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Abstract 
The last decennium a vast literature on stochastic mortality models has been developed.  
However, these models are often not directly applicable to insurance portfolios because:  
a) For insurers and pension funds it is more relevant to model mortality rates measured in 

insured amounts instead of measured in number of policies. 
b) Often there is not enough insurance portfolio specific mortality data available to fit such 

stochastic mortality models reliably.  
Therefore, in this paper a stochastic model is proposed for portfolio specific mortality 
experience. Combining this stochastic process with a stochastic country population mortality 
process leads to stochastic portfolio specific mortality rates, measured in insured amounts. 
The proposed stochastic process is applied to two insurance portfolios, and the impact on the 
Value at Risk for longevity risk is quantified. Furthermore, the model can be used to 
quantify the basis risk that remains when hedging portfolio specific mortality risk with 
instruments of which the payoff depends on population mortality rates.     

 
Keywords: portfolio specific mortality, stochastic mortality models, mortality basis risk, 
longevity risk, Solvency 2 

 
     

1. Introduction 
 
In recent years there has been an increasing amount of attention of the insurance industry for the 
quantification of the risks that insurers are exposed to. Important drivers of this development are 
the increasing internal focus on risk measurement and risk management and the introduction of 
Solvency 2 (expected to be implemented around 2012).  
 
Solvency 2 will lead to a change in the regulatory required solvency capital for insurers. At this 
moment this capital requirement is a fixed percentage of the mathematical reserve or the risk 
capital. Under Solvency 2 the so-called Solvency Capital Requirement (SCR) will be risk-based, 
and market values of assets and liabilities will be the basis for these calculations.  

                                                 
1 The author likes to thank Antoon Pelsser, Erik Tornij, Michiel Janssen, Marwa Khalaf-Allah and David Epstein.  
a University of Amsterdam, Dept. of Quantitative Economics, Roetersstraat 11, 1018 WB Amsterdam, The 
Netherlands, e-mail: H.J.Plat@uva.nl 
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Also for pension funds, a new solvency framework will be developed, either as part of Solvency 
2 or as a separate project (usually named IORP 2). It is expected that the general principles will 
be similar as Solvency 2, meaning market valuation of assets and liabilities and risk-based 
solvency requirements. 
 
Important risks to be quantified are mortality and longevity risk. Not only are these important 
risks for most (life) insurers, the resulting solvency margin will also be part of the fair value 
reserve. Reason for this is that it is becoming best practice for the quantification of the Market 
Value Margin to apply a Cost of Capital rate to the solvency capital necessary to cover for 
unhedgeable risks, such as mortality and longevity risk (see for example CEOIPS (2007)). 
 
There is a vast literature on stochastic modeling of mortality rates. Frequently used models are 
for example those of Lee and Carter (1992), Brouhns et al (2002), Renshaw and Haberman 
(2006), Cairns et al (2006a), Currie et al (2004) and Currie (2006). These models are generally 
tested on a long history of mortality rates for large country populations, such as the United 
Kingdom or the United States. However, the ultimate application is to quantify the risks for 
specific insurance portfolios. And in practice there is often not enough insurance portfolio 
specific mortality data to fit such stochastic mortality models reliably, since: 

- The historical period for which observed mortality rates for the insurance portfolio are 
available is usually limited, often in a range of only 5 to 15 years. 

- The number of people in an insurance portfolio is much less than the country population. 
 
Also, for insurers it is more relevant to model mortality rates measured in insured amounts 
instead of measured in number of people, because in the end the insured amounts have to be paid 
by the insurer. Measuring mortality rates in insured amounts has two effects:  

- Policyholders with higher insured amounts tend to have lower mortality rates 2 . So 
measuring mortality rates in insured amounts will generally lead to lower mortality rates. 

- The standard deviation of the observations will increase. For example, the risk of an 
insurance portfolio with 100 males with average salaries will be lower then that of a 
portfolio with 99 males with average salaries and 1 billionaire.  

 
So fitting the before mentioned stochastic mortality models to the limited mortality data of 
insurers, measured in insured amounts, will in many cases not lead to results that are sufficiently 
reliable. In practice, this issue is often solved by applying a (deterministic) portfolio experience 
factor to projected (stochastic) mortality rates of the whole country population. However, it is 
reasonable to assume that this portfolio experience factor is a stochastic variable.   
     
In this paper a stochastic model is proposed for portfolio specific mortality experience. This 
stochastic process can be combined with the stochastic country population mortality process, 
leading to stochastic portfolio specific mortality rates. The proposed model is, amongst others, 
based on historical mortality rates measured in insured amounts, but can also be used when only 
historical mortality rates measured in number of policies are available.  
 
The model can be used to quantify portfolio specific mortality or longevity risks for the purpose 
of determining the Value at Risk (VaR) or SCR, which could also be the basis for the 
                                                 
2 See for example CMI (2004). 
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quantification of the Market Value Margin. Also, it gives more insight in the basis risk when 
hedging portfolio mortality or longevity risks with hedge instruments of which the payoff 
depends on country population mortality. The market for mortality or longevity derivatives is 
emerging (see Loeys et al (2007)) and one of the characteristics of these derivatives is that the 
payoff depends on country population mortality. While this certainly has advantages regarding 
transparency and market efficiency, the impact of the basis risk is unclear. This basis risk is the 
result of differences between country population mortality and portfolio specific mortality, which 
is exactly what the proposed model is able to quantify.    
 
