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Abstract 
Upcoming new regulation on regulatory required solvency capital for insurers will be 
predominantly based on a one-year Value-at-Risk measure. This measure aims at covering 
the risk of the variation in the projection year as well as the risk of changes in the best 
estimate projection for future years. This paper addresses the issue how to determine this 
Value-at-Risk for longevity and mortality risk. Naturally this requires stochastic mortality 
rates. The last decennium a vast literature on stochastic mortality models has been developed. 
However, very few of them are suitable for determining the one-year value-at-risk. This 
requires a model for mortality trends instead of mortality rates. Therefore, we will introduce 
a stochastic mortality trend model that fits this purpose. The model is transparent, easy to 
interpret and based on well known concepts in stochastic mortality modeling. Additionally, 
we introduce an approximation method based on duration and convexity concepts to apply 
the stochastic mortality rates to specific insurance portfolios.    

 
JEL classification: G22; G23; J11 
 
Subject classification: IM10; IE43; IB10 
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1. Introduction 
 
In recent years there has been an increasing amount of attention of the insurance industry for the 
quantification of the risks that insurers are exposed to. Important drivers of this development are 
the increasing internal focus on risk measurement and risk management and the introduction of 
Solvency 2 (expected to be implemented around 2012).  
 
Solvency 2 will lead to a change in the regulatory required solvency capital for insurers. At this 
moment this capital requirement is a fixed percentage of the mathematical reserve or the risk 
capital. Under Solvency 2 the so-called Solvency Capital Requirement (SCR) will be risk-based, 
and market values of assets and liabilities will be the basis for these calculations.  
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Also for pension funds, a new solvency framework will be developed, either as part of Solvency 
2 or as a separate project (usually named IORP 2). It is expected that the general principles will 
be similar as Solvency 2, implying market valuation of assets and liabilities and risk-based 
solvency requirements. 
 
The SCR will be based on a one-year Value-at-Risk (VaR) measure, corresponding to the 99,5% 
percentile. This VaR measure aims to cover not only the risk of variation in the projection year, 
but also the risk of changes in the best estimate projection for future years.  
 
Important risks to be quantified are mortality and longevity risk. Not only is this an important 
risk for most (life) insurers and pension funds, the resulting solvency requirement will also be 
part of the market value reserve. Reason for this is that it is becoming best practice to quantify a 
risk margin (to be included in the value of liabilities) by applying a Cost of Capital rate to the 
solvency capital necessary to cover for unhedgeable risks, such as mortality and longevity risks. 
 
Börger (2010) provides a good discussion on the model requirements and suitability of current 
stochastic mortality models for determining the one-year VaR for longevity (and thus mortality) 
risk. The one-year risk consists of two components: 

- the risk that next year’s realized mortality will be below (or above) its expectation 
- the risk of a decrease (or increase) in expected mortality beyond next year 

 
The first component is the ordinary stochastic variation around the ‘best estimate’ projection. 
The second component reflects the risk of a change in the best estimate projection for future 
years. A cure for cancer is a classical example for this risk. It would take some time before such 
a new medicine would be available for such a large group of people that mortality for the whole 
population would be affected. That means that a large effect on next year’s realized mortality is 
not expected, but the impact on future mortality rates can be significant. Therefore, to adequately 
quantify the VaR for longevity and mortality risk both components have to be addressed properly.       
 
There is a vast literature on stochastic modeling of mortality rates. Most of the stochastic 
mortality models are so-called spot models that only model the realized mortality. Examples of 
this are for example Lee and Carter (1992), Renshaw and Haberman (2006), Cairns et al (2006a, 
2009) and Plat (2009). For projection purposes, these models contain a mortality trend 
assumption. However, in most models this trend is fixed and scenarios of realized mortality are 
derived as random deviations from this trend. This means that those models do not account for 
the second component of the longevity or mortality risk. This can be overcome in a one-year 
VaR calculation by generating thousands of Monte Carlo simulations for the next year, treating 
the simulated mortality rates as a new observation, repeat the calibration process of the spot 
mortality model, and then project the (fixed) trend forward for each simulation. However, this 
means that the spot mortality model has to be calibrated thousands of times, while for the 
projection of the trend in each simulation again simulations would be necessary if it is required 
to do this precisely. Furthermore, the VaR for the second component would be based on the tail 
of the distribution of mortality rates, not mortality trends. Finally, there is a possibility that the 
risk is underestimated with this approach, because the impact of the next year’s realized 
mortality rates on the calibration of the spot model can be relatively low, depending on the 
number of historical years underlying the calibration of the model. 
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The models of Cox et al (2009) and Sweeting (2009) try to solve this issue by allowing for trend 
changes in the models of Lee and Carter (1992) and Cairns et al (2006a). Both do not account 
sufficiently for possible changes in trend though, see Börger (2010). 
 
