, buyout firms
cannot afford to charge less than 77% to break even. As soon as asymmetric information
is introduced, the equilibrium bid diverges further from 77%, the more so the higher the
fraction of informed firms operating in the market.

< Figure 2 about here. >

A natural question to ask is what is the best selling strategy that a pension fund should
adopt to mitigate the divergence of equilibrium buyout prices from its own valuation. In
the presence of asymmetric information, it is, in general, difficult for the uninformed
seller to neutralize the informational advantage of the informed buyer by disclosing any
information, since doing so could reinforce overpricing.20 The least a pension fund can
do is to avoid splitting up the liabilities (for example by buying out liabilities arising
from specific cohorts or age ranges of members) and rather transfer them in bulk, to
prevent the informed buyout firms from cherry picking. This intuition can be formalized
as follows:

Proposition 3.2. Consider a sequence of exposures S1, S2, . . ., with Si = pi(Y )+εi, and
assume that the Si’s are conditionally independent, given Y . Then, as n grows larger,
the buyout price per exposure converges to ηE[S̄n], where E[S̄n] := limn→∞

1
n

∑n

i=i E[Si].

Hence uninformed pension funds have an incentive to pool their liabilities to prevent
informed insurers from using their information advantage on a systematic basis. As a
special case, consider a sequence of exposures S1, S2, . . . that are conditionally i.i.d. S,
given Y , so that E[S̄n] = E[S]. Then the buyout price converges to the lower bound ηE[S]
of Proposition 3.1(i). We illustrate this case in figure 3, where we extend the example
considered in figure 2 to show the reduction in buyout prices that can be achieved when
several exposures are pooled. The higher the fraction of informed insurers operating in

20This occurs if what is made public happens to be complementary to what the informed party already
knows (see Milgrom and Weber, 1982). As an extreme example, consider the case of a single longevity-
linked cashflow in (2.2), S = p1(Y ) + e1, and assume that the pension fund observes e1 and makes it
public. Then, S becomes known to the informed buyer upon observing Y , while the uninformed buyer
is left with nothing relevant, as the information disclosed relates to an error term independent of the
unknown p1(Y ).
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the market, the greater the reduction in buyout prices delivered by the pooling strategy.
Of course, the situation may change if dependent exposures are pooled. In particular, the
addition of specific liability segments may lead to a substantial increase in the systematic
risk profile of the exposure, driving away potential insurers. This is what happens, for
example, with active members and deferred liabilities, whose sensitivity to systematic
longevity risk is commonly perceived as quite difficult to quantify by buyout firms. Some
cherry picking is therefore to be expected in real life transactions.

< Figure 3 about here. >

4 The securitization market

Holding longevity exposures is very capital intensive for insurers, which is why they
look to the capital market to offload part of their exposures, boost capacity and write
more business. Capital market investors are becoming interested in insurance liabilities
as an alternative asset class that is virtually uncorrelated with traditional investments.
However, these investors are not yet entirely familiar with the dynamics of pensions and
insurance liabilities, in particular with longevity risk. The transfer of mortality-linked
cashflows creates a liquidity problem, in the sense that information asymmetries result
in a downward sloping demand curve for the assets being securitized.

As in Biffis and Blake (2010a), a useful way to address this issue is to use a sig-
naling model of market equilibrium, such as the ones developed by Gale (1992) and
DeMarzo and Duffie (1999). Suppose we have a buyout firm with an exposure S origi-
nating in the buyout market and admitting representation (2.2) (alternatively, S could
represent a book of annuities or other life contracts originated in the retail market). Cap-
ital requirements mean that it is expensive to hold the exposure on the balance sheet and
that there is an opportunity cost, in that freeing up capital allows the insurer to exploit
its informational advantage and acquire more liabilities in the pensions buyout market
(or write more annuity business, for example). This provides an incentive to swap part
of the liabilities for cash.

To avoid bringing credit risk into the picture, we assume that liabilities can be secu-
ritized on a fully collateralized basis.21 Denoting by s the upper bound of the support of
the distribution of S, we assume that the insurer can transfer assets s− S to the capital
market (in words, the random liability S is backed by s units of capital). If no external
borrowing is allowed and the insurer has capital N ≥ 0 to put up as collateral, then
only a fraction γ̃ := min (1, N/s) of the exposure can be securitized. We formalize the
opportunity cost of the informed insurer by a discount factor δ ≤ 1 used for its private
valuation,

δγ̃E[s− S|Y ] = δγ̃(s− p(Y )) = δγ̃

∞∑

h=1

(sh − ph(Y )), (4.1)

where we have set s =
∑∞

h=1 s
h. In the context of pensions buyouts (section 3), we can

compute the opportunity cost of the informed insurer as follows. Given an equilibrium