Measurement of (portfolio specific) mortality rates in insured amounts is already used for a long 
time, starting with CMI (1962) and more recently for example in Verbond van Verzekeraars3 
(2008) and CMI (2008). In these papers portfolio experience factors, measured in amounts, are 
determined based on portfolio data that is collected from a representative part of the insurance 
market. The results of this are frequently used by the market participants as part of an estimate of 
future mortality rates. Furthermore, Brouhns et al (2002) also determine deterministic portfolio 
experience factors for the Belgian annuity policyholders, based on 3 years of historical data.  
 
The literature on stochastic modeling of portfolio specific experience and mortality basis risk is 
less developed, possibly because of a lack of historical insurance portfolio data. Van Broekhoven 
(2002) determines a Market Value Margin for portfolio specific mortality risk. However, the 
model is not set up to be easily combined with existing country population models and the 
structure of the model over ages is very restrictive. Since the pattern of the portfolio experience 
factor over ages can vary for different portfolios, there has to be enough flexibility in the 
assumed structure over ages. 
A related paper is the one of Jarner and Kryger (2009) who set up a model for mortality in small 
(country) populations, using the concept of frailty. The model seems to be too complex though to 
be calibrated to the limited data of insurance portfolios. Sweeting (2007) focuses in a more 
qualitative way on basis risk in survivor swaps. More generally, Dahl and Møller (2006) look at 
hedge strategies for mortality risk in life insurance liabilities.      
 
So the model proposed in this paper is the first stochastic model for portfolio specific mortality 
that: 

- can be combined easily with any stochastic country mortality process 
- has enough flexibility in the assumed structure over ages 
- has a structure that is simple enough to be able to calibrate it to limited historical data of 

life insurance portfolios 
     
The remainder of the paper is organized as follows. First, in Section 2 the general model for 
stochastic portfolio specific experience mortality is defined. In Section 3 a 1-factor version of 
this model is applied to two insurance portfolios. Then in Section 4 and 5 the impact on the VaR 
and on the hedge effectiveness is quantified. Section 6 gives conclusions. 
 
 
 

                                                 
3 Dutch Association of Insurers 
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2. General model for stochastic portfolio specific mortality experience 
 
The first step in stochastic modeling of portfolio specific mortality rates is determining the 
historical portfolio mortality rates, measured by insured amounts. There are different kinds of 
definitions for mortality rates which are calculated in a slightly different manner (see Coughlan 
et al (2007)), for example the initial mortality rate or the central mortality rate. Regardless which 
definition is used, it is important that the same mortality rate definition is used for setting the 
country population mortality rates and the portfolio specific mortality rates. In the remaining part 
of this paper, we use the following definition for the initial mortality rate (see for example 
Namboodiri and Suchindran (1987): 
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The related portfolio mortality rate, measured by insured amounts, is: 
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where ,

P
x tA  and ,

U
x tA  are the insured amounts primo and ultimo for the total portfolio and ,

D
x tA  the 

insured amount of the deaths, for age x and year t.   
 
Now the aim is to define a stochastic mortality model for the so-called portfolio experience 
mortality factor Px,t  for age x and year t: 
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where ,

Pop
x tq  is the specific country population mortality rate for age x and year t, determined 

using (2.1). So Px,t represents the relation between a portfolio specific mortality rate (measured 
by insured amounts) and a country population mortality rate. Multiplying stochastic country 
mortality rates with stochastic Px,t’s will give stochastic portfolio specific mortality rates. In this 
context a portfolio is seen as a group of homogenous risks, or a product group. Px,t is specific for 
each product group, it behaves differently for annuities as it does for term insurance. For reasons 
of convenience, the product specific nature is left out of the notation in the remaining of the 
paper, but the reader should be aware that all of the following is product (group) specific.    
 
2.1 The basic model 
Given that the model will often be based on a limited amount of data, it is desirable that the 
model for Px,t is as parsimonious as possible. Furthermore, the conjecture is that the difference 
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between portfolio mortality and country population mortality is expected to be less at the highest 
ages, since the remaining country population at the highest ages is expected to have a relatively 
high percentage of people that are insured and have relatively high salaries. This is corroborated 
by the results in CMI (2004), where the difference between portfolio mortality and country 
population mortality is decreasing in age. Therefore, the proposed model leads to an expectation 
of Px,t  that approaches 1 for the highest ages.    
 
Given the above, we propose to model the mortality experience factor Px,t as: 
 

(2.4) , ,
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i i
x t t
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P X x x tβ ξ

=

= + +∑         

 
where n is the number of factors of the model, X i (x) is the element for age x in the ith column of 
design matrix X, i

tβ  is the ith element of a vector with factors for year t and ξx,t the error term. 
Another way to define the model is in matrix notation:     
 
(2.5) t tP X tβ ξ= + +1  
 
where Pt is the vector of mortality experience factors, βt  the vector with factors and ξt the vector 
of error terms for time t. Furthermore, to ensure Px,t approaches 1, we require: 
 

(2.6)  
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where ω is the closing age of the mortality table (usually 120).  
 