That means that currently the only models that are suitable for these calculations are the so-
called forward mortality models, as proposed by for example Dahl (2004), Miltersen and Persson 
(2005), Cairns et al (2006b) and Bauer et al (2008, 2009). This class of models requires the 
expected future mortality rates as input and models changes in this quantity over time. The 
model of Bauer et al (2008, 2009) and its extension by Börger (2010) is the only forward 
mortality model that has concrete specifications, so this is the only forward model that is readily 
available. 
 
The forward mortality models model the changes in the mortality rate curve for specific age 
cohorts, for example the future mortality rates of people of age x0 at time t0. This means that such 
models have to capture the dynamics of each age cohort over time, while each age cohort also 
contains all ages > x0: x0 at t0, x0 + 1 at t0 + 1, …, x0 + k at t0 + k, where k = ω - x0 and ω is the 
end age of the mortality table (usually set at age 120). In other words, the mortality curves are 
modeled ‘diagonally’. Capturing these dynamics requires a complex model. Indeed, the model 
setup of Bauer et al (2008, 2009) is quite complex and not very transparent. This observation, in 
combination with the fact that the results are (of course) obtained per age cohort, makes the 
results difficult to interpret. Furthermore, the calibration procedure (given in Börger (2010)) is 
complex.  
 
Note that insurance companies have to model the mortality rates of males and females 
simultaneously, adequately addressing the dependence between those. Including this in the 
forward mortality models would even double the complexity, at least.  
 
Forward mortality models are designed this way to allow for a ‘risk neutral’ specification of the 
mortality model (for pricing) that can be calibrated to mortality hedging instruments such as 
longevity bonds. However, currently there is no liquid market for these derivatives, implying that 
there is no unique risk neutral probability measure (see Cairns et al (2006a)). More importantly, 
for calculation of the one-year VaR only a ‘real world’ setting is relevant. This observation 
provides an argument to look for other ways to model stochastic mortality trends, which we will 
address in this paper. 
 
In this paper a new stochastic mortality trend model is proposed. The trend is represented by a 
well-known simple reduction factor λx per age (‘horizontally’). This trend is estimated on 
subsequent blocks of 30 years of historically observed mortality rates, beginning with 1950-1979, 
then 1951-1980 and so on. The result of this is a matrix of age by year (per gender), filled with 
historical observations of (horizontal) mortality trends, represented by λx. Since this form of 
input is similar as the usual format of historically observed mortality rates and the stochastic 
mortality trends are also driven by changes in mortality rates, techniques can be applied that are 
known from the substantial literature of spot mortality models. Concretely, we will use a 3-factor 
version (per gender) of the spot mortality model described in Plat (2009). After fitting the 3-
factor model for all historical years for each gender, the resulting time-series of estimated 
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parameters are simultaneously modeled for males and females in the form of a 6-factor time 
series model. The advantages of this approach compared to the model of Bauer et al (2008, 2009) 
are that the model and calibration routine are less complex, the results are easier to interpret and 
the techniques used are well known from the literature on stochastic mortality models and are 
standard available in statistical software.  
 
When the stochastic mortality trends are obtained, they have to be applied to the insurance 
portfolios. While this is possible for an example product, it is practically not feasible for 
insurance companies to do this for all products in their portfolios. Therefore, we also present an 
approximation based on the concept of duration and convexity, known from the literature and 
practice on interest rate risk. Given the simulated mortality rates and the ‘mortality duration’ and 
‘mortality convexity’, the value of the liabilities can be obtained for each simulation relatively 
easy. 
 
The remainder of the paper is organized as follows. First, in section 2 the mortality trend is 
defined and estimated on historical data. Section 3 presents the stochastic model for mortality 
trends. Section 4 discusses the simulation procedure and section 5 contains a numerical example.   
Section 6 describes the approximation method based on duration / convexity concepts. 
Conclusions are given in section 7. 
  
    

2. Fitting historical mortality trends 
 
The first step in the process is fitting the historical mortality trends. The data used are the 
historical initial mortality rates of the population of The Netherlands (males and females) for the 
years 1950-2008 and ages 19.5 – 98.5 2. The initial mortality rate qx is the probability that a 
person aged x dies within the next year, see Coughlan et al (2007).   
 
A first step is smoothing the age-specific mortality rates across ages to eliminate statistical noise 
and data errors. This prevents that the projected trends are distorted by this noise. The method 
used is (penalized) cubic spline smoothing, conform the approach of Coughlan et al (2007). 
Within this smoothing process the mortality rates are obtained for the ages 20, 21, …98, which 
will be the basis for the further projection. 
 
