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LONGEVITY HEDGING 101: A FRAMEWORK FOR

LONGEVITY BASIS RISK ANALYSIS AND HEDGE

EFFECTIVENESS

Guy D. Coughlan,* Marwa Khalaf-Allah,† Yijing Ye,‡ Sumit Kumar,§ Andrew J. G. Cairns,\

David Blake,# and Kevin Dowd}

ABSTRACT

Basis risk is an important consideration when hedging longevity risk with instruments based on

longevity indices, since the longevity experience of the hedged exposure may differ from that of

the index. As a result, any decision to execute an index-based hedge requires a framework for (1)

developing an informed understanding of the basis risk, (2) appropriately calibrating the hedging

instrument, and (3) evaluating hedge effectiveness. We describe such a framework and apply it

to a U.K. case study, which compares the population of assured lives from the Continuous Mor-

tality Investigation with the England and Wales national population. The framework is founded

on an analysis of historical experience data, together with an appreciation of the contextual re-

lationship between the two related populations in social, economic, and demographic terms.

Despite the different demographic profiles, the case study provides evidence of stable long-term

relationships between the mortality experiences of the two populations. This suggests the impor-

tant result that high levels of hedge effectiveness should be achievable with appropriately cali-

brated, static, index-based longevity hedges. Indeed, this is borne out in detailed calculations of

hedge effectiveness for a hypothetical pension portfolio where the basis risk is based on the case

study. A robustness check involving populations from the United States yields similar results.

1. INTRODUCTION

Longevity risk—the risk that life spans exceed expectation—is a significant concern for defined benefit
pension plans and life insurers with large annuity portfolios. Until recently, the only way to mitigate
longevity risk was via an insurance solution: Pension plans bought annuities from, or sold their liabilities
to, insurers, and insurers bought reinsurance. Then 2008 saw the first capital markets solutions for
longevity risk management executed by Lucida plc and Canada Life in the United Kingdom.1 Both these
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transactions were significant catalysts for the development of the longevity risk transfer market, bring-
ing additional capacity, flexibility, and transparency to complement existing insurance solutions.

While customized (i.e., indemnity-based) capital markets longevity transactions have received more
publicity following Canada Life’s pioneering longevity swap, it is significant that the very first capital
markets transaction to transfer the longevity risk associated with pension payments was a standardized,
index-based hedge. In this transaction, Lucida plc executed a mortality forward rate contract called a
‘‘q-forward,’’2 the payoff of which was linked to the LifeMetrics longevity index3 for England and Wales.
Hedging longevity risk with index-based hedging instruments can be beneficial for several reasons. First,
by standardizing the longevity exposure to reflect an index, there is the potential to create greater
liquidity and lower the cost of hedging. Second, some pension plans are just too large to hedge the
full extent of their exposure to longevity risk in other ways. Third, it is currently the most practical
solution for hedging the longevity risk associated with deferred pensions and deferred annuities
(Coughlan 2009a).4 In fact, as this paper was going to press, the trustees of the Pall (U.K.) Pension
Fund announced just such an index hedge of their deferred pensioner longevity risk (Davies 2011;
Mercer 2011; Stapleton 2011). This transaction, executed with J.P. Morgan in January 2011, was also
based on the LifeMetrics index and was calibrated according to the framework described in this paper.
The hedge consists of a portfolio of q-forwards linked to male and female mortality rates in 10-year
age buckets.

Against the benefits of index-based longevity hedges, one must weigh the disadvantages, the primary
one being basis risk. Because the mortality experience of the index will differ from that of the pension
plan or annuity portfolio, the hedge will be imperfect, leaving a residual amount of risk, known as basis
risk. When contemplating whether and how to hedge, it is clearly essential to evaluate the size of this
risk and weigh the degree of risk reduction against the cost of the hedge.

Unfortunately, until now, there has been little work published by academics or practitioners on
longevity basis risk and its impact on the effectiveness of longevity hedges. Nor has hedge effectiveness
as it relates to longevity risk been well understood by practitioners and consultants in the pension and
insurance industries. Lacking a proper framework, it has been common practice in some quarters to
‘‘assess’’ hedge effectiveness by making qualitative value judgements based on the differences in ob-
served mortality rates. This has led to a widely held misconception that index-based longevity hedges
are ineffective.

This paper addresses these issues, first, by proposing a framework for assessing longevity basis risk
and hedge effectiveness, and, second, by presenting a practical example—based on U.K. data—that
illustrates this framework and demonstrates that index-based hedges can indeed be highly effective. As
a robustness check, we have also evaluated a second example that gives similar results based on U.S.
data, but in this paper we present only the results, not the details.

The framework we propose sets out the key principles and steps involved in a structured approach
to determining the effectiveness of longevity hedges. The key initial step is a careful analysis of the
basis risk between the population associated with the pension plan or annuity portfolio (the ‘‘exposed
population’’) and the population associated with the hedging instrument (the ‘‘hedging population’’).
This is illustrated by the two examples mentioned above. Each example compares the experience of
the national population with a particular affluent subpopulation, which, historically, has enjoyed, on
average, lower rates of mortality and higher mortality improvements over time than the national pop-

2 The q-forward instrument is described in detail in Coughlan et al. (2007c).
3 The LifeMetrics longevity index is documented in Coughlan et al. (2007a, 2007b, 2008). See also www.lifemetrics.com.
4 For deferred longevity risk, index-based hedges are a viable solution, whereas customized hedges are generally either not available or else

very costly. Furthermore, the risk prior to retirement is a pure valuation risk, since no payments are made before retirement. This valuation

risk is driven by uncertainty in mortality improvements, which are generally calibrated from improvement forecasts for large populations (e.g.,

national population indices). In addition, the underlying longevity exposure of deferred members of pension plans is not well defined owing

to various member options, such as early retirement, lump sums, or spouse transfers, so exact, customized hedging is neither practicable nor

desirable.

http://www.lifemetrics.com
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ulation. Using this basis risk analysis, we then conduct an evaluation of hedge effectiveness for a

hypothetical pension plan with the same mortality characteristics as the affluent subpopulation for a

static (i.e., not dynamically rebalanced) hedge, based on a longevity index linked to the national

population.

This framework provides a practical approach that hedgers can use to calibrate index-based hedges,

develop an informed understanding of basis risk, and evaluate hedge effectiveness. The framework does

not assume any particular model for the future evolution of mortality rates and can be applied effectively

with any modeling approach that the user might choose. Nor does it assume any particular model for

the valuation (or pricing) of the longevity exposure or hedging instrument. In this sense, the framework

can be considered to be model independent. However, the application of the framework requires mod-

eling choices to be made. In the two examples presented in this paper, we have chosen a nonparametric

approach to (or model for) basis risk that reflects the historical relationships observed in the data

between the two populations concerned. We have also chosen a simple approach to the valuation of

the pension liability and hedging instrument which is described later.

The examples demonstrate that, despite the different demographic profiles of the population pairs,

there is evidence of stable long-term relationships between their mortality experiences. This has favor-

able implications for the effectiveness of appropriately calibrated, index-based longevity hedges. From

this, we conclude that longevity basis risk between a pension plan, or annuity book, and a hedging

instrument linked to a broad population-based longevity index can, in principle, be reduced very

considerably.

Although our examples involve static longevity hedges, the framework could be extended to dynamic

hedges with an appropriate hedge rebalancing criterion. In practice, dynamic hedging is currently

untenable because of high transaction costs and lack of liquidity.

The paper is organized as follows. In the next section, we describe the relationship between longevity

basis risk and hedge effectiveness, and review the existing literature on the subject. Section 3 then

presents the framework for analyzing basis risk and hedge effectiveness. In Section 4, we apply the

framework to the case study mentioned above, and Section 5 briefly considers a robustness check that

we performed using U.S. data. Finally, Section 6 is devoted to conclusions.

2. BASIS RISK AND HEDGE EFFECTIVENESS

2.1 What Is Basis Risk?

Basis risk arises whenever there are differences, or mismatches, between the underlying hedged item

and the hedging instrument. These differences can take many forms, ranging from differences in the

timing of cash flows to differences in the underlying variables that determine the cash flows. The

presence of basis risk means that hedge effectiveness will not be perfect and that, after implementation,

the hedged position will still have some residual risk.

It is important to note that basis risk is present to some degree in most financial hedges, and it

does not automatically invalidate the case for hedging. For example, the interest rate and inflation

hedges used by pension plans and insurance companies almost always have some basis risk. Contrary

to common practice, basis risk should always be quantified because, in many cases, it can be minimized

through careful structuring and calibration of the hedging instrument to ensure high hedge effective-

ness. A ‘‘good’’ hedge is therefore one in which the basis risk is small, relative to the risk of the initial

unhedged position.