Now given a design matrix X, the vector βt has to be estimated for each year. The structure of X 
(and the corresponding β’s) can be set in different ways, depending on what fits best with the 
data and the problem at hand. One could use for example: 
 

a) principal components analysis to derive the preferred shape of the columns Xi. 
b) a similar structure as the multi-factor model proposed by Nelson and Siegel (1987) for 

modeling of yield curve dynamics. 
c) a more simple structure, for example using 1 factor where the vector X is a linear function 

in age. 
 
a) Principal Components Analysis (PCA) 
Principal components analysis is a statistical technique that linearly transforms an original set of 
variables into a substantially smaller set of uncorrelated variables that represents most of the 
information in the original set of variables. Its goal is to reduce the dimensionality of the original 
data set.  
 
The (m x k) matrix P contains historical observations of Px,t for m years and k ages. Instead of 
assessing the Px,t process for each age individually, the goal of PCA is to derive r linear 
combinations (where r < k) that capture most of the information in the original variables: 

 5



 

(2.7) 

1 11 1 21 2 1

2 12 1 22 2 2

1 1 2 2

...
...

...

k k

k k

r r r kr k

Z v P v P v P
Z v P v P v P

Z v P v P v P

= + + +
= + + +

= + + +
M

 

 
where Pj is the vector of observations for age class j. 
 
Or, in matrix notation: 
 
(2.8) Z PV=  
 
It can be shown (see for example Jolliffe (1986)) that the difference between the original data set 
and the set of linear combinations can be minimized by taking the eigenvectors of the covariance 
matrix ΣP* of the de-meaned historical observation matrix P* as the columns of matrix V. The 
corresponding eigenvalues λj indicate the proportion of variance that each eigenvector (principal 
component) accounts for. By ordering the eigenvalues in such a way that λ1 ≥ λ2 ≥ … ≥ λk ≥ 0, 
the dimensionality of the problem can be reduced by selecting the r eigenvalues (and the 
corresponding eigenvectors) that explain most of the variance of the original data set. The 
selected eigenvectors can be used as the columns Xi in (2.4). 
 
b) Similar structure as Nelson and Siegel (1987) 
Nelson and Siegel (1987) developed a parsimonious multi-factor model for yield curves that has 
the ability to represent shapes generally associated with yield curves. They model the 
instantaneous forward curve as: 
 
(2.9) 1 2 3( ) t t

t t t t tf e eλ τ λτ β β β λ− −= + + τ  
 
where the parameters β1t, β2t, β3t and λt have to be estimated from the observed yield curves. In 
practice λt is often fixed at a pre-specified value, simplifying the estimation procedure. 
 
Since we are interested in the curve of Px,t over the ages and this curve historically shows shapes 
that roughly resemble possible shapes of yield curves, a structure similar as (2.9) could be used 
for modeling the Px,t’s. An example of a possible 2-factor structure is given in Appendix 1.    
 
c) A more simple structure 
An alternative for structure a) and b) is a more simple structure, for example one where it is 
assumed that Px,t is linear in age for each t. It depends on the size of the insurance portfolio and 
the historical period whether structure a) leads to usable results and structure b) leads to a better 
fit to the data than this simple structure. For very large portfolios, structure a) and b) could be the 
most appropriate solutions. However, for the insurance portfolios considered in this paper, with 
14 years of history and respectively about 100.000 policies and about 45.000 policies, principle 
components analysis didn’t lead to usable results, and structure b) did not fit the data better than 
a simple linear structure.  
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2.2 Fitting the basic model 
The structure of the model is such that it could be fitted with Ordinary Least Squares (OLS). 
However, the observations Px,t are all based on different exposures to death and observed deaths, 
so there is generally significant heteroskedasticity. Therefore Generalized Least Squares (GLS) 
should be used (Verbeek (2008)). When applying GLS in case of heteroskedasticity, each 
observation is weighted by (a factor proportional to) the inverse of the error standard deviation. 
Fitting this transformed model with OLS gives the GLS estimator, which accounts for the 
heteroskedasticity in the data.  
 
When the available data are a cross-section of group averages with different group sizes and the 
observations are homoskedastic at individual level, the variance of the error term of the group 
averages is inversely related to the number of observations per group. In that case the square root 
of the number of observations in the group can be used as weights (Verbeek (2008)). For the 
problem in this paper this means that the square root of the number of deaths can be used as 
weights. So using a diagonal weight matrix Wt with these weights and applying it to (2.5) leads 
to a transformed model: 
 
(2.10) ( ) ( )* * *

t t t t t t t t tW P W X W or P Xβ ξ β− = + − = +1 1 ξ

t t −

  
 
Where the vectors or matrices labeled with an * are weighted with Wt. Now applying OLS to 
(2.10) gives the GLS estimator for βt:  
 

(2.11)  ( ) ( ) ( ) ( )
1 * 1* * *

t̂ t t t tX X X P X W W X X W W Pβ
− −′ ′ ′ ′ ′ ′= − =1 1

 
This procedure can be repeated for each historical observation year, leading to a time series of 
vector t̂β . 
 