21See Biffis et al. (2012) for an analysis of of counterparty risk mitigation tools in longevity risk trans-
fers.
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pair (π∗, x∗), a small additional amount of capital would allow the informed insurer
to buy more of the highest longevity risk exposures, i.e., those with private valuation
x∗. The additional purchase would yield a return (π∗ − x∗)/(ηx∗). We could then set
δ = (1+ 1

η
π∗−x∗

x∗
)−1 ≤ 1. Endogenization of the discount factor δ is pursued in more detail

in the multi-period model developed in section 5.
As is common in life insurance securitization and reinsurance, the issuer can retain

part of the (net) exposure to signal its quality to investors. The more costly the retention
of the exposure, the more credible the signal. Assume that the insurer decides the terms
of the securitization before having access to the realization of Y . Once Y is observed,
the net exposure is transferred to the capital markets, and only at a later stage are
the cashflows from the exposure realized. Since E[γ̃(s − S)|Y ] ≥ γ̃(p − p(Y )) ≥ 0, the
private valuation is always nonnegative, implying that an asset rather than a liability
is trasferred. We can then reason along the lines of DeMarzo and Duffie (1999) and
Mailath and von Thadden (2010) to show that under rational expectations there exists
a unique equilibrium separating low-longevity- from high-longevity-risk net assets, where
the degree of longevity risk is determined by p(Y ). In equilibrium, when the optimal
fraction γ∗ of the exposure γ̃(s − p(Y )) is put up for sale, and the fraction (1 − γ∗)
is retained by the seller, investors take over the net exposure by paying the issuer its
private valuation γ̃(s− p(Y ))γ∗. The optimal securitization fraction admits the explicit
representation

γ∗(Y ) = (s− p)
1

1−δ (s− p(Y ))
1

δ−1 . (4.2)

The above maximizes the securitization payoff to the insurer, which in equilibrium is
equal to (1 − δ)γ̃(s − p)γ∗(Y )δ. The expected payoff to the insurer from securitizing
γ̃(s− S) is therefore

V (γ̃(s− S)) := (1− δ)γ̃(s− p)E
[
γ∗(Y )δ

]
. (4.3)

Note that as δ approaches unity, the incentive to securitize vanishes and full retention
becomes optimal. The above results are appealing because they explicitly and uniquely
characterize the equilibrium outcome, while relying only on mild regularity conditions.

If we consider a family of exposures S1, . . . , Sn, satisfying the conditions of Proposi-
tion 3.2, we are in the opposite situation to the one examined in the previous section,
because the informed party is now the holder of the liabilities. It is then no surprise that
it is never optimal for the insurer to pool the exposures before securitization: superior
information means that each exposure can be optimally transferred on the basis of the
degree of longevity risk privately assessed in each individual case. To see this, consider
the event {Y = y} and note that the payoff in (4.3) is convex in the private valuation of
the net exposure, s−p(y). The expected payoff per exposure from securitizing S1, . . . , Sn

must then satisfy

1

n
V

(
γ̃n

n∑

i=1

(si − Si)

)
= V

(
1

n
γ̃n

n∑

i=1

(si − Si)

)
≤

1

n
γ̃n

n∑

i=1

V
(
si − Si

)
, (4.4)

where γ̃n := min(1, N/(
∑n

i=1 s
i)). Hence pooling high-longevity- and low-longevity-risk

exposures destroys the information advantage provided by the observation of the signal
Y .
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4.1 Issuance of longevity-linked securities

An alternative to selling the net exposure directly to investors is to issue a security
written on the cashflows originating from s − S. The idea is that a suitable payoff may
reduce the sensitivity of the security to asymmetric information, thus offering better
exchange opportunities. This possibility is currently being explored by a number of
financial institutions and in 2010 materialized in the issuance of the first longevity bond
(known as Kortis) by Swiss Re. The results we present below can also provide insights
on the optimal design of longevity swaps. These allow the holder of a longevity-linked
exposure to make fixed payments in exchange for floating payments depending on the
mortality experience of the liabilities. For example, the results could be used to determine
whether introducing suitable caps and/or floors on the floating leg of a longevity swap
(and at what level) can improve the efficiency of the product. An interesting related
question is the design of standardized index-based derivatives22 with cashflows linked to
publicly available indexes.23 They would allow asymmetric information to be sidestepped,
but would introduce the issue of basis risk, whose analysis is not pursued here (see
Doherty and Richter, 2002, for example).