2.2 Longevity Basis Risk

In the context of longevity and mortality, basis risk often relates to mismatches in demographics

between the ‘‘exposed population’’ (e.g., the population of members of a pension plan or the benefi-

ciaries of an annuity portfolio) and the ‘‘hedging population’’ associated with the hedging instrument



LONGEVITY HEDGING 101: A FRAMEWORK FOR LONGEVITY BASIS RISK ANALYSIS AND HEDGE EFFECTIVENESS 153

(i.e., the population that determines the payoff on the hedge).5 These demographic mismatches can
arise because the two populations are completely different, or because one population is a subpopu-
lation of the other, or because just a few individuals are different. Regardless of how they arise, however,
such mismatches can be classified according to a small number of demographic characteristics (Rich-
ards and Jones 2004), such as gender, age, socioeconomic class, or geographical location.

If two populations have similar profiles for these characteristics, then one would generally expect
basis risk to be small. On the other hand, if the two populations have vastly different profiles, then
basis risk could be large, but this is not necessarily the case, as we shall see below.

Examples of basis risk between populations include that originating from the mismatch in mortality
rates between males and females (the ‘‘gender basis’’), the mismatch between mortality at different
ages (the ‘‘age basis’’), the mismatch between national mortality and the mortality of a particular
subpopulation (the ‘‘subpopulation basis’’), and the mismatch between mortality in different countries
(the ‘‘country basis’’).

The basis risk associated with gender or age is generally not an issue for index-based hedges, because
it can be minimized by appropriate structuring of the hedging instrument. Indeed, most broad-based
population longevity indices are broken down into subindices by gender and age, thereby permitting
the hedging instrument to be matched to the gender and age profile of the underlying pension plan
or annuity portfolio through appropriate combinations of subindices. As a result, the most important
determinant of basis risk in most index-based hedging situations is that associated with socioeconomic
class.6

For the purposes of this paper, we distinguish between basis risk and sampling risk, the latter being
the risk associated with small populations.7 Our goal is to explore the elements of basis risk that cannot
be explained by the size of the population, although in our examples, variability due to sampling risk
will be a factor for higher ages, since the population at higher ages is relatively small and the numbers
of deaths—and hence mortality rates—will be highly variable from one year to the next. Note that
sampling risk could be taken into account by combining it with the population basis risk and including
it in the simulation of mortality rates for the two populations.

2.3 Hedge Effectiveness

Although hedge effectiveness is an intuitive concept, it is not yet widely understood or applied in the
context of longevity hedging.8 Certainly, the presence of longevity basis risk reduces the effectiveness
of longevity hedges, but the relationship between the two is not as straightforward as one might sup-
pose. Whereas basis risk is typically measured in demographic terms, hedge effectiveness should be
measured in economic terms, and demographic mismatches do not necessarily result in significant
economic costs, as we shall illustrate.

The key to designing an appropriate method for assessing hedge effectiveness is to start from hedging
objectives that reflect the nature of the risk being hedged and focus on the degree of risk reduction
in economic terms. One way to do this is by using a Monte Carlo simulation to generate forward-
looking scenarios for the evolution of mortality rates for both the exposed and hedging populations.
Ideally, a two-population stochastic mortality model, calibrated from a suitable basis risk analysis,
should be used to do this in a consistent fashion. However, we wish, in this paper, to avoid the additional

5 In the context of longevity hedging, basis risk can also arise from the structure of the hedging instrument independently of any demographics,

e.g., a mismatch in maturity between the underlying exposure and the hedging instrument. In this paper we ignore this kind of basis risk.
6 Variations in mortality associated with different regions within a country can largely be explained by socioeconomic or lifestyle differences.

See, for example, Richards and Jones (2004).
7 Even if we had a sample from a larger population without basis risk, because it was free from gender, age, and subpopulation biases, the

small population would still experience sampling—random variation—risk relative to the large population, which would cause its mortality

experience to diverge from that of the large population over time.
8 It is worth drawing the parallel that when the requirement to assess hedge effectiveness was first introduced in an accounting context under

U.S. GAAP (SFAS 133) and IFRS (IAS 39), the subject was at that time poorly understood by both practitioners and accountants.
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complexity of dealing with a formal model in order to concentrate on producing a straightforward
exposition of longevity hedge effectiveness. Accordingly, the specific model we use involves a nonpar-
ametric approach, based largely on historical data on mortality rates and mortality rate improvements.

It is important to recognise that different approaches to hedge effectiveness will give different results.
The most appropriate approach is that which is most closely aligned with the hedging objectives. In
practice, this requires judgement and experience.

2.4 Existing Literature

Several authors have explored the basis risk between populations associated with annuity portfolios and
life insurance portfolios. Cox and Lin (2007) found empirical evidence of a (partial) natural hedge
operating between such portfolios, implying that the basis risk between them is relatively small.9

Coughlan et al. (2007b, pp. 85–87) provided a calculation of the risk reduction between hypothetical
annuity and life insurance portfolios using historical mortality experience data: The results suggest
significant benefits in terms of reduction in risk and economic capital. Sweeting (2007) explored the
basis risk associated with longevity swaps in a more qualitative fashion but draws similar conclusions.

Recently a number of researchers have developed mortality models for two or more related popula-
tions (Li and Lee 2005; Jarner 2008; Jarner and Kryger 2009; Plat 2009; Cairns et al. 2011; Dowd et
al. 2011; Li and Hardy 2011). These models are all based on the principle that, on the grounds of
biological reasonableness,10 the mortality rates of related populations should not diverge over the long
term. Whereas all these papers are motivated by a desire to develop coherent and consistent forecasts,
only the last four express an explicit goal related to the measurement of basis risk and hedge effec-
tiveness. Ideally, a coherent two-population model is needed to evaluate basis risk prospectively, but
such a model also needs to be both intuitively appealing and appropriately calibrated, and these, in
turn, depend on a sound understanding of historical mortality experience.

Hedge effectiveness testing in a general context has been addressed by Coughlan et al. (2004), and
its application to longevity hedging has been briefly discussed in Coughlan et al. (2007b) and Coughlan
(2009b). More recently, Ngai and Sherris (2010) have evaluated some hedge effectiveness metrics for
hedges of various annuity products in the Australian market.

3. A FRAMEWORK FOR ANALYZING BASIS RISK AND HEDGE EFFECTIVENESS

Any decision to execute an index-based longevity hedge requires a framework for (1) developing a deep
understanding of the basis risk involved, (2) calibrating the hedging instrument, and (3) evaluating
hedge effectiveness.

In most situations involving real pension plans and annuity portfolios, the amount of historical data
available will be too short to draw rigorous statistical conclusions about basis risk. Nevertheless, by
examining available data carefully and trying to identify key demographic—especially socioeconomic—
characteristics, one can usually develop an informed assessment of the nature and magnitude of this
risk. As fits with risk management best practice in other areas, hedging decisions are ultimately based
on professional judgment-supported data analysis and experience.

3.1 Basis Risk Analysis

Basis risk analysis should be appropriately aligned with the hedging objectives in terms of the metric,
the time horizon, and the analytical method.

9 Similar results have been found by Dahl and Møller (2006), Friedberg and Webb (2007), and Wang et al. (2010).
10 A method of reasoning used to establish a causal association (or relationship) between two factors that is consistent with existing medical

knowledge.
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3.1.1 Metric

Many different metrics can be used to gain a perspective on the basis risk associated with longevity
hedges. Because of the complex relationships between mortality experience across age, time (or pe-
riod), and year of birth (or cohort), it is necessary to examine the historical performance of all key
metrics:

• Mortality rates (either crude rates or graduated rates)

• Mortality improvements (i.e., percentage changes in mortality rates)

• Survival rates

• Life expectancies

• Liability cash flows

• Liability values.

Since mortality rates constitute the basic raw data associated with longevity, they have been the
most commonly used metric for assessing basis risk. Unfortunately, a direct comparison between the
mortality rates of two populations provides a naive and often misleading perspective on basis risk and
the effectiveness of longevity hedges, for several reasons. First, mortality rates as metrics are not
directly related to the effectiveness of longevity hedges. Therefore, one needs to be careful in drawing
any conclusions regarding the impact of basis risk, as observed in mortality rate comparisons, on
longevity hedge effectiveness.