2.3 Adding stochastic behavior 
Now using the time series of the fitted βt’s, a Box-Jenkins analysis can be performed to 
determine which stochastic process fits the historical data best 4 . However, an important 
requirement in this case is biological reasonableness. For example, when assuming a non-
stationary process such as a Random Walk for the βt’s, in certain scenario’s the Px,t ‘s could be 0 
for all ages for some time, which is not biologically reasonable. Since the difference between 
country population mortality and portfolio mortality is dependent on factors that in our 
experience are normally relatively stable (size, composition and relative welfare of the portfolio), 
it doesn’t seem reasonable to assume that this difference can increase unlimitedly. Therefore, a 
stationary process seems the most appropriate in this case. Given the often limited historical 
period of observations and the requirement of parsimoniousness, in most cases the most 
appropriate model will then be a set of correlated first order autoregressive (AR(1)) processes or 
equivalently, a restricted first order Vector Autoregressive (VAR) model: 
                                                 
4 This is possible under the assumption that the historical fitted parameters are certain. Another possible approach 
would be to fit the parameters and the stochastic process at once, for example using a state space method combined 
with the Kalman filtering technique. 
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(2.12) 1 1t t tβ δ β −= + Θ + ε

t

  
 
where Θ1 is a n x n diagonal matrix, δ is a n-dimensional vector and εt is a n-dimensional vector 
of white noise processes with covariance matrix Σ. 
 
Possible alternatives are an unrestricted VAR(1) model or a first order (restricted) Vector Moving 
Average (VMA) model. In some cases an even simpler process than (2.12) is possible, being the 
so-called ARIMA(0,0,0)5 process: 
 
(2.13) tβ δ ε= +    
 
Model (2.12) and (2.13) can be fitted using OLS equation by equation. From the residuals e of 
the n equations the elements (i,j) of Σ can be estimated as: 
 

(2.14) 
( ) 1

1ˆ
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ij it jt
t

e e
T K

σ
=

=
− ∑  

 
where K is the maximum number of parameters used in either equations i or j (that is 2 when 
both processes are AR(1) processes). 
 
An alternative is to estimate this simultaneously with the stochastic processes of the country 
population mortality model, which is the subject of the next paragraph. 
 
When the insurance portfolio has developed significantly over the years, the fitted parameters 
over time are subject to heteroskedasticity. In this case GLS could be used, using either the 
results from table A2.1 in Appendix 2 or the square root of the number of deaths (see paragraph 
2.2) as weights. When the portfolio has grown significantly and the current size of the portfolio 
is believed to be more representative for the future, the relative weights can also be applied to the 
residuals, weighting the earlier residuals less than the more recent ones. 
 
2.4 Combine the process with the stochastic country population model 
To end up with a stochastic process for portfolio specific mortality rates, the correlation between 
country population mortality rates and the portfolio mortality experience factors has to be taken 
into account. Therefore, the processes of the drivers of these have to be estimated simultaneously. 
Let’s assume that the country population mortality is driven by m factors of which the processes 
αt can be written as: 
 
(2.15) 1,....,k

t k k kX k mα α αα η ε= + =   
 
Now when the historical observation period is equal for the country mortality rates and the 
portfolio mortality experience factors, Seemingly Unrelated Regression (SUR, see Zellner (1963)) 

                                                 
5 Note that various names are used for this process in literature. Since the name ARIMA(0,0,0) seems to be the most 
widely used, we have adopted this name in this paper. 

 8



can be applied to fit all processes simultaneously. The processes don’t have to be similar, so 
AR(1), Random Walk or other ARIMA models can be combined. 
 
Re-writing (2.12) for each element i in a more general form as i

t i i iX β β ββ η ε= + and combining 
all processes gives: 
 

(2.16) 
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which can be written more compactly as: 
 
(2.17) , , ,Y X α β α β α βη ε= +  
 
Now these processes can be fitted with SUR using the following steps: 
 

1) Fit equation by equation using OLS 
2) Use the residuals to estimate the total covariance matrix Ω̂  with (2.14) 
3) Estimate η̂  using GLS   

 
To be more specific, the resulting estimator in step 3) is determined as: 
 

(2.18) ( ) ( )1
, 1 , , 1ˆ ˆˆ X X Xα β α β α βη

−
− −′ ′= Ω Ω Y  

 
As mentioned earlier, in most cases the historical data period for portfolio mortality will be 
shorter than of country population mortality. In this case an alternative is only to do steps 1) and 
2). In step 1) all available historical observations can be used for the different processes. In step 
2) for the country population mortality the same historical data period should be used as is 
available for the portfolio mortality.  
 