Consider a security providing a payoff φ(s(T ) − S(T )) at a fixed maturity24 T > 0,
where φ is a measurable function and S(T ) represents the liabilities arising from an
exposure S during the time interval [0, T ]. As before, the term s(T ) < s denotes the
upper bound of the support of the distribution of S(T ). For simplicity, in this section we
assume that the issuer has enough capital to post as collateral (i.e., γ̃ = 1). We set

S(T ) := p(Y ;T ) + ε(T ) =
T∑

h=1

(ph(Y ) + eh) , (4.5)

with obvious meaning of notation, and assume that p(Y ;T ) has distribution supported
in the compact interval [p(T ), p(T )] ⊂ [0, s(T )). We restrict our attention to contracts
with nondecreasing payoffs satisfying the condition φ(u) ≤ u for all u ∈ [0, s(T )]. The
timing of the transaction is as follows:

(i) the holder of the exposure S designs the contract before observing the signal Y ;

(ii) after observing Y , the insurer sells the contract to investors according to the sig-
naling game described in the previous section;

(iii) the cashflows realized from the exposure over time are observable by all agents.

Analogous to (4.2), we have γ∗ units of the security which can be sold at their private
information value, provided (1− γ∗) units of the security are retained by the issuer. The

22An example is represented by J.P. Morgan’s q-forward contracts (Coughlan et al., 2007), involving
the payment of a realized mortality rate relating to a specified national population at a given future
date, in exchange for a fixed mortality rate agreed at the beginning of the contract (the so called forward
mortality rate).

23See, for example, the LifeMetrics indices (http://www.lifemetrics.com), which in 2011 were trans-
ferred to the Life and Longevity Markets Association (http://www.llma.org) with the aim of establish-
ing a global benchmark for trading longevity and mortality risk.

24We take the parameter T as exogenously given. Our results can be used to optimize with respect to
the contract maturity.
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optimal fraction now takes the form

γ∗(Y ) = φ
1

1−δ φ(s(T )− S(T ))
1

δ−1 , (4.6)

where we have set φ := miny E [φ(s(T )− S(T ))|Y = y]. As the next proposition shows,

under mild assumptions on the error terms {eh}
T
h=1, the optimal contract (i.e., the con-

tract that maximizes the proceeds to the insurer from issuance) involves securitizing
the exposure in exchange for an option that caps the longevity exposure of the issuer.
. Equivalently, the contract can be in the form of a principal-at-risk bond where the
principal is reduced if the realized cashflows exceed a given threshold (Blake and Biffis,
2012).

Proposition 4.1. Assume that each eh is log-concave,25 for h = 1, . . . , T . Then, the
optimal longevity-linked security is the one providing the payoff

φ∗(s(T )− S(T )) = (s(T )− κ∗)−max (S(T )− κ∗, 0) , (4.7)

where κ∗ ≤ s(T ) is a strike level maximizing the payoff to the seller from issuing the
contract.

The alternative representation φ∗(s(T ) − S(T )) = min (s(T )− S(T ), κ), with κ :=
s(T )− κ∗, shows that the optimal security involves ‘tranching’ the net exposure at level
κ ≥ 0. If s(T ) is normalized to unity and S can be interpreted as a survival rate, the
optimal contract (4.7) written on the death rate 1 − S embeds a survival option with
strike price κ∗. See Lin and Cox (2005) Sherris and Willis (2010) for numerical examples
related to the pricing of similar structures.

Proposition 4.1 shows the importance of introducing nonlinear payoffs in our set-
ting. In particular, the idiosyncratic risk components become material for risk-neutral
agents and offer valuable diversification benefits when pools of exposures are consid-
ered. In contrast with what we observed in the case of direct transfer to investors (see
(4.4)), we now obtain the result that writing a security on the aggregate net exposures∑n

i=1

(
si(T )− Si(T )

)
allows the insurer to overcome the loss of information arising from

pooling high-longevity- and low-longevity-risk exposures. This is made explicit in the
following proposition:

Proposition 4.2. Consider a family of exposures S1(T ), . . . , Sn(T ) that admit represen-
tation (4.5), are conditionally independent, given Y , and have distribution with support
bounded above by si(T ), i = 1, . . . , n . If, for each i, the error terms {eih}

T
h=1 are log-

concave,26 then it is optimal to pool the net exposures before tranching them.

This is a fundamental result for the activity of buyout firms if we see them as aggre-
gators of pension liabilities for later repackaging and reselling part of their exposures to
the capital market. In the limit, we would expect diversification benefits to prevail over
illiquidity due to information asymmetries. This is not always the case (see DeMarzo,
2005), but it does occur, for example, under the assumptions of Proposition 4.2:

25A random variable is log-concavely distributed it the logarithm of its probability density function is
concave.

26We have required each term eih to be log-concave to simplify the multi-period model of section 5, but
we could have imposed the weaker condition of log-concavity on each term εi(T ) only (see Ibragimov,
1956; Karlin, 1968).
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Proposition 4.3. Consider a sequence S1(T ), S2(T ), . . . of exposures satisfying the con-
ditions given in Proposition 4.2. Then, as the number of net exposures grows larger, the
optimal strike level approaches p∞(T ), where p∞(T ) := limn→∞

1
n

∑n

i=1 maxy E [Si|Y = y]
denotes the limiting average worst-case private valuation. (Equivalently, the optimal
tranching level approaches s∞(T )− p∞(T ), with s∞(T ) := limn→∞

1
n

∑n

i=1 s
i(T ).) More-

over, the proceeds from issuance of the contract converge to (1− δ) (s∞(T )− p∞(T )).