Second, the data corresponding to annual mortality rates at particular ages contain a lot of noise or
sampling variability. This noise is present both though time and across ages and is evidenced in the
observed year-on-year fluctuations of mortality rates around their long-term trends.11 The noise can be
reduced by (1) graduating mortality rates across ages using a smoothing routine, (2) bucketing adja-
cent ages together when calculating mortality rates, and (3) evaluating the changes in mortality rates
over the longer time horizons that are more typical of the timescales associated with longevity trends
emerging. So, in using mortality-rate comparisons to evaluate the basis risk of longevity hedges, it is
important to incorporate these three elements—graduation, age bucketing, and longer horizons—into
the analysis.

Survival rates and life expectancy both address the above shortcomings as metrics for basis risk
analysis. Because survival rates in a pensioner population correspond to the number of members who
are still alive to receive a pension and life expectancy corresponds to the expected period over which
a pension needs to be paid, these metrics are more closely related to the hedge effectiveness objective
than mortality rates. Moreover, both survival rates and life expectancy are calculated from many dif-
ferent mortality rates for different ages and at different times, so there is natural smoothing out of
the noise that is associated with individual mortality rates in individual years. For example, the 10-year
survival rate for 65-year-old males depends on the mortality rates for males aged 65 through 74. Sim-
ilarly, life expectancy for 65-year-olds depends on the mortality rates for every age above 65.

Although useful in developing an understanding of basis risk, none of the above metrics is ideal for
quantifying hedge effectiveness. Since most hedging exercises are focused on mitigating the variability
in the liability cash flows or the variability in the value of these cash flows, basis risk studies should
ideally focus on the impact on cash flow and/or value. These metrics directly reflect the monetary
impact of basis risk and are the appropriate metrics for evaluating the effectiveness of longevity hedges.

Although cash flow and value are more useful for quantifying basis risk than the other metrics dis-
cussed above, they suffer from one main disadvantage in that they depend on the specific details of
the benefit structure of the particular pension plan or annuity portfolio and, as such, involve complex
calculations, including discounting of future cash flows, that must be repeated in full for each situation.

11 Indeed, mortality rates typically exhibit a negative autocorrelation, so that a high mortality rate in one year is followed by a low mortality

rate the next year (Coughlan et al. 2007b).
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By contrast, mortality rates, survival rates, and life expectancy are independent of the details of the
specific benefit structure and can, with appropriate interpretation, give useful insights into basis risk.

3.1.2 Time Horizon

The choice of time horizon is important in assessing basis risk. Longevity risk, as it applies to large
populations, is a slowly building, cumulative trend risk that should be evaluated over long time horizons.
To be consistent with this, metrics should be evaluated over horizons of at least several years. For
example, in comparing the evolution of mortality rates for two populations, it is desirable to evaluate
changes in their mortality rates over multiyear horizons, rather than year on year.

Unfortunately, using long horizons means that there are fewer independent observations available
from a given historical data set. So selecting the time horizon for analyzing basis risk involves making
a trade-off between a horizon long enough to identify trends and short enough to provide enough
independent data points to give a robust analysis.

3.1.3 Analytical Method

The analytical method for evaluating basis risk should, as for the metric and time horizon, also be
appropriately aligned with the hedging objective. This means deciding on various details of the analysis,
such as whether to compare the levels of a particular metric or changes in the metric for each popu-
lation. If comparing changes, we need to specify how these changes should be defined. For example:
What time period is optimal? Should we use overlapping periods or nonoverlapping periods? Should we
use one-period changes or cumulative multiperiod changes?

Other methodological choices include, for example, whether and how to bucket age groups and
whether and how to graduate mortality rates.12 The use of both age-group bucketing and graduation
are generally desirable to reduce noise and can be justified because mortality rates for adjacent ages
are similar and highly correlated.13 As a result, bucketing and graduation do not destroy the integrity
of the data; rather, they bring the twin benefits of simplification and noise reduction, thereby rendering
a clearer perspective on basis risk and hedge effectiveness. In practice, mortality curves—as represented
in mortality tables—are graduated as a key part of the valuation process for liabilities whenever pension
or annuity portfolios are transferred between different counterparties. Furthermore, hedges con-
structed using bucketed age groups have already been transacted in the capital markets, and their
effectiveness in reducing risk has not been compromised by the age bucketing. In particular, the various
mortality catastrophe bonds and swaps issued by Swiss Re, Scottish Re, Axa, Munich Re, and others,
as well as the longevity index hedges completed by Lucida and Pall (U.K.), have all used bucketed age
groups.

Once these aspects of the analysis have been decided, the next decision is how to compare the results
across the two populations. This can be done qualitatively in a graphical format, or quantitatively using
statistical analyses, such as correlation.

Correlation is a common way of evaluating basis risk in a general setting, but care should be taken
in the context of longevity. Correlation in the annual improvements in mortality rates between two
populations reflects the short-term relationship between these populations and, by virtue of the noise
inherent in mortality data, can give a very misleading indication of the strength of the relationship
between their long-term trends. By contrast, correlations between long-term mortality improvements
are more relevant indicators, but, as mentioned, there will be far fewer independent data points for
long-term improvements.

The essence of longevity basis risk analysis is the search for a stable long-term relationship between
the two populations. If such a relationship can be identified, then an appropriate index-based longevity
hedge can be calibrated by determining the optimal hedge ratios for the hedging instrument.

12 The graduation and bucketing methods used in this paper are explained in the Appendix.
13 The ‘‘age basis’’ is typically small for adjacent ages in a large population (Coughlan et al. 2007b).
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Table 1

Framework for Assessing Hedge Effectiveness

Step 1 Define hedging objectives
Metric
Hedge horizon
Risk to be hedged (full or partial)

Step 2 Select hedging instrument
Structure hedge
Calibrate hedge ratio

Step 3 Select method for hedge effectiveness assessment
Retrospective vs. prospective test
Basis for comparison (comparing hedged and

unhedged performance, valuation model, etc.)
Risk metric
Simulation model to be used

Step 4 Calculate the effectiveness of hedge
Simulation of mortality rates for both

populations
Evaluation of effectiveness based on the

simulations
Step 5 Interpret the effectiveness results

3.2 Hedge Calibration

Hedge calibration refers to the process of designing the hedging instrument to maximize its effective-
ness in reducing risk, relative to the hedging objectives. It involves two elements. The first is the
determination of the appropriate structure and characteristics of the hedging instrument (e.g., type
of instrument, maturity, or index to be used). The second is the determination of the optimal amount
of the hedge required to maximize hedge effectiveness. This involves determining optimal ‘‘hedge ra-
tios’’ for each of the subcomponents of the hedging instrument.

As a simple example, consider a hedging instrument with just one component designed to hedge the
value of a pension liability at a future time, which we call the ‘‘hedge horizon.’’ Suppose we have bought
h units of the hedge for each unit of the liability: h is the hedge ratio. Then the total (net) value of
the combined exposure is

V 5 V 1 h 3 V . (1)Total Liability Hedge

The optimization element referred to above involves selecting h to maximize hedge effectiveness by
minimizing the uncertainty in VTotal. It can be shown that, assuming the values are normally distributed
and risk is measured by standard deviation, then the optimal hedge ratio is given by (Coughlan et al.
2004)

h 5 2r 3 (s /s ), (2)Optimal Liability Hedge

where sLiability and sHedge are the standard deviations of the values of the liability and hedging instrument,
respectively, at the hedge horizon, and r is the correlation between them.

It is evident from this simple example that basis risk analysis is an essential prerequisite for optimal
hedge calibration.

3.3 Hedge Effectiveness Methodology

Assessing hedge effectiveness requires taking account of the hedging objectives and the nature of the
risk that is being hedged to develop a methodology that is appropriate. Table 1 summarizes the key
steps involved in this process (derived from Coughlan et al. 2004). A key part of the methodological
choice is whether hedge effectiveness is to be assessed retrospectively or prospectively.

Retrospective hedge effectiveness analysis involves using actual historical data to assess how well a
hedging instrument would have performed in the past. In this kind of effectiveness test, basis risk is
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taken account of by virtue of the historical relationships between the observed mortality outcomes for
both the hedging and exposed populations.

By contrast, prospective hedge effectiveness analysis involves developing forward-looking scenarios
to anticipate how well a hedging instrument might perform in the future. This involves a Monte Carlo
simulation of potential future paths for mortality rates from which the performance of the hedging
instrument can be assessed relative to the underlying longevity exposure. In this case, basis risk must
be explicitly taken into account, with the simulation of scenarios for future mortality rates reflecting,
in a consistent way, the observed relationship between the hedging and exposed populations. As men-
tioned above, this ideally requires a two-population stochastic mortality model to be used.