 

3. Application to example insurance portfolios 
 
As mentioned in section 2, Px,t is specific for each product group or portfolio of homogeneous 
risks. In this section the general model described in section 2 is applied to two insurance 
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portfolios6. The portfolios are respectively large and medium sized, and only data for males from 
age 65 on is taken into account. The large portfolio is a collection of collective pension portfolios 
of the Dutch insurers and contains about 100.000 male policyholders aged 65 or older. The 
medium portfolio is an annuity portfolio with about 45.000 male policyholders aged 65 or older.  
Note that this medium portfolio has developed significantly over time, so had less policyholders 
in earlier years. For both portfolios 14 years of historical mortality data is available.  
 
For both portfolios, we examined a collection of 1-, 2-, and 3-factor models and concluded that 
the 2- and 3- factor models did not fit the data much better than a 1-factor model7. Since the 1-
factor model uses less parameters, the Bayesian Information Criterion (BIC)8 is more favorable 
for this structure. Therefore, the model we use is model (2.4) with n = 1 and: 
 

(3.1) 1( ) 1 xX x xδ δ ω
ω δ
−

= − ≤ ≤
−

  

 
where δ is the start age (in this case 65) and ω is the end age (120). So in this formulation of 
model (2.4), the vector X is a linear function in age and, as required, X1(ω) = 0.  
 
The reason why the 1-factor model fits the data as well as 2- or 3-factor models is that the data 
shows an upward slope for increasing ages, but the pattern along the ages is very volatile. For 
example, figure 1 shows two fits for the years 2006 and 2000. Fitting a more complex model 
through this data will not reduce the residuals significantly. Of course, this observation depends 
on the characteristics of the specific portfolio to which the model is fitted. For larger portfolios a 
2- or 3-factor could give better results, since such a model is able to capture more shapes of the 
portfolio experience mortality factor curve.   
 
       Figure 1: example fit of model to actual observations for years 2006 and 2000 
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6 The author thanks the Centrum voor Verzekeringsstatistiek (CVS) and Erik Tornij for the data of the large 
portfolio, and Femke Nawijn and Christel Donkers for the data of the medium portfolio. 
7 The fitting results for the 2-factor and 3-factor models are available upon request. 
8 BIC is a criterion that provides a trade-off between goodness-of-fit and the parsimony of the model.   
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The model is fitted using the procedure described in paragraph 2.2, where we have used the 
square root of the number of deaths as weights. The fitted β’s are shown in figure 29. Further 
results are given in table A2.1 in Appendix 2. 
 
         Figure 2: fitted β’s for historical years 1993-2007 
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For both portfolios the results show an autoregressive pattern for the β’s. Now a stochastic 
process for the future β’s has to be selected. As mentioned in paragraph 2.3, a stationary process 
will be most appropriate. Also, since the historical data period is limited, the model should be as 
parsimonious as possible. We have fitted an AR(1), AR(2) and ARIMA(0,0,0) process to the data 
shown in figure 2. For both portfolios the ARIMA(0,0,0) process led to a more favorable BIC 
compared to the other processes. 
 
Because of the significant development of the medium sized portfolio over the historical years, 
GLS is used for fitting the ARIMA(0,0,0) process. The square roots of the relative number of 
deaths in a year are used as weights. Relative means relative to the average number of deaths. 
These weights are also applied to the residuals, giving less weight to years where the portfolio 
was relatively small. Since the large portfolio was relatively stable over time, OLS is used for 
fitting the ARIMA(0,0,0) process for this portfolio.  
 
The fitted processes for the portfolios are: 
 
(3.2) Large portfolio: ˆ0, 2497 , 0,0625t tβ ε σ= − + =    

 
(3.3) Medium portfolio:  ˆ0,3798 , 0,1130t tβ ε σ= − + =  
 
The estimated error standard deviation σ̂  is significantly larger for the medium sized portfolio, 
which is mainly the result of having less policyholders. The result of this is shown in figure 3, 

                                                 
9 Note that although we have 14 years of data for both portfolios, the periods are slightly different, having data from 
1993-2006 for the large portfolio and from 1994-2007 for the medium portfolio. 

 11



where the best estimates and the 99,5% / 0,5% percentiles are given for the portfolio experience 
mortality factors in the year 201610. These specific percentiles are shown because the SCR of 
Solvency 2 is based on a 99,5% percentile. 
 
     Figure 3: best estimates and 99,5% / 0,5%  percentiles for both portfolios - 2016 
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The figure shows that for the large portfolio the difference between the best estimate and the 
percentile(s) is in the range 10-15 %-point for ages 65-80. So taking this stochastic behavior of 
the portfolio experience mortality factor into account can have a reasonable impact on for 
example the Value at Risk. As expected, the impact is larger for the medium portfolio, where the 
difference between the best estimate and the percentile(s) is almost 30 %-point at its maximum.  
 
 

4. Numerical example 1: Value at Risk 
 
An important application of the presented model is the quantification of the Value at Risk (VaR) 
or SCR for longevity or mortality risk. In this paragraph the VaR is determined for the two 
portfolios, for different definitions / horizons of the VaR. First the model has to be combined 
with a model for country population mortality risk. 
 
4.1 Stochastic country population mortality model 
For the stochastic country population model we use the model of Cairns et al (2006a): 
 
(4.1) ( )1 2

,logit Pop
x t t tq xκ κ= + − x  

 
Where x  is the mean age in the sample range and 1

tκ  and 2
tκ  the two (stochastic) factors. We 

fitted this model to data of the Dutch population for the years 1950 – 2007. Using the resulting 
time series of parameter estimates, a 2-dimensional random walk process is fitted for the factors. 