Proposition 4.3 shows that, in the limit, the process of pooling and tranching allows
the insurer to transfer all the aggregate net exposures at their average private value,
which coincides with their average worst-case private valuation. To see this, consider the
special case of exposures S1(T ), S2(T ), . . . that are conditionally i.i.d. S(T ), given Y , with
common upper bound s(T ) and worst-case private valuation p(T ). Then, we know from
(4.6) that, as the trend component approaches the highest possible private assessment of
longevity risk, p(T ), the securitization fraction tends toward unity. The expected payoff
to the issuer then converges toward the retention cost (1− δ)(s(T )−p(T )), meaning that
the costs of asymmetric information vanish in a large enough pool. Of course, lack of
sufficient funds to post as collateral and associated borrowing costs may prevent such
convergence from happening.

5 A multi-period model

In this section, we develop a coherent model of informed intermediation of longevity
exposures that brings together the transactions examined so far. We consider a multi-
period setting where, at each date t = 0, 1, . . ., an informed buyout firm has access to
pension liabilities put up for sale in the pension buyout market. During each period, the
insurer decides whether to acquire more exposures in the buyout market, depending on
market conditions and shareholder capacity, and meets the liability payments arising from
the exposures already in the portfolio. We first examine the limits to growth imposed
by this business model, and then allow the insurer to free up capital and diversify risk
by issuing longevity-linked securities. The model is developed in the spirit of DeMarzo
(2005) who focuses on asset-backed securities. Here, we extend the analysis to liability
transfers and solvency requirements.

Between dates t and t+ 1, a continuum of pension funds indexed on [0, 1] put up for
sale exposures (Si

t,0)i∈[0,1] . Since pension funds have an incentive to pool their liabilities
(Proposition 3.2), we think of each Si

t,0 as a single liability made of smaller longevity
exposures. The first index in the subscript refers to the time when the exposure is
transferred, while the second index tracks the ‘vintage’ of the exposure after purchase.
For example, Si

t,z represents the time-(t+z) value of an exposure purchased in the buyout
market at time t. As in section 2, the informed insurers use the signal Yt observed during
(t, t + 1) to derive their private valuations. For simplicity, we assume that the Si

t,0’s are
conditionally i.i.d. St,0, given Yt, and admit the representation

St,0 = p(Yt) + εt =
∞∑

h=1

(ph(Yt) + et,h) . (5.1)

By analogy with (2.2), we have set p(Yt) := Et [St,0|Yt] =
∑∞

h=1 ph(Yt), εt :=
∑∞

h=1 et,h,
the latter representing a zero-mean error term independent of Yt. Here and in what
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follows, Et[·] denotes conditional expectation, given the information available up to and
including time t. Note that we only require Et[εt] = 0, but are agnostic about the
statistical properties of the random variable

∑∞
h=1 et,h at each date following t. As each

term et,h is not realized until date t+h, ‘old’ liabilities contribute to the insurer’s exposure
indefinitely, although for pension liabilities in run-off, one would specify the terms ph(Yt)
and et,h, so that they decrease on average as h grows large. From date t + z onwards
(with z = 1, 2, . . .), the residual liabilities relative to exposure St,0 are given by St,z =∑∞

h=1 (pz+h(Yt) + et,z+h) and have private valuation

Et+z [St,z] =
∞∑

h=1

(pz+h(Yt) + Et+z[et,z+h]) .

Hence, the private signal is only informative at the time of purchase. To simplify the
analysis, we assume that the signals {Yt} are i.i.d. Y . Moreover, normalizing to unity the
(exogenous) size of pension funds accessing the buyout market, we quantify by F (x) :=
Et

[
1{p(Yt)≤x}

]
= P(p(Y ) ≤ x) the mass of liability transfers with private valuation no

higher than a fixed threshold x.
An informed insurer enters period (t, t + 1] with capital, ct, and liabilities, Lt (the

timeline is presented in figure 4). If the net worth, Nt := ct−ηEt[Lt], satisfies the solvency
constraint Nt ≥ 0, the insurer is solvent. An instant after time t, the buyout market
opens and pension liabilities are put up for sale. There is a multitude of uninformed
firms bidding for the pension liabilities according to the model of section 3. As liabilities
are ex-ante identical, the uninformed firms bid a common insurance premium. The
informed insurer, who participates in a fraction β ∈ (0, 1) of the transactions, observes
the realization of Yt, once the data samples are made available by pension funds willing to
transfer their liabilities. In equilibrium, characterized by the pair (π∗

t , x
∗
t ), the informed

firm takes over a fraction β of exposures with private valuation not exceeding x∗
t , raising,

in turn, premia totaling π∗
t βF (x∗

t ). The equilibrium threshold x∗
t ensures that the buyout

is profitable and that the solvency requirements are satisfied (compare with (3.1)-(3.2)).
We have:

x∗
t = max

{
x ∈ [p, p] : π∗

t ≥ x, Nt + βF (x) (π∗
t − ηEt[p(Y )|p(Y ) ≤ x]) ≥ 0

}
. (5.2)

As observed in Proposition 3.1, pension funds transfer liabilities at a premium, since dif-
ferentials in solvency requirements and information result in an equilibrium bid satisfying
π∗
t ≥ ηEt[S

i
t,0].