Let us discuss the hedge effectiveness framework presented in Table 1 in greater detail. Step 1
involves defining hedging objectives, in particular, designating the precise risk being hedged. This
includes the risk class (i.e., longevity risk), as well as the precise nature of what is being hedged (e.g.,
longevity trend improvements above 2% per year over the next 10 years, or the total uncertainty in
survivorship over 40 years). An essential part of this is defining the hedge horizon of the hedging
relationship as well the performance metric (e.g., hedging liability cash flows or liability value). The
choice of hedge horizon will be driven by the performance metric, the precise nature of the exposure
being hedged (e.g., longevity risk up to the point of retirement or longevity exposure from retirement),
and factors associated with the hedging instrument, such as cost and liquidity.

Step 2 in the process is to select the hedging instrument and calibrate the optimal hedge ratio. The
latter should be chosen to maximize the degree of risk reduction and should be determined from an
appropriate basis risk analysis, as suggested by the simple example in the previous section (see, for
example, eq. (2)).

Step 3 in the process—which defines the hedge effectiveness methodology—is important, because
an inappropriate choice can lead to spurious and misleading results with effective hedges being deemed
ineffective, or vice versa. Defining the methodology involves several choices. The first choice involves
selecting between a retrospective and prospective effectiveness test, which we have discussed above.
The second choice to be made is the ‘‘basis for comparison,’’ which involves specifying how the per-
formance of the unhedged and hedged exposures are to be compared. A simple choice is in terms of
the degree of risk reduction:

Relative Risk Reduction 5 RRR 5 1 2 Risk /Risk . (3)(Liability 1 Hedge) Liability

Clearly, a perfect hedge reduces the risk to zero, corresponding to 100% risk reduction.
If the hedging objectives are framed in terms of hedging the liability value (rather than the liability

cash flows), another key element of the basis-for-comparison choice is the pricing (i.e., valuation) model
used to determine the values of the liability and the hedging instrument under different scenarios at
the hedge horizon.

The next choice to be made is the selection of the risk metric. If the hedging objectives are couched
in terms of hedging liability value, then an example of an appropriate risk metric might be the value-
at-risk (VaR) of the liabilities at the hedge horizon relative to an expected, or a median, outcome and
calculated at a particular confidence level.

The final methodological choice relates to selecting the type of simulation model used to generate
the scenarios needed for the test. Note that this framework can be used with any simulation model,
including fully stochastic two-population mortality models, models with parametric trends, and non-
parametric approaches that use historical mortality data directly.

Step 4 addresses the actual calculation of hedge effectiveness. This involves an implementation of
the method defined in the previous step as a two-stage process: (1) simulation and (2) evaluation. Note
that the simulation of mortality risk is a separate process from the evaluation of the impact of the
scenarios on the liability and the hedging instrument, as illustrated in Figure 1. In particular, the
evaluation process is the same for any set of mortality scenarios, regardless of how the set of scenarios
is generated. The evaluation process involves calculating the cash flows and/or value of both the pension
liability and the hedging instrument in each scenario. This requires a choice of valuation, or pricing,
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Figure 1

Process of Hedge Effectiveness Assessment (Step 4 in the Hedge Effectiveness Framework)

Involving Two Distinct Parts: Simulation and Evaluation, with Basis Risk Analysis a Key

Input into the Former
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model to be made. Figure 1 also shows the important role of basis risk analysis in the calculation of
hedge effectiveness.

Step 5 in the process—the final step in the framework—involves interpreting the hedge effectiveness
results.

4. U.K. BASIS RISK CASE STUDY

In this section we present the results of an empirical analysis of the basis risk between the national
population of England and Wales males (based on data from the Office for National Statistics [ONS])
and the population of U.K. males who own life assurance policies (based on data from the Continuous
Mortality Investigation [CMI]). The ONS is the U.K. government agency that compiles official national
mortality statistics. The CMI is a body, funded by the U.K. life insurance industry and run by the U.K.
Actuarial Profession, which publishes mortality rates for assured lives, derived from data submitted by
U.K. life insurers. The data used in this analysis cover the 45-year period 1961–2005.

The CMI data come from an affluent subset of the U.K. population, whose mortality rates have
consistently been lower and mortality improvements higher than those of the national population.14 It

14 The CMI data are a subset of the U.K. population, so are not strictly a subset of the population of England and Wales. However, in the

context of this analysis the difference is small.
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Figure 2

Comparison of Male Mortality Rates for the U.K. Assured and England and Wales National

Populations: (a) Spot Mortality Curves for 2005, (b) Historical Evolution of Graduated Mortality

Rates for 65-Year-Old Males, 1961–2005
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is important to note that the population of assured lives behind the CMI data is a subset of the national
population that changes from year to year, depending on which insurers choose to submit their data:
The CMI data are therefore not only a subset of the national population, but also a (changing) subset
of the population of assured lives. Furthermore, the number of lives in the CMI assured lives data set
has fallen significantly over the past 20 years. Currie (2009) has a chart showing how the exposure by
age has changed through time, from a peak of over 200,000 lives at an age of around 40 in 1985 to a
peak of fewer than 50,000 lives for males in their late 50s in 2005. For higher ages, the exposures are
even lower. Such changes have inevitably introduced additional noise into the CMI data and are likely
to lead to a higher measured basis risk than genuinely exists between the two populations. As a con-
sequence, the results of estimating basis risk that we present in this paper are likely to be conservative.

In this analysis, we used graduated initial mortality rates, whose calculation is described in the
Appendix. Moreover, we consider only data up to age 89, because beyond this age the ONS publishes
only aggregated mortality statistics, and the results may be affected by the modeling choice for higher
ages used in the graduation of mortality rates. We begin by looking at mortality rates, before moving
on to examine other metrics.

4.1 Mortality Rates and Mortality Improvements

Figure 2 shows a graphical comparison of graduated mortality rates for the assured population and the

national population. The most obvious feature of the data, which is common to all ages over 35, is the

significant difference in the level of mortality rates for the two populations: Assured mortality is much

lower than national mortality. What is also evident is that the long-term downward trends are quite

similar, suggesting that there might be a long-term relationship between the mortality rates of the two

populations. Certainly from year to year, there is volatility around each trend, and the assured data set

appears to be noisier (particularly at higher ages), but broadly speaking the observed improvements in

mortality are moving together and not diverging.
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Table 2

U.K. Assured Male Mortality Rates as a

Percentage of England and Wales National

Male Mortality Rates, Averaged over Age

Ratio of Mortality Rates
(Assured/National) 1961 2005

Overall: 40–89 68% 57%
Younger: 40–64 62% 46%
Older: 65–89 74% 68%

Table 3

Annualized Male Mortality Improvements for the England and Wales National and U.K. Assured

Populations, Averaged over Age Groups, 1961–2005

Mortality Improvements
1961–2005 (Annualized)

National
(% p.a.)

Assured
(% p.a.)

Difference
(Percentage Points)

Overall: 40–89 1.62 2.04 0.42
Younger: 40–64 1.67 2.32 0.65
Older: 65–89 1.57 1.75 0.18

Comparing the average levels of mortality rates (Table 2) for the two populations, we see that assured
mortality in 2005 was on average 57% of national mortality, having fallen from 68% in 1961. So there
has been a pronounced decrease in relative assured mortality rates since 1961. Moreover, the relative
rates vary by age, with assured mortality for the younger, pre-retirement ages of 40–64 currently av-
eraging just 46% of national mortality and for older post-retirement ages of 65–89 averaging 68%.

Over the period 1961–2005, observed mortality improvements (Table 3) have averaged 2.04% p.a.
for the assured population, compared with 1.62% p.a. for the national population. Furthermore, the
younger pre-retirement ages have experienced much higher improvements of 2.32% p.a. and 1.67% p.a.,
respectively, for assured males and national males, while for the older post-retirement ages improve-
ments have been lower, at 1.75% and 1.57%, respectively.

As we have already mentioned, the differences in both the levels of and the improvements in mortality
rates between the two populations do not necessarily mean that the effectiveness of longevity hedges
will be poor. Indeed, there appears to be a relatively stable long-term relationship between them that
can be exploited to construct hedges that are highly effective. That this is the case is evidenced by
evaluating aggregate correlations in the observed changes in mortality rates for the two populations
(Tables 4 and 5).

Table 4 lists the ‘‘aggregate correlations’’ for changes in mortality rates over different horizons
calculated from individual ages. The calculation of these correlations is described in Appendix A.3 and
involves evaluating the correlation for changes in mortality rates over nonoverlapping periods jointly
for each individual age. The correlations are calculated for both absolute changes in mortality rates
and relative, percentage changes, that is, mortality improvements. Note that the aggregate correlations
in year-on-year changes based on individual ages are quite small, just 36%, but they increase with the
length of the time horizon. Correlations are around 97% or more for a 20-year horizon and around 80%
for a 10-year horizon.