                                                 
10 Since a stationary process is assumed, the figure will be similar for other projection years. 
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The fitted parameters and the covariance matrices, including the covariance’s with the portfolio 
experience mortality process of both portfolios, are given in Appendix 2.  
 
Now combining the stochastic process above and the process described in section 3 leads to 
stochastic portfolio specific mortality rates. Figure 4 gives the best estimate mortality rates and 
percentiles for age 65. The percentiles are based on respectively deterministic and stochastic 
Px,t’s. 
 
      Figure 4: best estimates and percentiles, with stochastic or deterministic Px,t 

Medium Portfolio

0,0%

0,2%

0,4%

0,6%

0,8%

1,0%

1,2%

1,4%

1,6%

2008 2013 2018 2023 2028 2033 2038

year

Large portfolio

0,0%

0,2%

0,4%

0,6%

0,8%

1,0%

1,2%

1,4%

1,6%

2007 2011 2015 2019 2023 2027 2031 2035 2039

year

po
rt

fo
lio

 m
or

ta
lit

y 
ra

te
s

Best estimate
99,5% / 0,5% perc - stochastic Px,t
99,5% / 0,5% perc - deterministic Px,t

 
 
The figure shows that the additional risk of including stochastic Px,t ’s is highest at the start of the 
projection and decreases slowly in time. The reason for this is that the country population 
mortality rate risk is gradually increasing over time, resulting in a higher diversification effect 
between country population mortality rates and the Px,t ’s over time. 
 
The percentiles for the medium portfolio seem quite dramatic. However, note that the shown 
percentiles are a result of picking the particular percentile every year, and not picking 1 scenario 
that represents the x%-percentile for the whole projection. Because of the assumed ARIMA(0,0,0) 
process the extremely low outliers will normally be (partially) compensated somewhere in time 
by high outliers. This is shown in figure 5, where two random (simulated) scenarios of the β’s 
are given as an example.  
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        Figure 5: two random (simulated) scenarios for β - medium portfolio 
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4.2 Impact on Value at Risk 
Now using the described stochastic processes the impact on the VaR of stochastic (instead of 
deterministic) Px,t’s is determined for both portfolios. The (present) value of liabilities is 
calculated for all simulated mortality rate scenarios11. The VaR is then defined as the difference 
between the x%-percentile and the average value of the liabilities. The impact is determined for 
three different definitions / horizons, which are all being used in practice: 

1) 1-year horizon, 99,5% percentile, including effect on best estimate after 1 year 
2) 10-year horizon, 95% percentile, including effect on best estimate after 10 years 
3) Run-off of the liabilities, 90% percentile 

 
So for definitions 1) and 2), at the 1-year or 10-year horizon all parameters are re-estimated 
using the (simulated) observations in the first 1 or 10 years, for each simulated scenario. The 
impact of the new parameterization on the best estimate of liabilities (for each scenario) is taken 
into account in the VaR. The results for the large and medium portfolio are given in respectively 
table 1 and table 2. 
 
Table 1: impact of stochastic Px,t   on VaR – large portfolio (in millions of  Euros) 
VAR definition Deterministic P x,t Stochastic P x,t % difference
1-year, 99,5% 126,4 138,2 + 9,3%
10-year, 95% 182,3 194,3 + 6,6%
Run off, 90% 136,5 145,9 + 6,8%  
 

                                                 
11 For convenience we assumed that the portfolios only contain pension or annuity payments, so no spouse pension 
or annuities on a second life. 
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Table 2: impact of stochastic Px,t   on VaR – medium portfolio (in millions of Euros) 
VAR definition Deterministic P x,t Stochastic P x,t % difference
1-year, 99,5% 45,1 73,0 + 61,8%
10-year, 95% 69,2 95,1 + 37,4%
Run off, 90% 54,1 75,1 + 38,8%  
 
Table 1 shows that for the large portfolio stochastic Px,t’s lead to a VaR that is about 7%-9% 
higher compared to the VaR calculated with deterministic Px,t’s. Table 2 shows that the impact 
for the medium portfolio is very high. The increase in VaR is between 37% and 68%, depending 
on the definition for VaR used. The reason for this is the large increase in volatility due to the 
addition of the stochastic Px,t’s, which is mainly related to the size of the portfolio. Since a large 
part of the insurance portfolios in practice are of this size or smaller, this should be a point of 
attention when developing or reviewing internal models for mortality and longevity. 
 
 

5. Numerical example 2: hedge effectiveness / basis risk 
 
Because of the increasing external requirements and focus on risk measurement and risk 
management, the interest in hedging mortality or longevity risk is also increasing. A result of this 
is that a market for mortality and longevity derivatives is emerging (see Loeys et al (2007)). One 
of the main characteristics of these derivatives is that the payoff depends on country population 
mortality. While this certainly has advantages regarding transparency and market efficiency, the 
impact of the basis risk is unclear. Basis risk is the risk arising from difference between the 
underlying of the derivative and the actual risk in the liability portfolio. The model presented in 
this paper can be used to quantify this basis risk. In the example below the basis risk will be 
quantified for the two portfolios, where the longevity risk is (partly) hedged with the so-called q-
forwards.  
 