As soon as the buyout market closes, and before entering the next time period, the
insurer observes and meets the liability payment, ∆t, originating from the old exposures.27

The firm also marks to market its asset and liabilities, based on information accumulated
up to time t+ 1, and enters the following time period with capital

ct+1 = ct −∆t + βF (x∗
t )π

∗
t , (5.3)

and liabilities
Lt+1 = Lt −∆t + βS∗

t,0, (5.4)

27Given the asset-liability dynamics described below, the term ∆t summarizes the liability cashflows
realized between dates t and t + 1 for the different cohorts of exposures in the portfolio, i.e., ∆t =∑t−1

s=0
1{Ns≥0}β(p

∗
t−s(Ys) + e∗s,t−s), where we have set p∗(Yt) := Et[S

∗
t,0|Yt] =

∑∞
h=1

p∗h(Yt).
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which have market value Et+1[Lt+1]. The random variable S∗
t,0 represents the recently

acquired exposures, with private valuation p∗(Yt) not exceeding x∗
t . At the end of period

(t, t + 1], the insurer is solvent if Nt+1 = ct+1 − ηEt+1[Lt+1] ≥ 0, in which case the same
stages are repeated in the following period. If instead, Nt+1 < 0, the insurer is prevented
from taking on further liabilities and the book of liabilities is run-off until the first date
s > t+ 1 when Ns is nonnegative again.

< Figure 4 about here. >

To understand the relative contribution of old and new liabilities to the solvency of
the insurer, it is convenient to use (5.3)-(5.4) to write the period-by-period variation of
the net worth as

Nt+1−Nt =
{
π∗
t βF (x∗

t )− ηβEt+1[S
∗
t,0]
}
+{ηEt[∆t]−∆t}+{η (Et[Lt −∆t]− Et+1[Lt −∆t])} .

(5.5)
The first term in (5.5) is a positive contribution from the premiums charged in the buyout
market, net of the capital charges associated with the exposures newly acquired. The
second term represents an inflow (outflow) if the amount of capital ηEt[∆t] allocated
at the beginning of the period for the intraperiod outflows is sufficient (insufficient) to
meet the realization of ∆t. The last term captures any changes in the valuation of the
old liabilities based on the new information gathered during the period (recall that the
error terms {et,h}, for example, are not assumed to be i.i.d.). Hence the insurer has an
incentive to operate in the buyout market for at least two reasons: (i) because exposures
may be acquired at a discount, and (ii) because the premium incorporated into the price
of the liabilities transferred in the buyout provides an extra buffer against unfavorable
realizations of ∆t and possible mark-to-market losses originating from the old liabilties.
Note that only the latter two sources of uncertainty may trigger insolvency, as (5.2)
ensures that the newly acquired exposures cannot lead to a violation of the solvency
constraint.

5.1 Market capacity and securitization

We now add a further stage to the timing of transactions taking place in each time
period. We assume that after the buyout market closes, and before meeting any liabilities
arising during the period, the insurer can transfer a fraction of its liabilities to capital
market investors (as in section 4), or issue a security with payoff linked to the future
cashflows originating from the book of liabilities (as in section 4.1). The timeline is
presented in figure 5. In both cases, we assume that the optimal securitization fraction
is decided before observing Yt. As explained in section 4, it is suboptimal to pool and
securitize the new exposures, as this destroys the informational advantage of the issuer (we
consider this situation to contrast it with the case of optimal security design). However,
it is certainly beneficial to pool old exposures with new exposures before securitization,
as the resolution of uncertainty in private signals related to the old liabilities dilutes
the asymmetric information associated with the new exposures (e.g., Biffis and Blake,
2010a). Finally, recall that liabilities must be partially securitized if exposures can only
be transferred on a fully collateralized basis, unless the insurer has sufficient free capital
to post the required collateral.
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< Figure 5 about here. >

Denote by lt and s∗t,0 the upper bounds of the supports of the distribution of the old
(Lt) and new liabilities (S∗

t,0). After the buyout auction closes, the insurer wishes to
transfer to investors the collateralized exposure

Dt := lt − Lt + β
(
s∗t,0 − S∗

t,0

)
. (5.6)

If the net assets available cannot provide for the full collateral, only a fraction γ̃t of the
old and new liabilities can be transferred, while a fraction 1− γ̃t is retained, with

γ̃t := min

(
max(Nt, 0)

lt + βs∗t,0
, 1

)
. (5.7)

However, we know that it would be optimal to securitize an even smaller fraction, since
investors face a lemons problem. Let the informed insurer have opportunity cost δt < 1
(we take it as given for the moment; we will endogenize it later). Then the signaling
game described in section 4 results in the securitization having the following features.