Using age buckets helps remove noise from the mortality data and leads to much higher correlations
as shown in Table 5. With 10-year age buckets (50–59, 60–69, 70–79, and 80–89), the aggregate
correlation for year-on-year changes is 54%, rising to 94% for a 10-year horizon and to 99% for a 20-
year horizon.
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Table 4

Aggregate Correlations of Changes in Male Mortality Rates for Individual Ages between the U.K.

Assured and England and Wales National Populations, 1961–2005

Individual Ages

Correlation between Absolute
Changes in Mortality Rates

Individual
Ages: 40–89

Individual
Ages: 50–89

Correlation between Improvement
Rates (Relative Changes)

Individual
Ages: 40–89

Individual
Ages: 50–89

20-year horizon 97% 97% 93% 96%
10-year horizon 80% 77% 81% 85%
5-year horizon 69% 66% 65% 70%
1-year horizon 36% 36% 29% 36%

Note: Correlations are calculated across time (using nonoverlapping periods) and across individual ages (without any age bucketing), using
graduated mortality rates. See the Appendix.

Table 5

Aggregate Correlations of Changes in Male Mortality Rates for 10-Year Age Buckets between the

U.K. Assured and England and Wales National Populations, 1961–2005

Age Buckets: 50–59,
60–69, 70–79, 80–89

Correlation between Absolute
Changes in Mortality Rates

Correlation between Improvement
Rates (Relative Changes)

20-year horizon 99% 98%
10-year horizon 94% 93%
5-year horizon 91% 85%
1-year horizon 54% 51%

Note: See note to Table 4.

It should be noted that for long horizons, however, that there is a limited number of data points.
Small numbers of data points lead to an upward bias in the correlation results and increased sampling
noise, so the results should be considered as indicative only. Despite this lack of formal statistical
robustness, we should take comfort from the fact that the aggregate correlation results are collectively
consistent and intuitive. Furthermore, the results of the other analyses in this section provide additional
support for the existence a long-term relationship between the two populations.

4.2. Survival Rates

Comparing long-term survival rates provides a different perspective on basis risk and the relationship
between the longevity experiences of the two populations. This is because long-term (multiyear) survival
rates involve mortality rates for different ages across different years.15 Figure 3(a) shows the evolution
of 10-year survival rates for the two populations for 65-year-old males over the period 1970–2005. The
10-year survival rate at age 65 therefore shows the proportion of 65-year-olds surviving to age 75. Both
survival rates have been increasing over time, but, more importantly, the ratio between them has been
more or less constant over time, as shown in Figure 3(b). The latter chart suggests a relatively stable
long-term relationship between the survival rates of the two populations.

Note that the survival ratio of assured to national survival rates is greater than one for all ages and
increases with age. The average survival ratios over the period are listed in Table 6 along with some
summary statistics on the variation in the survival ratio through time. For example, 45-year-old males
have an average survival ratio of 1.03 compared with an average of 1.55 for 80-year-olds. This means
that the assured population has 3% more 45-year-old males surviving to age 55 than the national
population. Similarly the assured population has 55% more 80-year-olds surviving to age 90.

15 Short-term survival rates, by contrast, provide the same perspective as mortality rates since a one-year survival rate is just one minus the

corresponding mortality rate.
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Figure 3

Historical 10-Year Male Survival Rates for the U.K. Assured and England and Wales National

Populations Based on Data over the Period 1961–2005: (a) Historical Evolution of 10-Year Survival

Rates for Males Reaching 65 in Different Years between 1970 and 2005, (b) Ratio of the 10-year

Survival Rate for the Assured Population to the 10-Year Survival Rate for the National Population

for Males Reaching Various Ages in Different Years between 1970 and 2005
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Table 6

Key Statistics on the Male Survival Ratio between the U.K. Assured and England and Wales

National Populations

10-Year Survival Ratio
(Assured/National) Age 45 Age 55 Age 65 Age 75 Age 80

Average survival ratio 1.03 1.07 1.19 1.36 1.55
Standard deviation 0.004 0.011 0.029 0.037 0.063
Coefficient of variation (std dev/average) 0.4% 1.1% 2.4% 2.7% 4.1%
Worst case (max/average) 0.6% 2.0% 6.2% 6.1% 13.8%

Note: The survival ratio is defined as the 10-year survival rate for the assured population to the 10-year survival rate for the national population
over the period 1970–2005. Survival rates are calculated for each age cohort using graduated mortality rates. The quoted age represents the
age at the start of the 10-year period.

4.3 Life Expectancy

Another perspective on basis risk comes from period life expectancy.16 This is a measure of how much
longer on average individuals would be expected to live and, in a pension context, of how much longer
one would expect that retirement income must be paid. Note that these results are dependent on the
method used to estimate mortality rates at very high ages for which only limited mortality data are
available.

Figure 4 shows the evolution of (curtate) period life expectancy for selected ages over 1961–2005.
Note that despite the different levels of life expectancy, the ratio between the life expectancies of the
two populations is relatively constant through time and increases with age. The ratio averages 1.14 at
age 45, 1.22 at age 65, and 1.24 at age 80.

16 Period life expectancy is calculated from the spot (i.e., current) mortality curve, assuming no further mortality improvements. It is generally

acknowledged that period life expectancy underestimates actual (i.e., cohort) life expectancy because mortality rates are widely expected to

continue to fall through time. However, period life expectancy has the advantage of being an objective metric.
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Figure 4

Evolution of Male Period Life Expectancy for the U.K. Assured and England and Wales National

Populations, 1961–2005: (a) Life Expectancy for 65-Year-Old Males Measured in Years, (b) Ratio

of Life Expectancy for the Assured Population to the Life Expectancy for the National Population
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Figure 5

Increase in Male Period Life Expectancy for the U.K. Assured and England and Wales National

Populations, 1961–2005: (a) Increase Measured in Years, (b) Increase in Percentage Terms
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Over the entire 45-year period 1961–2005, period life expectancy has increased significantly for both
populations at all ages. The assured data show greater increases in life expectancy than the national
data. In particular, the highest increases have occurred for assured males in their 30s, with life expec-
tancy for 33-year-olds increasing by 8.09 years, compared with 7.39 years for national population males
of the same age. Figure 5 compares the change in life expectancy by age for the two populations. We
stop calculating period life expectancy at age 80 to avoid the results being overly impacted by the
method of graduating mortality rates for higher ages, that is, age 90 and above.

Between ages 30 and 80, Figure 5(a) shows that the difference in life expectancy between the two
populations varies from 0.58 years for 50-year-olds to 0.98 years for 80-year-olds. It is evident that there
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Figure 6

Cumulative Cash Flows over 10-Year Horizons for Liabilities (Annuities) Based on the U.K. Assured

and England and Wales National Male Populations over the Period 1970–2005: (a) Cumulative

Cash Flow for 65-Year-Old Males Measured in Pounds Sterling, (b) Ratio of Cumulative Cash Flows

for the Assured Population to That for the National Population
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are clear differences between the populations in terms of the increase in period life expectancy mea-
sured in years. However, when we consider the relative percentage increase in life expectancy over the
period, we find that the two populations have behaved in a very similar way, as illustrated in Figure
5(b). Both populations exhibit virtually the same percentage increases for ages 30 to 75. There is a
divergence above 75, which may well be caused by differences in the graduation methodology used for
higher ages.

The conclusion we draw from the analysis above is that the data for period life expectancy, like the
other metrics we have examined, are indicative of a stable long-term relationship between the two
populations, which is likely to have a favorable impact on hedge effectiveness.

4.4 Liability (Annuity) Cash Flows

Comparing the historical cash flows paid by annuities for different cohorts in each population provides
yet another perspective on basis risk. To minimize the noise in comparing the two populations we focus
on cumulative cash flows over periods of 10 years.

This particular metric is closely related to survivorship; in fact, it essentially corresponds to the
average survival rate over the 10-year period. This should not be surprising. The annuity cash flow in
any given year is proportional to the survival rate to the end of that year. So the 10-year cumulative
cash flow is proportional to the sum of survival rates over periods ranging from one year to 10 years
(Fig. 6(a)). The calculation assumes that the annuity pays £1 each year to each surviving member of
each population.