The basis for fitting the historical trends will be a relatively simple and well-known deterministic 
trend model, where the future trend per age is summarized in one parameter: 
 
 (2.1) , , 1x t x x tq qλ −=  
 
where t is the year. Using only one parameter for the trend will allow stochastic modeling of the 
future trends using well known techniques later on in the process. The variable λx is sometimes 
also named ‘mortality reduction factor’. 
 

                                                 
2 Source: http://www.statline.nl 
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This model is fitted for each age on subsequent blocks of 30 years of historically observed 
mortality rates, beginning with 1950-1979, then 1951-1980 and so on, until the period 1979-2008.  
The reason for using blocks of 30 years is that both fitting the historical trends and fitting the 
stochastic model for these trends will be based on enough data (30 years). For example, when 
blocks of 40 years would be used, we would only have 20 years of observed historical λx’s. 
Furthermore, it is consistent with the approach of Börger (2010). 
 
Now one possible approach for fitting the trends is to write (2.1) as  
 
 (2.2) , , 1ln ln lnx t x t xq q λ−− =     
 
Then applying least squares estimation gives: 
 

 (2.3) 
1

,
1

ˆln ln
n

x i x i
i

w qλ
−

=

= ∆∑  

 
where n = 30, wi = 1/(n-1) and ∆ln(qx,i) = ln(qx,i+1) – ln(qx,i). So ln( ˆ

xλ ) is the average of the 
observed differences ∆ln(qx,i). 
 
However, when using this approach the change in trend over the years is not only driven by the 
newly observed year, but also by not using the earliest year of the foregoing block. For example, 
the change in trend that is observed after fitting the trend for subsequent periods 1950-1979 and 
1951-1980, is not only caused by adding the year 1980, but also by not using 1950 in the latest 
trend fitting process. For the one-year VaR we are more interested in the impact of the latest 
observation though.  
 
Because of this, we will use a slightly different approach. We will apply an ARIMA(0,1,1) 
model without constant to the differences ∆ln(qx,i). This is equal to the well-known ‘Exponential 
Smoothing’ technique, where the most recent observations are weighted more than the earlier 
observations, e.g. wj > wi for j > i. Consequently, the earliest observation is weighted the least of 
all observations. This approach will therefore limit the impact of excluding the earliest 
observation. Another reason for applying this process is the continuously accelerating downward 
trend in observed mortality rates of males in The Netherlands, which has lead to practitioners 
using models that weight the recent trends most. Also, it allows for a possible different treatment 
of the short / middle term and the long term trend (see paragraph 4.2).   
 
The ARIMA(0,1,1) model is fitted for each age for the 30 subsequent periods, leading to a 
matrix of age by year (per gender), filled with historical observations of mortality trend λx(τ), 
where τ is the indicator for the subsequent periods of data, i.e. the period 1950-1979 is denoted 
by τ  = 1, 1951-1980 by τ  = 2, and so on. Note that this data structure is similar as the usual 
format of historically observed mortality rates. Since the fitted trends λx(τ) are also driven by 
changes in mortality rates, techniques can be applied that are known from the substantial 
literature of spot mortality models. 
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Standard
Age group τ∈ (1-10) τ∈ (11-20) τ∈ (21-30) total deviation
Males
   age 25 0,987 0,989 0,981 0,986 0,014
   age 45 0,981 0,988 0,979 0,983 0,011
   age 65 0,992 0,984 0,971 0,982 0,010
   age 85 0,999 1,001 0,990 0,996 0,008
Females
   age 25 0,986 0,994 0,983 0,988 0,014
   age 45 0,987 0,997 0,994 0,992 0,014
   age 65 0,985 0,994 0,986 0,988 0,007
   age 85 0,986 0,993 0,989 0,989 0,006

Average

Figure 2.1 shows the estimated mortality trends λx(τ) for males and females and all ages, based 
on the data of The Netherlands. Each line represents the time series of λx for a specific age x. 
 
Figure 2.1: estimated mortality trends λx(τ) for males and females, all ages 

 
The figures show that the historically observed λx(τ)’s are concentrated between 0,98 and 1, 
indicating that the trend in mortality rates is usually downwards. Furthermore, the acceleration of 
the downward trend for males is visible between periods 20 – 30.  
 
Further characteristics of the time series are given in table 2.1 for ages 25, 45, 65 and 85. Note 
that the absolute differences might seem small. However, the impact on the value of the 
liabilities can be very significant, since these λx(τ)’s are applied for a long future period of years.  
 