Proposition 5.1. Under our existing assumptions, the optimal securitization fraction,
γ∗
t , of γ̃tDt is given by (dependence on time is dropped)

γ∗ =

(
l − E[L] + β (s∗0 − p∗(Y ))

l − E[L] + β (s∗0 − F (x∗)x∗)

) 1

δ−1

, (5.8)

and the expected securitization payoff is equal to

γ̃ (1− δ)
[
l − E[L] + β (s∗0 − F (x∗)x∗)

]
E[(γ∗)δ]. (5.9)

Note that the optimal securitization fraction is always bounded away from zero on the
set {Nt ≥ 0}, because the old liabilities in (5.8) have no residual information asymmetry.
As the private valuation of the new liabilities approaches the upper bound F (x∗)x∗, the
optimal fraction converges to unity and the exposures can be transferred at their private
value.

Suppose now that the insurer writes a security on the cashflows emerging from the
aggregate exposures during the time horizon (t, t+ T ], for some maturity T > 0. Denote
by Dt(T ) the fully collateralized exposure in this case,

Dt(T ) := lt(T )− Lt(T ) + β
(
s∗t,0(T )− S∗

t,0(T )
)
, (5.10)

with obvious meaning of the notation (compare with (5.6)). The analogue of Proposi-
tion 4.2 for the present setting is then given by:

Proposition 5.2. Assume that the conditions of Proposition 5.1 hold, and that for all
t, h, the error term et,h is log-concave. Then:

(i) The optimal security written on γ̃D(T ) has payoff (again, dependence on time is
dropped)

φ∗ (γ̃D(T )) = γ̃
[(
l(T ) + βs∗0(T )− κ̃∗

)
−max (L(T ) + βS∗

0(T )− κ̃∗, 0)
]
,

with κ̃∗ denoting the optimal strike level maximizing the payoff to the insurer from
issuing the security.
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(ii) For a large enough pool of old and new exposures satisfying the conditions of Propo-
sition 4.2, the optimal strike level approaches lt(T )−Et[Lt]+β

(
s∗t,0(T )− F (x∗

t )x
∗
t

)
.

Moreover, the proceeds from issuance of the contract converge to γ̃t(1 − δt)d
∗
t (T ),

with d∗t (T ) := lt(T )− Et[Lt] + β
(
s∗t,0(T )− F (x∗

t )x
∗
t

)
.

Propositions 5.1 and 5.2 provide a neat way of examining the scope for growth in
market capacity when buyout firms transfer (part of) their exposures to the capital mar-
kets. Although we already know (by separation) that the optimal securitized fraction is
always transferred at its private value, Proposition 5.2(ii) tells us more, namely that in
the limit the liabilities are trasferred at their worst-case private valuation. This limiting
result allows us to provide a simple dynamic characterization of the insurer’s assets and
liabilities when longevity-linked securities can be issued on large enough pools of old and
new exposures. The only missing ingredient is the discount factor δt. If the insurer were
to borrow extra cash to operate in the buyout market in period (t, t + 1), an additional
unit of capital would allow her to purchase exposures with private value x∗

t = x∗
t (Nt),

for a premium π∗
t = π∗

t (Nt), which could then be sold for their private value (before ∆t

is realized28) yielding a return (π∗
t − x∗

t )/(ηx
∗
t ). Hence the opportunity cost of capital is

captured by a discount factor δt =
(
1 + 1

η

π∗

t −x∗

t

x∗

t

)−1

≤ 1.

We can now examine the effects of liability aggregation and securitization in the
buyout market. We first provide the analogue of Proposition 3.1(iii) for our dynamic
setting.

Proposition 5.3. There exists a level of net worth N̂t such that x∗
t (N) is increasing and

π∗
t (N) is decreasing for N < N̂t, and x∗

t (N) = π∗
t (N) = π̂t for N ≥ N̂t.

We then show that through the buyout and securitization processes, informed insurers
can leverage their capital and increase returns. In particular, the informed buyout firm’s
net worth grows faster, on average, when pension liabilities are optimally aggregated and
tranched than when they are securitized on an individual basis.

Proposition 5.4. For given initial level of net worth N0 ≥ 0, assume that the conditions
of Proposition 5.2(ii) are satisfied. Then, at each point in time t > 0, pooling and
tranching is associated with an expected net worth that is no lower than in the case of
individual securitization. The comparison is strict if δs < 1 for some 0 ≤ s < t.