Figure 6(b) shows the ratio of 10-year cumulative annuity cash flows for the assured population to
those of the national population. Each line represents the ratio over time for the same initial age. The
chart shows the evolution of this ratio between 1970 and 2005, where the age at the start of the 10-
year period runs from 60 to 80 years.17 Several points are worthy of note:

17 Note that this metric cannot start before 1970, since it requires 10 years of historical cash-flow data to calculate the first cumulative cash-

flow value.
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• The ratios are all greater than one, again reflecting higher survival rates for the assured population.
They vary between approximately 1.04 to 1.20, depending on the cohort and the year.

• The ratios are reasonably stable, and trend downward very slightly through time for cohorts with an
initial age below 70. In particular, the ratio for the cohort with an initial age of 60 varies between
1.04 and 1.06 over the period and for an initial age of 70 between 1.09 and 1.13.

• Cohorts born in earlier years (and therefore of higher initial age) have consistently higher ratios than
those born in later years.

• Volatility increases for older birth cohorts (i.e., as the initial age increases). This is consistent with
higher levels of noise associated with the higher age data.

4.5 Liability (Annuity) Values

The prices of lifetime annuities give an alternative perspective on basis risk that relates directly to
hedge effectiveness in monetary terms. A life annuity purchased from a life office by a pension plan for
each of its members on their retirement provides a perfect hedge for the member’s longevity risk. Since
adequate data on actual annuity prices for the assured and national populations are not publicly avail-
able, we compare theoretical annuity prices based on the kind of pricing (or valuation) model that the
life office might itself use to price annuities. The results are therefore more dependent on modeling
considerations than the other analyses in the paper: In particular, a projection model needs to be used
to forecast future mortality rates, and there also needs to be a model to calibrate mortality rates at
ages higher than those available in published data (see the Appendix).18

The annuity pricing model takes the graduated mortality rates from the previous year as the mortality
base table for each population in a particular year. Then future mortality rate forecasts relative to that
base table are made by applying a projection model to historical data. We will suppose the life office
uses a (single-population) Lee-Carter (1992) model with 30 years of historical data to generate these
projections for each population for every year from 1991 to 2006.19 The resulting set of mortality rates
constitutes a complete cohort mortality table for each base year. From this cohort mortality table, the
life office will calculate the stream of expected cash flows paid out for each annuity. Finally, the annuity
price is just the present value of the expected cash flows, and we assume the life office uses a constant
discount rate of 5%. One benefit of this assumption is that it allows us to focus on the change in
annuity prices that are caused purely by changes in longevity.20

Figure 7 shows the results of comparing annuity prices based on assured and national mortality data
for the same age. Figure 7(a) shows the stable, slightly upward-sloping relationship over time between
the annuity prices for the assured and national populations for age 65. Figure 7(b) shows the ratio of
the prices of assured population annuities to national population annuities through time for ages 60
to 80, with each line showing how the ratio evolves through time for a given age. The annuities are
assumed to pay equal amounts as long as an individual is alive at the end of the relevant year. The
annuities are first priced on January 1, 1991, using the 1990 graduated mortality rates as the initial
mortality base table and mortality rate projections generated from this date using historical rates
between 1961 and 1990. In the following year, 1991 graduated mortality rates are used as the base
table and mortality rate projections are generated using historical rates between 1962 and 1991, and
so on.

18 The price of a lifetime annuity depends on mortality rates for all ages above the current age and, in particular, on the mortality rates at very

high ages for which there are many fewer data points available and consequently higher levels of noise.
19 Note that we cannot start before 1991, in order that we have 30 years of historical data to calibrate the projection model. This projection

model is used only for the pricing (valuation) of the annuities, not for simulating scenarios.
20 In practice, interest-rate risk does matter, but this could be hedged using an interest-rate swap.
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Figure 7

Liability Values for Selected Ages through Time for the U.K. Assured and England and Wales

National Male Populations over the Period 1991–2006: (a) Liability Values for 65-Year-Old Males

Measured in Pounds Sterling, (b) Ratio of Liability Values for the Assured Population to That for

the National Population
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The main observations from Figure 7(b) are as follows:

• The ratios are all greater than one, again confirming that the average cost of providing pensions for
the assured population is higher than that for the national population. The ratio varies between
approximately 1.09 to 1.27, depending on the age and the year.

• Higher ages demonstrate consistently higher ratios.

• The ratios are reasonably stable, but trend downward slightly through time. In particular the ratio
for age 60 varies between 1.09 and 1.15 over the period and for age 70 between 1.13 and 1.21.

• Volatility around the trend increases as the age increases.

Figure 8 provides a different presentation of the data in which the lines follow the same cohort
through time (rather than the same age but at different times). Figure 8(a) shows that, as the cohort
aged 65 in 1991 gets older and its remaining life expectancy falls, the liability value also falls in a
stable way for both assured and national populations. Figure 8(b) shows the ratio of the prices of
assured population annuities to national population annuities through time for cohorts aged between
60 and 80 years at the start of the analysis period. Each line shows how the ratio of annuity prices
evolves through time for a single cohort. This chart exhibits features that are consistent with the
previous chart, namely:

• The ratios are all greater than one.

• Older birth cohorts demonstrate consistently higher ratios than those born in later years.

• The ratios are reasonably stable, but trend upward slightly through time. In particular, the ratio for
the cohort with an initial age of 60 varies between 1.14 and 1.19 over the period and for an initial
age of 70 between 1.18 and 1.27.

• Volatility increases for older birth cohorts and as a cohort ages.

These results constitute a retrospective hedge effectiveness test and are consistent with those of
Coughlan et al. (2007b, pp. 80–81).

Despite the modeling assumptions that are an inevitable part of the annuity pricing calculation, we
again see evidence of a relatively stable relationship between the two populations from both a period
and a cohort perspective.
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Figure 8

Liability Values for Selected Cohorts through Time for the U.K. Assured and England and Wales

National Male Populations over the Period 1991–2006: (a) Liability Values for Male Cohorts Aged

65 in 1991 Measured in Pounds Sterling, (b) Ratio of Liability Values for Selected Cohorts for the

Assured Population to That for the National Population
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4.6 Hedge Effectiveness Example

Considering the above analyses along with the context of the CMI assured population as an affluent,
but more volatile, subset of the national population, the evidence suggests that there has been a stable
long-term relationship between their mortality experiences. This is particularly significant given their
different mortality levels, their different mortality improvements, and the amount of noise in the CMI
assured population data.

The implications of this for longevity hedges indexed to national population mortality data are clear.
The long-term effectiveness of such hedges—providing they are appropriately calibrated—should be
relatively high, leading to a significant reduction in longevity risk.

To illustrate this, we have evaluated the effectiveness of a static longevity hedge linked to the
LifeMetrics Index for England and Wales in reducing the longevity risk of a hypothetical pension plan
with the same mortality behavior as the CMI assured population. We focus on a particular retrospective
hedge effectiveness test based on historical data.21 The approach to calculating hedge effectiveness is
the one outlined in Section 3.3 and summarized in Table 1 and Figure 1.

4.6.1 Step 1: Hedging Objectives

The pension plan is assumed to consist entirely of deferred male members currently aged 55, whose
mortality characteristics are the same as the CMI assured population and who will receive a fixed
pension of £1 for life, beginning at retirement in 10 years’ time (the hedge horizon) at age 65. The
hedging objective is to remove the uncertainty in the value of the pension at retirement due to longevity
risk.

21 This avoids the requirement, essential for a prospective test, of having to choose a two-population stochastic mortality model.
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Table 7

The Approach Used to Generate 1,575 10-Year Scenarios for Mortality Rates Combining the

45 Historical Base Tables with the 35 (Overlapping) 10-Year Historical Mortality Improvements

for Each Base Table

Component of the
Approach Applies at Calculated from

Data Used for
Pension Liability

Data Used for
Hedging Instrument

1. Base mortality
table

t 5 0 Historical period mortality rates for
each year 1961–2005

Member-specific
mortality data

National mortality
index data

2. Realized mortality
rates for each
scenario

t 5 1, 2, 3, . . . , 10 Historical 10-year mortality
improvements applied to each
base table in component (1)

Member-specific
mortality data

National mortality
index data

Note: Each component of the approach builds on the previous one. The inception of the hedge corresponds to time t 5 0 and the hedge
horizon to time t 5 10.

4.6.2 Step 2: Hedging Instrument

The hedging instrument is a 10-year deferred annuity swap that pays out on the basis of a survival index
for the national population of England and Wales for 55-year-old males. As we are considering a hedge
of value, we can assume (without impacting the economics) that the hedging instrument is cash-settled
at the hedge horizon at the market value prevailing at that time. In other words, in 10 years’ time,
the pension plan receives a payment reflecting the market value of the hedging annuity at that time
in return for making a fixed payment at that time. So the hedging instrument involves a net settlement
that is the difference between the fixed payment and the market value of the hedging annuity in 10
years’ time.