Table 2.1: characteristics estimated mortality trends   

  
 

 
          
 
 
 
 
 
 
 
 
 

 
The table shows different trends, trend patterns and standard deviations for younger ages (age 25 
and 45), age 65 and age 85. Also, differences between males and females are clearly visible. The 
stochastic model for projecting future mortality trends should capture this different behavior 
between ages and gender.  
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3. A stochastic model for mortality trends 
 
The next step in the process is defining a stochastic model for the mortality trends. First, a 
parametric model across ages will be fitted on the yearly observations of λx, in line with concepts 
from spot mortality models. To the resulting time series of fitted parameters a suitable time series 
model has to be applied.  
 
3.1 Fitting a parametric model per year 
The mortality trends λx(τ)’s estimated in the previous section are, of course, driven by the 
underlying mortality rates. Therefore, we can apply concepts and techniques from the literature 
on stochastic spot mortality models. The results in Plat (2009) indicate that at least 3 stochastic 
factors are required to model the dependence between ages adequately. This can also be 
concluded from table 2.1 in the previous section, where we observe differences between young, 
middle and old ages. Therefore, we define a 3-factor model (per gender), based on the model 
structure in Plat (2009): 
 
 (3.1) ( ) ( )1 2 3( ) ( ) ( ) ( )x x x x xλ τ κ τ κ τ κ τ += + − + −  
 
where ( ) ( )max ,0x x x x+− = − . The model has 3 stochastic factors but has a relatively simple 
structure. For countries where a clear cohort effect in the historical mortality rate observations is 
observed, cohort parameters could be added to (3.1), see Plat (2009).  
 
The factor κ1 represents the base level of the mortality trend and allows for changes in mortality 
trends for all ages simultaneously. The factor κ2 allows changes in mortality trend to vary 
between ages, to reflect the observation from the previous section that the change in mortality 
trend can differ for different age classes. The factor κ3 is added to capture the specific dynamics 
of younger ages. The parameter x  is a constant that is also estimated from the data. 
 
The factors κ2 and κ3 allow the model to have a non-trivial correlation structure between ages. 
How the three factors κ1, κ2 and κ3 interact exactly will be different for each population / gender, 
depending on the patterns observed in the historical observations. 
 
De parameters of model (3.1) can be determined using standard Maximum Likelihood estimation. 
This estimation procedure can be done using standard functionality of statistical software (such 
as SAS, R or Matlab). 
 
Figure 3.1 shows the fit of the model for two random periods. Despite the simple linear structure 
of the model the fit to the observed data is good. Note that this structure does not mean that 
eventually the stochastic λx‘s are all of this shape; this will be explained further in section 4. 
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Figure 3.1: fit of the model for period 5 and 28, males 

 
The fitting procedure described above leads to time series of estimations of κ1, κ2 and κ3. These 
are given in figure 3.2 (males) and figure 3.3 (females). The next step in fitting the model is 
selecting and fitting a suitable model to these time series. 
 
Figure 3.2: time series of estimated κ’s – males 

Figure 3.3: time series of estimated κ’s - females 

 
3.2 Selecting a suitable time series model 
The most recent λx is based on the period 1979 – 2008 and provides the ‘best estimate’ 
projection of mortality rates per ultimo 2008. The aim of the proposed stochastic model is to 
quantify the stochastic variation around this best estimate projection of mortality rates. Since the 
most recent λx already captures the best estimate trend, the time series model for mortality trends 
λx should be a zero-trend process. Note that we smooth this most recent λx (again using a cubic 
spline) to avoid illogical patterns over ages due to statistical noise (as can be noticed in figure 
3.1). 
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Since insurance portfolios are exposed to longevity and mortality exposure of males and females, 
it is important to model both genders and its dependence adequately. Therefore, we model both 
males and females simultaneously in a 6-factor time-series model. To come to a specification of 
this 6-factor model, we have first fitted ARIMA models (see Box and Jenkins (1976) or Verbeek 
(2008)) to the univariate time series of the estimated κ’s. Since for some populations there can be 
a long term relationship between κ1 on the one hand and κ2 and κ3 on the other hand, we also 
tested all possible models for κ2 and κ3 including κ1 as explaining variable. The models with the 
most preferable value for the Bayes Information Criterion (BIC) (see Verbeek (2008)) 3  are 
selected. The combination of these models is used as a first basis for the 6-factor model, from 
where alternative specifications (for example, with less parameters) were tested based on the 
estimation results of the combined model and its parameters. This leads to the following selected 
processes for the κ’s (m = males, f = females): 
 