A q-forward is a simple capital market instrument with similar characteristics as an interest rate 
swap. The instrument exchanges a realized mortality rate in a future period for a pre-agreed fixed 
mortality rate. This is shown in figure 6. The pre-agreed fixed mortality rate is based on a 
projection of mortality rates, using a freely available and well documented projection tool12. 
 
Figure 6: mechanics of a q-forward 
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12 For more information, see http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics 
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For example, when the realized mortality rate is lower than expected, the pension / annuity 
insurer will receive a payment which (partly) compensates the increase of the expected value of 
the insurance liabilities (caused by the decreasing mortality rates). 
 
The basis for the instrument is the (projected) mortality of a country population, not the mortality 
of a specific company or portfolio. This makes the product and the pricing very transparent 
compared to traditional reinsurance. 
 
For both insurance portfolios we determined a minimum variance hedge, based on deterministic 
Px,t’s. The hedge is determined for a horizon of 10 years, but including the effect on the best 
estimate after 10 years (conform definition 2 of VaR in paragraph 4.2) . The hedge is determined 
for age-buckets of 5 years. For every bucket i, the impact of small shocks of the two factors of 
the country population model on the value of the liabilities and the value of an appropriate q-
forward contract are calculated. The required nominal ia∗  for the q-forward of bucket i is then 
determined as: 
 

(5.1) 1 1 2 2
2 2

1 2
i

l h l ha
h h

∗ +
=

+
 

 
where li and hi are the impact of the shock of the ith factor on respectively the liabilities (l) and 
the hedge instrument (h). 
  
The resulting hedge portfolio consists of 5 q-forwards for age-buckets of 5, from age 65 till age 
89. The payoff of such a q-forward depends on the average mortality rate for the 5 ages in the 
bucket. The exact composition of both the hedge portfolios is given in Appendix 3. 
 
Tables 3 and 4 show the impact on the hedge effectiveness when the Px,t’s are assumed to follow 
the stochastic process described in section 3. 
 
Table 3: impact of stochastic Px,t   on hedge effectiveness – large portfolio 

VAR unhedged VAR hedged % reduction
Deterministic P x,t 182,3 64,0 64,9%
Stochastic P x,t 194,3 81,9 57,8%  
 
Table 4: impact of stochastic Px,t   on hedge effectiveness – medium portfolio 

VAR unhedged VAR hedged % reduction
Deterministic P x,t 69,2 23,6 65,8%
Stochastic P x,t 95,1 47,9 49,7%  
 
The tables show that given deterministic Px,t’s, the hedge reduces the VaR with about 65%. The 
risk is not fully hedged, because the hedge is based on small shocks of the two country 
population factors, while the factors in the tails of the distributions (which are relevant for VaR) 
are often more extreme. 
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For the large portfolio, table 3 shows that the hedge quality is decreasing, but is still reasonable. 
The basis risk for this portfolio is therefore limited. The reason for this is that on a longer 
horizon the impact of stochastic Px,t’s levels out because of the assumed autoregressive process. 
 
For the medium portfolio the hedge effectiveness is reduced to a larger extent. The effectiveness 
of the hedge can be improved by periodically adjusting the hedge portfolio. For smaller 
portfolios than this, it is probably questionable whether it is sensible to set up such hedge 
constructions. 
 
 

6. Conclusions 
 
In this paper a stochastic model is proposed for stochastic portfolio experience. Adding this 
stochastic process to a stochastic country population mortality model leads to stochastic portfolio 
specific mortality rates, measured in insured amounts. The proposed stochastic process is applied 
to two insurance portfolios. The results show that the uncertainty for the portfolio experience 
factor Px,t  can be significant, mostly depending on the size of the portfolio. 
 
The impact of the VaR for longevity risk is quantified. Depending on the definition used, the 
VaR increases by about 7%-9% for the large portfolio. The impact for the medium portfolio is 
very high, with an increase in VaR of 37%-68%. The reason for this is the high increase in 
volatility due to the addition of the stochastic Px,t’s. Since a large part of the insurance portfolios 
in practice are of this size or smaller, this should be a point of attention when developing or 
reviewing internal models for mortality and longevity. 
 
Furthermore, the basis risk is quantified when hedging portfolio specific mortality risk with q-
forwards, of which the payoff depends on country population mortality rates. For the large 
portfolio the hedge quality is decreasing, but is still reasonable. The reason for this is that on a 
longer horizon the impact of stochastic Px,t’s levels out because of the assumed autoregressive 
process. For the medium portfolio hedge effectiveness is reduced to a larger extent. For smaller 
portfolios than this, it is probably questionable whether it is sensible to set up such hedge 
constructions. 
 