Because the hedging population is different from the exposed population, the hedge ratio needs to
be calibrated to reflect the relationship between their mortality improvements. Applying equation (2)
results in a hedge ratio of 0.987, meaning that to hedge a £1 liability requires £0.987 of the hedging
instrument.

4.6.3 Step 3: Method for Hedge Effectiveness Assessment

As mentioned above, we are performing a retrospective effectiveness test, based on historical data. The
basis for comparison that we use is twofold involving evaluation of (1) the correlations between the
unhedged and hedged liability and (2) the degree of risk reduction. Since the objective is to hedge the
value of the pension liability, we focus on a risk metric corresponding to the value-at-risk (VaR) in 10
years’ time, where the VaR is measured at a 95% confidence level relative to the median. We measure
hedge effectiveness by comparing the VaR of the pension before and after hedging. We use historical
mortality data to directly evaluate historical scenarios for the evolution of mortality rates over a 10-
year horizon, from which the VaR of the pension can be calculated. For asymmetric, nonnormal dis-
tributions a risk metric such as VaR is preferred over standard deviation, as it more accurately captures
the downside risk and the associated implications for economic capital. However, other risk metrics
generally give similar results.

The hedge effectiveness is calculated in terms of the relative risk reduction in equation (3) and
implemented as follows:

RRR 5 1 2 VaR /VaR . (4)(Liability1Hedge) Liability

We construct scenarios for the hedge effectiveness analysis in a model-independent way directly from
the historical mortality data. Because the amount of available historical data is limited to 45 years, we
form historical scenarios using the approach summarized in Table 7. This approach involves combining
the set of historically realized mortality improvements with the set of realized mortality base tables.
In particular, we construct 1,575 scenarios for each population by applying realized mortality improve-
ments coming from the full historical set of 35 overlapping 10-year periods or windows (1961–1971,
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1962–1972, . . . , 1995–2005) to each of the realized mortality base tables defined by the observed
mortality rates in each of the 45 years (1961, 1962, . . . , 2005).

To make this more explicit, let us denote the inception date of the hedge t 5 0 and the hedge
horizon t 5 10. Let denote the realized historical mortality rate in year b for age x. For a givenbqx

value of b, we will use to provide us with a base table at time 0 in our generation of a set of scenarios.bqx

For each of the 45 base tables, we have w 5 1, . . . , 35 10-year historical windows that we use to
generate 35 scenarios. For each pair (b, w), we generate one mortality-rate scenario for each(b,w)q (t)x

time t 5 0, 1, . . . , 10. Specifically, the mortality rate scenarios for each population are given by

w1tqx(b,w) bq (t) 5 q 3 , (5)x x wqx

where b 5 1961, 1962, . . . , 2005; w 5 1961, 1962, . . . , 1995; t 5 0, 1, . . . , 10. Equation (5)
consists of the base table giving us the scenario’s mortality rates for t 5 0, and is the t-yearw1t wq /qx x

improvement factor at age x in window w.
This approach provides us with 45 sets of scenarios with each set comprising 35 different 10-year

scenarios. We evaluate hedge effectiveness by examining (1) the 45 sets of scenarios separately and
(2) all the sets in aggregate (1,575 scenarios in total).

The valuation, or pricing model, that we use to value both the liability and the hedging instrument
at time t 5 10 involves projecting the expected (i.e., best estimate) future stream of cash flows beyond
time 10 for the liability and the hedging instrument, and then discounting those cash flows back to
time 10, the time at which the valuation is to be made. In particular, the valuation under the different
scenarios at time 10 requires us to come up with a best estimate projection of mortality rates for that
scenario beginning at time t 5 10.

Note that this pricing model is the only model-dependent element used in this example and models
other than the one we describe below could also be used. (We reiterate that in this example the
simulation of mortality rates and basis risk up to the hedge horizon is model independent, since it
uses actual historically observed mortality data for each population.)

In order to value the pension liability and the hedging instrument at time 10, we use a very simple
approach to project best estimate mortality rates into the future beginning from t 5 10 in each sce-
nario. This simple projection method averages the one-year percentage mortality improvements from
t 5 0 to 10 and applies this average improvement rate to the scenario mortality rate at t 5 10 for all
future years. In other words, in each scenario, starting at year 10, we develop a forecast for the future
path of best estimate mortality based on the observed history up until that point in time.22 We will
assume for the purpose of valuation that the mortality improvement projections for the members of
the pension plan are the same as those for national population. We justify this on the grounds that
common industry practice is to use mortality projections derived from a large, broad-based population
(e.g., the national population) to calibrate the mortality projections for a specific pension plan for the
purposes of valuation. This is because, in practice, the vast majority of pension plans do not have
sufficient data to develop their own mortality projections from their historical experience alone. It can
also be justified intuitively on the grounds that the long-term relationship between the two populations
that we have demonstrated above implies that the long-run projections for the two populations cannot
diverge in a systematic way. This is the principle that lies behind the two-population mortality models
discussed in Section 2.4. We have explored the implications of relaxing this assumption and find a
modest fall in hedge effectiveness if separate, independent mortality improvement projections are used.

To value the liability in a particular scenario, we start from the best estimate mortality projection
in year 10, calculate the stream of expected cash flows that will be paid out in that scenario, and then
calculate the present value of the expected cash flows at t 5 10. The value of the pension liability in
that scenario is therefore given by

22 So the value in each scenario at the horizon in 10 years’ time depends on a projection based on the history of that particular scenario.
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Table 8

Results of the Hedge Effectiveness Analysis for the Hypothetical U.K. Pension Plan

Method of Using
the Scenarios

Correlation between Value of
Liability and Hedging Instrument Hedge Effectiveness Comments

45 sets of 10-year
scenarios, each set with
a different mortality base
table and 35 scenarios

Range: 0.93–0.97

Average: 0.96

Range: 67–79%

Average: 73%

Scenarios in each set involve
overlapping 10-year
improvements and are
not fully independent

35 scenarios is a small
number for a fully
comprehensive analysis

Aggregate set of 1,575
scenarios

0.98 82.4% Adequately large number of
scenarios

Scenarios include different
base tables, which
increases the range of
scenario outcomes

Note: Hedge effectiveness is measured in terms of relative risk reduction with VaR as the risk metric, as in eq. (4).

`

(b,w)(b,w) (b,w)V (10) 5 p (0) p (10) 3 DF(t). (6)O ˆLiability 10 55 t 65
t51

Here is the (b,w) scenario’s historical 10-year survival rate for 55-year-olds in scenario (b,w)(b,w)p10 55

from t 5 0 until t 5 10 and is the projected t-year survival rate at the hedge horizon for the(b,w)p (10)ˆt 65

same cohort (now aged 65) in that scenario, with the hat over the p to indicate its dependence on the
choice of valuation model. The discount factor for calculating the present value is denoted by DF, and
our calculations assume a flat discount rate of 5% for simplicity. The hedging instrument is valued in
a similar manner.

4.6.4 Step 4: Calculation of Hedge Effectiveness

The first part of the calculation of hedge effectiveness requires the simulation of the 1,575 historical
scenarios for the evolution of mortality rates using the method described above.

The second part of the calculation of hedge effectiveness involves determining the values of the
pension and the hedging instrument in each scenario at the end of the 10-year hedge horizon. This is
done by applying the valuation model described above in equation (6) to each of the scenarios at the
hedge horizon.

This provides us with a distribution of 1,575 possible values for the pension and a distribution for
1,575 possible values for the hedging instrument in 10 years’ time. From these, we calculate the
correlation between the liability values and the hedging instrument values, as well as the relative risk
reduction. The results of these calculations are summarized in Table 8. Implementing the scenarios as
45 different sets, each with a different base table, gives high correlations between the values in all
scenario sets. However, the relative risk reduction is modest. One factor contributing to this modest
risk reduction is the fact that we are dealing with a small number of scenarios in each set (i.e., only
35 scenarios), and these involve overlapping periods. As a result, there is a relatively small amount of
volatility in each scenario set, leading to a modest risk reduction.