- 1 ( )mκ τ : ARIMA(1,1,0), no constant 

- 2 ( )mκ τ  and 3 ( )mκ τ : ARIMA(0,1,0), no constant, 1 ( )mκ τ  as explaining variable 

- 1 ( )fκ τ  and 2 ( )fκ τ : ARIMA(1,1,0), no constant 

- 3 ( )fκ τ : ARIMA(0,1,0), no constant, 1 ( )fκ τ  as explaining variable 
 
This can be written as the following multivariate model: 
 
 (3.2) 1 1 1 1 1

1,( ) ( 1) ( 1) ( 2) ( )m m m m m mκ τ κ τ β κ τ κ τ ε τ = − + − − − +   

 2 2 1 1 2
2,( ) ( 1) ( ) ( 1) ( )m m m m m mκ τ κ τ α κ τ κ τ ε τ = − + − − +   

 3 3 1 1 3
3,( ) ( 1) ( ) ( 1) ( )m m m m m mκ τ κ τ α κ τ κ τ ε τ = − + − − +   

 1 1 1 1 1
1,( ) ( 1) ( 1) ( 2) ( )f f f f f fκ τ κ τ β κ τ κ τ ε τ = − + − − − +   

 2 2 2 2 2
2,( ) ( 1) ( 1) ( 2) ( )f f f f f fκ τ κ τ β κ τ κ τ ε τ = − + − − − +   

 3 3 1 1 3
3,( ) ( 1) ( ) ( 1) ( )f f f f f fκ τ κ τ α κ τ κ τ ε τ = − + − − +   

 
where the β parameters are used for autoregressive terms, the α parameters for the explaining 
variables. The ε’s are the error terms with covariance matrix Σ. 
 
The parameters of this model can be estimated by any technique suitable for estimating 
simultaneous systems of equations.  We use Full Information Maximum Likilihood (FIML), see 
Chernoff and Divinsky (1953). The estimated parameter values are: β1,m = -0,311 , α2,m = 0,065 , 
α3,m = -0,097 , β1,f = -0,371 , β2,f = -0,281 , α3,f = -0,121. 
 
In section 1 it is mentioned that it’s important to model the mortality trends of males and females 
simultaneously to adequately capture the dependence between those. In that respect, it is 

                                                 
3 The measure BIC provides a trade-off between fit quality and parsimony of the model. 
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κ m
1 κ m

2 κ m
3 κ f

1 κ f
2 κ f

3

κ m
1 1,00 -0,24 0,15 0,43 0,18 0,40

κ m
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λ x
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smoothed

interesting to see the estimated correlation matrix between the κ-processes. These are given in 
table 3.1. 
 
Table 3.1: estimated correlation matrix of multivariate model 

 
 
 
 
 
 
 
 
 

 
The table shows that the correlation between the κ’s for males and the equivalent κ’s for females 
is in a range of 0,4 - 0,55. If one would not model the mortality trends of males and females 
simultaneously and for example simply aggregate the VaR’s (implicitly assuming full correlation) 
the dependence would be significantly mis-specified. 
 
    

4. Simulation procedure 
 
Using the model defined in section 3 and its estimated parameters, the distribution of mortality 
trends for a one-year horizon can be determined using Monte Carlo simulation. Paragraph 4.1 
describes the simulation procedure. Paragraph 4.2 introduces a possible extension to the 
procedure, which allows for a different treatment of the short / medium term and long term trend. 
 
4.1 Simulation procedure 
As mentioned in paragraph 3.2 the first step is smoothing the most recent λx which is the basis 
for the best estimate projection. This should give a realistic pattern of λx between ages, and 
avoids statistical noise. Again (penalized) cubic spline smoothing is used for this. The most 
recently observed and smoothed λx’s for males and females are given in figure 4.1. 
 
Figure 4.1: observed and smoothed λx’s (2008), males and females 
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The simulation procedure consists of the following steps: 
 

a) Simulate κ’s   Draw a random sample from the multivariate model (3.2) for the κ’s. 
b) Determine λx’s   Given the simulated κ’s, the λx’s for each age can be determined for 

each simulation. 
c) Translate λx in factor   Divide the simulated λx’s by the most recent λx’s (in this case per 

ultimo 2008) resulting from model (3.1) to determine a factor reflecting the relative 
change. 

d) Obtain ‘new’ λx’s   Apply the factor determined in step c) to the most recently observed 
and smoothed λx’s (as given in figure 4.1). This gives the simulated λx’s similar smooth 
shapes as in figure 4.1 and ensures that the simulated λx’s in the projection year have the 
same starting point as the best estimate projection. 

e) Determine corresponding qx’s   To come to a projection of mortality rates qx in each 
simulation, not only the mortality trends λx are required but also the (simulated) qx’s in the 
projection year. These are determined using the following formula: 