The above results demonstrate that aggregation and securitization are beneficial for
insurers that deploy their capital in the buyout market to acquire pension assets and
liabilities, for later repackaging and selling on to investors. The securitization process can
therefore lead to larger buyout market capacity and a more efficient pricing of buyouts.
As shown by Proposition 5.3 and figure 1, however, a further reduction in mispricing can
only be achieved by narrowing the difference in regulatory environments faced by pension
funds and buyout firms, and by making careful use of data collection and disclosure in
buyout transactions.

28The risk of becoming insolvent and being excluded from the buyout market in the next time period
may suggest moral hazard considerations. As we assume that Y is realized before securitization, is
disclosed to regulators, and does not provide any information on the law of ∆t, we abstract from moral
hazard in our model.
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6 Conclusion

In this study, we have provided a stylized model of pension liability buyouts that exam-
ines the role of asymmetries in information on longevity risk and capital requirements.
The implications of the model explain some of the key features of buyout transactions,
such as inefficient pricing of liabilities from the point of view of pension funds and domi-
nance of specialized firms in the market. An extension of the model allows buyout firms
to securitize (part of) their exposures or to issue longevity-linked securities. We show
how buyout firms can leverage their capital to increase returns, leading to greater capac-
ity in the buyout market and more efficient pricing of buyout transactions. The results
demonstrate that buyout firms, which are natural aggregators of longevity-linked liabil-
ities in corporate pension plans, could represent an important driver of innovation in
mortality-linked securities. Further research would include the introduction of learning
about mortality dynamics, and the analysis of indexed longevity-linked instruments.
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A Sketch of proofs

Proposition 3.1 i) Denote by a(x(π), p(Y )) := 1 − β1{p(Y )≤x(π)} the allocation of the
pension liability to the uninformed, given the signal Y , the bid π, and the informed’s
threshold x(π). Point (iii) below shows that x(π) is nondecreasing in π. One can show
that under our assumptions a(x(π), p) is continuous nonincreasing in π and continuous
nondecreasing in p. Since (π−ηS)a(x(π), p(Y )) ≤ π−ηS ≤ π, by dominated convergence,
we obtain continuity of E [(π − ηS)a(x(π), p(Y ))] in π. Moreover, since p(y) ≤ p and

20



x(ηp) ≤ p, we have a(x(ηp), p) = 1 − β for all p ∈ (p, p), implying that for π = ηp the
uninformed firms make a profit on average, E [η(p− S)a(x(ηp), p)] > 0. Similarly, since
p(y) ≥ p we have E

[
η(p− S)a(x(ηp), p)

]
< 0 for all p ∈ (p, p), so that the uninformed

firms make a loss on average for π = ηp. Hence there exists π∗ ∈ (p, p) such that the
uninformed earn zero on average, and any lower bid would result in an expected loss.
Now note that from (3.3) we can write

0 ≤ E [(π∗ − ηS)a(x(π∗), p(Y ))] = E [(π∗ − ηS)]E [a(x(π∗), p(Y ))]+Cov (π∗ − ηS, a(x(π∗), p(Y )))

From the inequality above we then obtain

π∗ ≥ ηE[S]− E [a(x(π∗), p(Y ))]−1 Cov (−ηS, a(x(π∗), p(Y ))) ≥ ηE[S],

where we have used the fact that Cov (−ηp(Y ), a(x(π), p(Y ))) ≤ 0 because a(x(π), ·) is
nondecreasing.

(ii) The above arguments show that as β goes to zero, a converges to unity. By (3.3)
the minimum premium the uninformed can offer is then ηE[S]. As |p − p| goes to zero,
the advantage of the informed vanishes and the exposures are purchased by the informed
at price ηE[S] with probability 1− β.

(iii) By total differentiation of (3.3) with respect to x, we obtain

π′(x) (1− βP(p(Y ) ≤ x))− (π(x)− ηx) βf(x) = 0,

where f denotes the density of p(Y ). We then have π′(x) > 0 if π(x) > ηx, and π′(x) < 0
if π(x) < ηx. As π is continuous in x by continuity of p(Y ), and π ≥ ηx− c, there exists
π̂ such that π(x) ≤ ηx for ηx ≥ π̂. As the solvency constraint (3.2) is relaxed by an
increase in capital, c, we have x increasing and π decreasing in c until x = π = π̂, which
happens for c = ĉ := (η − 1)π̂. �

Proposition 3.2 See DeMarzo (2005, Theorem 6).
Proposition 4.1 The assumption of log-concavity of the individual error terms {eh} im-
plies that ε(T ) =