By contrast, aggregating the 1,575 scenarios introduces considerably more volatility in the scenarios
set and leads to much higher hedge effectiveness results. For the aggregate scenario set, the hedge
reduces the impact of longevity risk on the value of the pension liability by 82.4%, demonstrating a
high level of hedge effectiveness. This is shown in the histogram in Figure 9. The light-colored bars
represent the range of possible outcomes for the unhedged value of the pension liability in 10 years’
time coming from the 1,575 scenarios. The dark-shaded bars reflect a much narrower range of possible
outcomes for the value of the pension liability after hedging. The fact that the histogram for the hedged
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Figure 9

Hedge Effectiveness Analysis Using an Index-Based Hedging Instrument Linked to England and

Wales National Male Mortality to Hedge the Longevity Risk of a Pension Plan with the Same

Mortality Characteristics as the U.K. Assured Male Population
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case is much narrower than that for the unhedged case provides a visual illustration of the high degree
of hedge effectiveness.

5. A ROBUSTNESS CHECK USING U.S. DATA

The analysis of the previous section has been repeated in a U.S. context as a robustness check of the
results. The populations used were the U.S. national population and the population of the state of
California (both based on data sourced from the Centers for Disease Control and Prevention [CDC]
and the National Census Bureau). The data in this analysis covered the 25-year period 1980–2004.
California has a higher level of affluence than the nation as a whole with per capita GDP 11% above
the national average.23 This greater affluence is reflected in mortality rates that have been consistently
lower and mortality improvements higher than those of the national population. The results are very
similar to those obtained in the U.K. example above, leading to a similarly high degree of hedge ef-
fectiveness associated with an appropriately calibrated index-based hedge linked to U.S. national pop-
ulation longevity. Using an identical methodology to that described above, we evaluated the effective-
ness of an index-based hedge linked to the U.S. national population in reducing the longevity risk
associated with a pension plan whose mortality experience reflects that of the state of California. We
obtained an aggregate hedge effectiveness result of 86.5%.

6. CONCLUSIONS

In this paper, we have developed a framework for analyzing longevity basis risk and its implications for
the effectiveness of longevity hedges. Note that the framework does not assume any particular model
for basis risk or for valuation. Such a framework is essential for

23 U.S. Census Bureau and U.S. Bureau of Economic Analysis, 2008 figures.
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• Understanding basis risk

• Calibrating two-population stochastic mortality models

• Calibrating index-based longevity hedges

• Measuring hedge effectiveness.

The framework is built on a quantitative analysis of data, together with a qualitative understanding
of the contextual relationship between the populations involved. The quantitative analysis involves ex-
amining the historical experience of the populations in terms of different metrics. The nature of lon-
gevity risk dictates that the time horizon for the analysis should be long, but the framework acknowl-
edges that there will not, in general, be enough data for a robust analysis over such horizons. As a
result, an assessment of the nature and magnitude of basis risk must rest on professional judgment,
informed by evidence coming from analysis, experience, and context.

A key element of this framework is a structured approach to hedge effectiveness assessment, based
on a proven approach developed for derivatives accounting. To obtain a valid and meaningful hedge
effectiveness test requires careful attention to (1) the design of the test, (2) the generation (simula-
tion) of appropriate scenarios, and (3) the valuation methodology for the underlying exposure and the
hedging instrument in each scenario. The latter two are the only places where model choice enters the
application of the framework.

We have applied the framework to a detailed case study involving empirical analysis in a U.K. context
of the relationship between the mortality experience of the national population and that of a more
affluent subpopulation. Despite the different demographic profiles between these related populations,
we demonstrate evidence of high correlations in mortality improvements between them and a stable
long-term relationship across different metrics. Similar results were also obtained in a U.S. case study.
These results have very favorable implications for the effectiveness of appropriately calibrated, index-
based longevity hedges. From this, we conclude that longevity basis risk between a pension plan, or
annuity portfolio, and a hedging instrument linked to a broad national population-based longevity index
can in principle be reduced very considerably.

APPENDIX: TECHNICAL ISSUES

A.1 AGE BUCKETS

As discussed in the text, bucketing ages together is frequently beneficial in removing noise from mor-
tality rates and is often implemented in actual transactions to hedge both mortality risk and longevity
risk. Where age buckets are used in this paper, the buckets all involve simple averages over each age
in the bucket. So, for example, in computing the mortality rate for the age bucket 60–69 years old,
we take a simple unweighted average of the mortality rates for each age q60, q61, q62, . . . , q69. Similarly,
the survival rate for the age bucket 60–69 is an average of the survival rates for each individual age
p60, p61, p62, . . . , p69.

A.2 GRADUATION METHOD FOR MORTALITY RATES

The case study presented in this paper is based on mortality rates that have been calculated and
graduated using a method very similar to that used in the LifeMetrics Longevity Index (see Coughlan
et al. 2007b for details). The graduation method is an objective one that is applied consistently in each
year to each data set. In particular, we have used the same cubic spline approach as used for the
LifeMetrics Index to smooth the crude central mortality rates, but we have used a variant of the higher
age methodology to come up with graduated mortality rates for ages above 80.

Graduated mortality rates for higher ages, which are needed to calculate period life expectancies
and annuity prices, are obtained by the method described below:

1. Calculate crude central mortality rates mx for each age x for the year in question.
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2. Graduate the crude central mortality rates for all ages up to age 89 using the cubic splines approach
described in Coughlan et al. (2007b). Denote these first-stage graduated rates by m9.x

3. For ages below 80, set the graduated central mortality rate to begm m9.x x

4. For ages 80–89:
a. Perform a regression of log against age, and back out the fitted central mortality ratesm9 m0x x

for each age.
b. Set the graduated central mortality rate to be a blend of and such that at age 80 thegm m9 m0,x x x

blend is 100% and at age 89 it is 100% The following monotonic blending function ism9 m0.x x

used:

2exp(1) 3 exp[21/(12 z )] for 0 # z , 1
f(z) 5 (A1)H0 for z 5 1,

where z 5 (x 2 80)/9 for ages x between 80 and 89.
5. For ages 90 and over, calculate the graduated central mortality rate using the algorithm outlinedgmx

in Coughlan et al. (2007b), which involves fitting a cubic polynomial.
6. Calculate graduated initial mortality rates qx for each age using the transformation:

g gq 5 m /(1 1 m /2). (A2)x x x

A.3 CALCULATIONAL METHOD FOR ‘‘AGGREGATE CORRELATIONS’’
In calculating correlations in mortality rates between two populations, the correlations relate to both
changes and relative changes in mortality rates dq for each population over a particular time horizon,
H, that varies from one year to 20 years. Nonoverlapping periods are used, which means that, for long
horizons, there are fewer historical data points available. Note that because of this lack of data when
considering long horizons, we calculate what we call ‘‘aggregate correlations’’, which jointly compare
changes for different periods and for different ages. In other words, we correlate matrices and1[dq ]x,t

where x labels the age and t labels the time period t to t 1 H. Consider the example of calculating2[dq ],x,t

aggregate correlations for the mortality rate changes for individual ages from 50 to 89 over a five-year
horizon (H 5 5 years). The calculation involves computing the correlation between two 40 3 9 matrices
of the following form:

dq(x 5 50, dq(x 5 50, dq(x 5 50, ... dq(x 5 50,
t 5 1961–1966) t 5 1966–1971) t 5 1971–1976) t 5 2001–2005)

dq(x 5 51, dq(x 5 51, dq(x 5 51, ... dq(x 5 51,
t 5 1961–1966) t 5 1966–1971) t 5 1971–1976) t 5 2001–2005)

dq(x 5 52, dq(x 5 52, dq(x 5 52, ... dq(x 5 52,
t 5 1961–1966) t 5 1966–1971) t 5 1971–1976) t 5 2001–2005)

... ... ... ... ...
dq(x 5 89, dq(x 5 89, dq(x 5 89, dq(x 5 89,

t 5 1961–1966) t 5 1966–1971) t 5 1971–1976) ... t 5 2001–2005)

When aggregate correlations are calculated from age buckets rather than individual ages, the cal-
culation is identical except that the rows in the and matrices are indexed by the age1 2[dq ] [dq ]x,t x,t

bucket rather than the individual single year of age.
Note that we use the same symbol above for absolute and relative changes in mortality rates, although

they are defined differently. Absolute changes in mortality rates are defined by q(t 1 1) 2 q(t), and
relative changes are defined by [q(t 1 1) 2 q(t)]/q(t).
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DISCLAIMER

This report has been partially prepared by the Pension Advisory group, and not by any research de-
partment, of JPMorgan Chase & Co. and its subsidiaries (‘‘JPMorgan’’). Information herein is obtained
from sources believed to be reliable, but JPMorgan does not warrant its completeness or accuracy.
Opinions and estimates constitute JPMorgan’s judgment and are subject to change without notice.
Past performance is not indicative of future results. This material is provided for informational purposes
only and is not intended as a recommendation or an offer or solicitation for the purchase or sale of
any security or financial instrument.
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