 

 (4.1) , , 1

, 1

( 1) ( ) ( 1)
( 1) ( 1)

x x x x
x

x x

q q
q

τ τ

τ

λ τ λ τ λ τ
θ

λ τ λ τ
−

−

− − − −
=

− −
 

  
In words, this means that the relative change in qx (compared to its expectation) is 
determined by applying a constant θx per age to the relative change in λx. The constant θx 
is determined per age by dividing the historical standard deviation of qx by the historical 
standard deviation of λx. The resulting θx‘s are smoothed over ages using a (penalized) 
cubic spline. This approach ensures that the volatility of simulated qx’s is in line with 
historically volatility of mortality rates (per age) and establishes the relationship between 
λx and qx.  

f) Determine projected qx’s   Based on the λx’s from step d) and the qx’s from step e), the 
projected qx’s for the next, say, 100 years can easily be determined using (2.1). 

 
Based on the simulations of projected mortality rates in step f) the one-year VaR for longevity 
and mortality risk can be determined by calculating the value of the liabilities in each simulation. 
An example of this is worked out in the next section. 
 
Figure 4.2 shows a sample of 250 simulations for the projected mortality rate qx (as determined 
in step f)) for age 65 for the period 2009-2050, based on a horizon of 1 year. The black line gives 
the historical observed mortality rate up until 2008.  
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Figure 4.2: 250 simulations of projected qx  for age 65, males and females  

 
4.2 Possible extension: introducing difference in short / medium and long term trends 
Different specifications for the calibration of model (2.1) are possible. For example, one could 
argue that it is not necessarily the case that a (simulated) trend will hold on for the next 50 years. 
It could be that there is a specific reason (for example, smoking) that impacts the mortality trend 
for several years, after which the trend is normalizing again. Therefore, a possible addition to the 
model presented in this paper could be to distinguish the short term and the long term trend. As 
mentioned in section 2, the λx’s in this paper are fitted using Exponential Smoothing, which 
means that more recent observations are more heavily weighted. One can assume that these λx’s 
are suitable for projection of mortality rates for the short and medium term, say up to 15 years. 
Furthermore, since the fitting of model (2.1) is based on 30 years of historical data, it implies that 
a long term target trend is necessary for projections for year 30 and further. Therefore, we can 
include a (deterministic) long term trend based on a longer period of historical data using (2.3). 
Additionally, we can assume that for each simulation the λx’s grow from the simulated value in 
year 15 to the long term target in year 30. The only additional decision to make is on what 
historical period to base the long term trend. A general viewpoint could be to use all available 
data for estimating the long term trend (in this case 1950 – 2008). This more or less justifies the 
assumption that the long term trend is deterministic, since the impact of a new observation on a 
trend fitted on such a long period of historical data (weighted equally) will not be substantial.  
 
Note that including a deterministic long term trend level does not mean that no risk for cash 
flows for year 30 and further is quantified. The simulated λx’s will impact the level of mortality 
rates for the full runoff of the portfolios. 
 
 

5. Numerical example 
 
The simulation procedure as described in section 4 results in the simulations of projected 
mortality rates. Based on these simulations, the one-year VaR for longevity and mortality risk 
can be determined by calculating the value of the insurance liabilities in each simulation. In this 
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Value-at-Risk
(€ millions) 75% 90% 95% 99% 99,50% 99,95%

Males 38,7 76,1 100,9 154,0 172,9 234,2
{1,4%} {2,8%} {3,7%} {5,7%} {6,4%} {8,7%}

Females 66,7 99,6 120,4 157,8 174,0 216,7
{3,0%} {4,4%} {5,3%} {7,0%} {7,7%} {9,6%}

Total 98,7 160,5 201,1 273,4 298,5 375,7
{2,0%} {3,2%} {4,1%} {5,5%} {6,0%} {7,6%}

Confidence Level
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section a numerical example is worked out for an annuity portfolio of a European insurer4. The 
portfolio consists of 45.000 male and 36.000 female policyholders of age 65 or older. Note that 
this portfolio is only exposed to longevity risk, not mortality risk. 
 
Figure 5.1 shows the densities of the value of the insurance liabilities and the change (delta) in 
Net Asset Value (NAV) of the company. Note that the delta of the NAV is just the opposite of 
the movement in the value of the insurance liabilities. The results are based on 10.000 
simulations. 
 
Figure 5.1: densities of value of insurance liabilities and delta Net Asset Value (NAV)   
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
The resulting VaR’s for different confidence levels are given in table 5.1 for males, females and 
the total portfolio. The VaR’s are also given as percentage of the best estimate of liabilities of the 
(sub-)portfolio (between brackets). 
 