 

Appendix 1: example 2-factor model based on Nelson & Siegel 
 
Nelson and Siegel (1987) proposed a parsimonious model for yield curves, which allows for 
different shapes of the curve. The Nelson-Siegel forward curve can be viewed as a constant plus 
a Laquerre function, which is a polynomial times an exponential decay term. It has three 
elements, respectively for the short, medium and long term. The model is very often used for 
yield curves and could serve as a basis for thinking for the Pt curves that are the subject of this 
paper. However, the Nelson-Siegel curve cannot directly be used for the Pt curves because Px,t 
should approach 1 near the closing age. Also, another requirement mentioned in section 2 is that 
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the model is as parsimonious as possible, so a 2-factor model might be more appropriate in most 
cases. 
 
Many variations on the Nelson-Siegel curve are possible. An example of such a model is the 
following model: 
 
(A.1) ( ) ( )1 1

1 21t t tP e w e 2eλ τ λ τ
ττ β β− −= + + − λ τ−  

 

 m

m

where wτ
τ τϕ α φ
τ

⎛ ⎞⎡ ⎤−
= ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 

 
The variable τ is 0 for the starting age of the data (in this case 65 years), τm is a strategically set 
middle point of the age interval (in this case 20, representing age 85), ϕ is the density of a 
standard normal distributed variable, α is a variable that arranges the shape of wτ  and can be set 
at 2 for example, and φ  is a scale variable. The variable λ1 can be solved in such a way that the 
second term of (A.1) approaches 0 for the closing age. The variable λ2 can be solved in such a 
way that the third term of (A.1) is at its maximum somewhere between τ = 0 and τm (in this case 
75 years). The factors are shown in figure A.1, where x1 represents the second term and x2 the 
third term of (A.1). 
 
        Figure A.1: factors for model (A.1) 
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As can be seen from the figure and (A.1), the curve starts at age 65 at 1 + β1t  (where β1t  will be 
negative in general) and ends at 1 at higher ages. With the model (A.1) different shapes of the 
curve can be fitted, and the requirements in section 2 are met. A disadvantage of the model is the 
large number of parameters, of which some are set more or less arbitrary. 
 
 

Appendix 2: further results 
 
Table A.2.1 shows the fitting results for the β’s in each year, for the large and medium sized 
portfolio. 
 
Table A2.1: yearly fitting results for β’s 
Results large portfolio Results medium portfolio

Year β s.e. t-ratio Year β s.e. t-ratio
1993 -0,239 0,036 -6,55 1994 -0,333 0,103 -3,23
1994 -0,149 0,041 -3,67 1995 0,127 0,201 0,63
1995 -0,194 0,030 -6,55 1996 -0,243 0,127 -1,92
1996 -0,246 0,033 -7,43 1997 -0,467 0,091 -5,14
1997 -0,228 0,032 -7,20 1998 -0,330 0,056 -5,92
1998 -0,368 0,023 -16,12 1999 -0,143 0,065 -2,21
1999 -0,208 0,036 -5,77 2000 -0,427 0,057 -7,56
2000 -0,261 0,029 -8,91 2001 -0,349 0,089 -3,94
2001 -0,304 0,032 -9,46 2002 -0,331 0,052 -6,32
2002 -0,226 0,033 -6,88 2003 -0,408 0,050 -8,11
2003 -0,168 0,046 -3,62 2004 -0,515 0,035 -14,77
2004 -0,321 0,048 -6,71 2005 -0,462 0,047 -9,81
2005 -0,259 0,042 -6,11 2006 -0,434 0,046 -9,52
2006 -0,325 0,040 -8,18 2007 -0,355 0,079 -4,52  

 
 
Table A.2.2 shows the fitted parameters for the 2-dimensional random walk model of section 4, 
and the covariance matrix including the covariance’s with the process of section 3. Note that the 
country population parameter estimates slightly differ for the large and medium portfolio, 
because for the medium portfolio the year 2007 is also taken into account. 
 
Table A.2.2: fit of country population model and covariance matrices 

 

Fit - large portfolio Fit - medium portfolio
μ σ μ σ

κ 1 -0,006206 0,0312395 κ 1 -0,006722 0,022663
κ 2 0,000182 0,00140485 κ 2 0,000175 0,001436

Covariance matrix - large portfolio Covariance matrix - large portfolio
β κ 1 κ 2 β κ 1 κ 2

β 0,003911 0,000445 0,000041 β 0,013808 0,002174 0,000053
κ 1 0,000445 0,000976 0,000022 κ 1 0,002174 0,000514 0,000020
κ 2 0,000041 0,000022 0,000002 κ 2 0,000053 0,000020 0,000002  
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Appendix 3: hedge portfolios 
 
Table A.3.1: hedge portfolios for large and medium insurance portfolio 
Characteristics hedge portfolio - large portfolio Characteristics hedge portfolio - medium portfolio

q-forward Start age End age Nominal Tick Size q-forward Start age End age Nominal Tick Size
1 65 69 117.865.528 100 1 65 69 74.346.033 100
2 70 74 34.221.141 100 2 70 74 24.226.106 100
3 75 79 10.420.145 100 3 75 79 3.203.979 100
4 80 84 2.213.481 100 4 80 84 143.135 100
5 85 89 315.640 100 5 85 89 8.224 100  
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