∑T

h=1 eh is log-concave (see Ibragimov, 1956; Karlin, 1968). Since,
in addition, p(Y ;T ) is continuous, s(T ) − S(T ) admits a ‘uniform worst case’ (see
DeMarzo and Duffie, 1999). It then follows that the optimal security is given by φ∗(s(T )−
S(T )) = min (s(T )− S(T ), κ), for suitable a tranching level κ satisfying

κ ∈ argmax
ρ

E
[
(1− δ)Φ(ρ)Φ(ρ)

1

δ−1

]
,

where we have set Φ(ρ) := min (s(T )− S(T ), ρ) and Φ(ρ) := miny E [Φ(ρ)|Y = y] (see
Biffis and Blake, 2010a, Proposition 5.1). Simple manipulations then yield the results,
with the optimal strike level equal to κ∗ = s(T )− κ. �

Propositions 4.2 Under our assumptions, we can use Biffis and Blake (2010a, Proposi-
tion 6.2) to write

1

n
V φ∗

(
n∑

i=1

(
si(T )− Si(T )

)
)

≥
1

n

n∑

i=1

V φ∗
(
si(T )− Si(T )

)
,

where V φ∗

(X) denotes the expected payoff from issuing the optimal security (4.7) written
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on the asset X. Hence writing security φ∗ on the pooled exposures is optimal.
Propositions 4.3 This is an immediate consequence of DeMarzo (2005, Theorem 2).
Proposition 5.1 We first note from (5.7) that γ̃t does not depend on the realization of
Yt. From (5.6) we can then write the informed’s private valuation as (dependence on t is
dropped)

E[γ̃D|Y ] = γ̃
(
l − E[L] + β (s∗0 − F (x∗)E[p(Y )|p(Y ) ≤ x∗])

)
,

and the worst-case private valuation as

min
y

E[γ̃D|Y = y] = γ̃

(
l − E[L] + β

(
s∗0 − F (x∗)max

y
E [p(Y )|p(Y ) ≤ x∗, Y = y]

))

= γ̃
(
l − E[L] + β (s∗0 − F (x∗)x∗)

)
,

where we have used the fact that the support of p∗(Y ) has upper bound given by the
equilibrium threshold x∗. The optimal securitization fraction (4.2) is then given by (5.8).
�

Proposition 5.2 (i) Let S∗
t,0 = p∗(Yt)+ ε∗t =

∑∞
h=1

(
p∗h(Yt) + e∗t,h

)
. Since the uncertainty

surrounding each private signal Yt is completely resolved at the end of each time period,
the log-concavity of the terms {et,h} and the recursive structure of Lt imply that Lt +

β
∑T

h=1 e
∗
t,h is log-concave. Since β

∑T

h=1 p
∗
h(Yt) is continuous, the net exposure Dt(T )

admits a ‘uniform worst case’, and this holds for each date t. Hence, the optimal security
again takes the form φ∗(γ̃tDt(T )) = min (γ̃tDt(T ), κ). Simple manipulations then yield
the results, with κ = γ̃tκ̃, for a suitable tranching level κ̃ and strike level κ̃∗ = lt(T ) +

βs∗t,0(T ) − k̃. (ii) This follows from Proposition 4.2(ii), since, as in the above proof, we
have

min
y

E [Dt(T )|Yt = y] = lt(T )− Et[Lt(T )] + β
(
s∗t,0(T )− F (x∗

t )x
∗
t

)
,

where with a slight abuse of notation we have set F (x) := P(p(Y ;T ) ≤ x). �

Proposition 5.3 The proof is the same as for Proposition 3.1(iii). �

Proposition 5.4 The result follows from noting that if δ0 < 1 (which requires N0 < N̂ by
Proposition 5.3), then N1 will be strictly higher, on average, under pooling and tranching
than under straight securitization, as d∗ >

[
l − E[L] + β (s∗0 − F (x∗)x∗)

]
E[(γ∗)δ], and

∆t is realized before the securitization stage and is independent of Y . As x∗(N) is
nondecreasing, pooling and tranching allows the insurer to purchase, on average, more
exposures in the buyout market, thus yielding the result. �

B Figures
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Figure 1: Comparative statics of the buyout price (π∗) and the private valuation threshold
(x∗) relative to the resources of the informed (c). We set β = 0.5 and assume that p(Y )
is uniformly distributed on [0.6, 0.8] and that ε has a truncated Normal distribution
supported on [−0.1, 0.1], with mean zero and variance 0.03.

0.65 0.7 0.75 0.8 0.85 0.9

−0.1

−0.05

0

0.05

0.1

0.15

BUYOUT PRICE, π*

 E
X

P
E

C
T

E
D

 P
R

O
F

IT
 o

f 
L

E
S

S
 I
N

F
O

R
M

E
D

     CAPITAL
REQUIREMENTS

    BEST
ESTIMATE

% of MORE
INFORMED

Figure 2: Divergence of equilibrium buyout prices from the uninformed’s valuation E[S].
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cost of asymmetric information.
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