Table 5.1: VaR for different percentiles, nominal and as % of best estimate liabilities (between brackets) 
 
 
 
 
 
 
 
 
 
The table shows that the uncertainty for the females is higher than for the males, relative to its 
best estimate. Furthermore, the diversification effect between males and females is clearly visible, 
since the total VaR is less than the sum of the VaR’s of males and females. The impact of 
diversification is larger for higher confidence intervals. 

                                                 
4 The extension introduced in paragraph 4.2 is not included in this example. Including this extension would result in 
a lower Value-at-Risk. 
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(€ millions) 99,5% VaR Solvency 2 Difference
Males 172,9 244,3 -29%
Females 174,0 165,1 + 5%
Total 298,5 409,4 -27%

 
Within the Solvency 2 framework a standard formula is defined for quantifying the VaR (or 
SCR), corresponding to the 99,5% percentile on a one-year horizon. The VaR for longevity risk 
is based on a shock downwards of 25% for all mortality rates. Table 5.2 compares the results of 
applying this shock with the VaR’s reported in table 5.1. 
 
Table 5.2: Comparison 99,5% VaR with Solvency 2 standard formula 
 
 
 
 
 
The table shows that the VaR for the total portfolio using the proposed model in this paper is 
27% lower than the standard formula of Solvency 2. This difference is mainly caused by the 
lower VaR for male policyholders compared to Solvency 2. 
 
The 99,5% VaR’s in table 5.1 can be back solved to an implied shock for all mortality rates, 
consistent with the definition of the standard formula of Solvency 2. For males, females and the 
total this leads to implied shocks of respectively -18,3%, -26,2% and – 18,9%.  
 
Of course, the results above are specific for the Dutch population and the insurance portfolio 
used. For other populations or portfolios, the relative results of males / females and VaR’s / 
Solvency 2 can be very different. 
 
    

6. Duration / Convexity approach 
 
When the stochastic mortality trends are obtained, they have to be applied to the insurance 
portfolios. While this is possible for an example product such as in section 5, it is practically not 
feasible for insurance companies to do this for all products in their portfolios. The reason for this 
is that insurance companies usually model the future liabilities in detail per policy, potentially 
leading to runtimes of a few hours per scenario.  
 
Another approach that is sometimes used is to pick the particular percentile from the distribution 
of mortality rates and calculate the value of the liabilities for the selected scenario. A different 
scenario has to be picked for mortality and longevity risk, and these are aggregated using a 
correlation parameter. For products that contain both mortality and longevity risk, the mortality 
and longevity scenarios are applied separately and results are again aggregated using a 
correlation parameter. The standard formula of Solvency 2 also uses a version of this ‘shock’-
approach. The problem with this approach is that insurance portfolios consist of a combination of 
products with mortality risk, products with longevity risk and products with both risks. That 
means that it is generally not clear what the ‘true’ percentile of the total portfolio is until the 
portfolios are actually confronted with the stochastic mortality scenarios. As such, picking 
percentiles and setting a correlation parameter will generally not capture the dependence between 
the insurance products and longevity and mortality risks adequately.     
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Therefore, there is a need for an adequate approximation of the value of the insurance liabilities, 
given a simulated path of mortality rates. Inspired by interest rate risk theory (see for example 
Fabozzi (2006)), in this paragraph an approximation based on duration and convexity is 
discussed. This has been tested before by Beckers (2010) on some extreme mortality scenarios. 
 
Coughlan et al (2007) introduced the term ‘q-duration’ to denote the sensitivity of the value of 
insurance liabilities for a change in future mortality rates. We will stick to this naming 
convention and name the mortality convexity measure ‘q-convexity’. The q-duration and q-
convexity measures can be implemented in several ways (see for example Li and Hardy (2009) 
or Wang et al (2009)). In this paper we use the following formulas for obtaining the ‘effective’ q-
duration and q-convexity: 
 

(6.1) 
( )02

MVL MVL
q duration

MVL q
− +−

− =
∆

  

 

 (6.2)  
( )( )

0
2

0

2MVL MVL MVL
q convexity

MVL q
+ −+ −

− =
∆

  

 
where ∆q is the change in all mortality rates (in terms of percentage), MVL0 represents the 
market value of insurance liabilities and MVL - and MVL+ denote this value for respectively a 
decrease and increase of the mortality rates by ∆q. 
 
Given a shock in mortality rates of qshock, the approximated value of liabilities after the shock 
MVLshock can be determined as: 
 
 (6.3) ( )2

0 0 01/ 2shock shock shockMVL MVL qD MVL q qC MVL q= − × × + × × ×    
 
where qD and qC are the q-duration and q-convexity. Using this formula, the value of the 
insurance liabilities can be obtained for each simulation relatively easy. However, in this case the 
situation is more complex than for interest rates. Concretely, it might be difficult to obtain the 
simulated qshock , because the change in qx is different for different ages and future years. 
Therefore, either the simulated qx‘s have to be weighted appropriately or some calibration step 
has to be done. In this paper the latter approach is used. Since the portfolio only contains 
policyholders of age 65 or older, the relevant qx’s are in the triangle starting from age 65 at time 
t0 until age (65 + y) at time (t0 + y). To determine the height of the triangle y we have picked one 
tail scenario (roughly in the expected area of the 99% - 99,5% percentile) from the simulation set 
and solved for the value of y that approximates the liabilities well in this scenario. For this 
specific portfolio, it turns out that for y = 30 gives the best approximation for this tail scenario. 
 
Figure 6.1 shows a comparison of the actual densities of the value of insurance liabilities for 
male policyholders and the delta Net Asset Value (NAV) presented in figure 5.1 with densities 
obtained using the approximation described above. 
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Figure 6.1: comparison actual densities with approximated densities   
 

 
 
 
The figure shows that the duration / convexity approach cannot approximate the full distribution 
sufficiently. However, the approximation does seem to work well for the area that is relevant for 
the VaR calculations. The reason for this is that, as mentioned above, the duration / convexity is 
calibrated to a tail scenario. For the 99,5% confidence interval, the duration / convexity 
approximation leads to an VaR of € 170,1 million, which is only 1,6% lower than the result in 
table 5.1. Note that the results in table 5.1 are also not exact, since there is always some 
simulation error included. 
 
    

7. Conclusions 
 
With the introduction of Solvency 2 the regulatory capital requirement for insurers will be based 
on a one-year Value-at-Risk (VaR) measure, corresponding to the 99,5% percentile. This VaR 
measure aims to cover not only the risk of variation in the projection year, but also the risk of 
changes in the value of insurance liabilities in that year. This paper concentrated on longevity 
and mortality risk. 
 
Most of the existing stochastic mortality models are so-called spot models that only model the 
realized mortality. These models do not account sufficiently for the second component, the 
change in the value of insurance liabilities, of the longevity or mortality risk. That means that 
currently the only models that are suitable for these calculations are the so-called forward 
mortality models, such as presented in Bauer et al (2008, 2009). However, this model setup is 
quit complex and not very transparent, making the results difficult to interpret. Furthermore, 
taking into account female mortality rates and its dependence with male mortality rates would 
double the complexity, at least. 
 
In this paper a new stochastic mortality trend model is proposed. The trend is represented by a 
simple reduction factor λx per age (‘horizontally’). This trend is estimated on subsequent blocks 
of 30 years of historically observed mortality rates. The result of this is a matrix of age by year 
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(per gender), filled with historical observations of (horizontal) mortality trends. Since this form 
of input is similar as the usual format of historically observed mortality rates and the stochastic 
mortality trends are also driven by changes in mortality rates, techniques can be applied that are 
known from the substantial literature of spot mortality models. We have used a 3-factor version 
(per gender) of the spot mortality model described in Plat (2009). After fitting the 3-factor model 
for all historical years for each gender, the resulting time-series of estimated parameters are 
simultaneously modeled for males and females in the form of a 6-factor time series model. The 
advantages of this approach compared to the model of Bauer et al (2008, 2009) are that the 
model is less complex, the results are easier to interpret and the techniques used are well known 
from the literature on stochastic mortality models and are standard available in statistical 
software.  
 
When the stochastic mortality trends are obtained, they have to be applied to the insurance 
portfolios. While this is possible for an example product, it is practically not feasible for 
insurance companies to do this for all products in their portfolios. Therefore, we proposed an 
approximation based on the concept of duration and convexity, known from the literature and 
practice on interest rate risk. Given the simulated mortality rates and the ‘mortality duration’ and 
‘mortality convexity’, the value of the liabilities can be obtained for each simulation relatively 
easy. The duration / convexity approach cannot approximate the full distribution sufficiently, but 
the approximation does seem to work well for the area that is relevant for the VaR calculations. 
 
We have suggestions for further research. First of all, different specifications for the model (2.1) 
for qx and (3.1) for λx are possible. Other specifications can be defined and the impact of it can 
be compared with that of the model used in this paper. Also, the extension introduced in 
paragraph 4.2 can be explored further. Furthermore, research can be done to a refinement of the 
duration / convexity approach, possibly approximating a larger part of the distribution adequately. 
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