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a b s t r a c t

We consider the problem of optimally designing longevity risk transfers under asymmetric information.
We focus on holders of longevity exposures that have superior knowledge of the underlying demographic
risks, but are willing to take them off their balance sheets because of capital requirements. In equilibrium,
they transfer longevity risk to uninformed agents at a cost, where the cost is represented by retention
of part of the exposure and/or by a risk premium. We use a signalling model to quantify the effects
of asymmetric information and emphasize how they compound with parameter uncertainty. We show
how the cost of private information can be minimized by suitably tranching securitized cashflows, or,
equivalently, by securitizing the exposure in exchange for an option onmortality rates.Wealso investigate
the benefits of pooling several longevity exposures and the impact on tranching levels.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

During the last decade, longevity risk has become increasingly
capital intensive for pension funds and annuity providers to
manage. The reason is that mortality improvements have been
systematically underestimated, making balance sheets vulnerable
to unexpected increases in liabilities. Blake and Burrows (2001)
were the first to advocate the use of mortality-linked securities
to transfer longevity risk to capital markets. Their proposal has
generated considerable attention in the last few years, and major
investment banks and reinsurers are now actively innovating in
this field (see Blake et al., 2006a, 2008, for an overview).
Nevertheless, despite growing enthusiasm, longevity risk

transfers have been materializing only slowly. One of the reasons
is the huge imbalance in scale between existing exposures
and willing hedge suppliers. The bulk of longevity exposures
is represented by liabilities of defined benefit pension funds
and annuity providers. In 2007, these institutions’ exposure to
improvements in life expectancy amounted to a staggering 400
billion USD in the UK and the US alone (see Loeys et al., 2007).
In the UK, a pension plan buyout market started in 2006 to
transfer corporate pension plan assets and liabilities to insurance
companies. This market has grown very rapidly with estimates of
11 billion USD of transfers during 2008. However, there are already
signs of capacity constraints – some of the insurers have been
unable to attract additional shareholders’ funds to expand their
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businesses – and the buyout market transfers all risks (including
interest rate and inflation risks) and not just longevity risk. It
is therefore important to consider other vehicles for transferring
longevity risk. One such vehicle is securitization, the packaging
of illiquid assets and liabilities into securities that are sold into
the capital markets. Five types of securitization have taken place
involving longevity-related assets or liabilities: blocks of business,
regulatory reserving (triple-X securitization), life settlements,
annuity books and reverse mortgages. The new securities created
are known as insurance-linked securities (ILSs) (for more details,
see Krutov, 2006; Blake et al., 2008).
Considerable progress has beenmade in understandingmortal-

ity dynamics (e.g., Cairns et al., 2008, 2009; Dowd et al., 2008a,b;
Gourieroux and Monfort, 2008) and in designing mortality-linked
securities (e.g., Dowd et al., 2005; Blake et al., 2006a,b; Dawson
et al., 2007; Denuit, 2007; Loeys et al., 2007). Yet, the optimal pric-
ing of the embedded risks remains elusive. The pricing exercises
used so far by practitioners are typically based on partial equi-
librium arguments and shed little light on how supply and de-
mand might equilibrate when longevity exposures are exchanged.
We address this problem by adopting a simple general equilib-
riummodel that shows how longevity risk premia are determined
by the joint effect of regulatory costs and uncertainty in longevity
trends. The literature on optimal security design is vast (see Duffie
and Rahi, 1995, for an overview pertaining to financial innovation)
and spans research on corporate finance (see Tirole, 2006), de-
ductibles in insurance policies (see: Eeckhoudt et al., 2005; Dana
and Scarsini, 2007) and minimization of risk measures (see Bar-
rieu and El Karoui, 2008). We abstract from heterogeneity in risk
preferences and spanning issues and focus on the role played by
asymmetric information on longevity trends in optimal security
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design.We consider holders of longevity exposures that have supe-
rior knowledge of the underlying demographic risks, in the sense
that they have access to better experience data or forecasting tech-
nologies developed by monitoring the exposures. This assumption
is realistic for life insurers, reinsurers and other intermediaries
(e.g., pension buyout firms and investment banks) that have de-
veloped considerable expertise inmanaging longevity-linked cash-
flows.Moreover, investors currently still seem to be uncomfortable
enough with longevity risk to make this assumption a reasonable
one, even for securities written on publicly available demographic
indices. The incentive to enter a transaction is given by an exoge-
nously specified retention cost resulting from capital requirements
or alternative investment opportunities. Knowledge of this cost is
available to all agents, as it can be quantified from international
regulatory rules and accounting standards.
Our starting point is the securitization of a book of annuity-like

cashflows and their backing assets. The presence of asymmetric
information means that the holder or originator of the longevity
exposure (also denoted as issuer or seller below) faces a ‘lemons’
problem (as in Akerlof, 1970), in the sense that investors’
demand for the new security may be downward sloping and
expose the issuer to a liquidity problem. As is common in
annuity reinsurance and the securitization of insurance assets
and liabilities (e.g., Cowley and Cummins, 2005), retention of
part of the exposure can be used to ‘prove’ the quality of the
cashflows to the market and alleviate the impact of asymmetric
information. We use a signalling model of Walrasian market
equilibrium, as in Gale (1992) and DeMarzo and Duffie (1999),
to determine optimal retention levels and securitization payoffs.
The resulting separating equilibrium allows us to determine
the issuer’s retention costs and to examine how risk premia
would emerge if there were departures from the optimal
securitization level. As a particular example, we consider the
situation where the responsibility for meeting payments linked
to the realized death rate in a reference population is transferred
to a counterparty, exactly as happens with mortality swaps and
forwards (see: Coughlan et al., 2007; Loeys et al., 2007).
We then allow the holder of the book of liabilities and backing

assets to issue a security that is contingent on the net exposure
to longevity (i.e., the surplus on the assets in excess of the
longevity exposure) and examine conditions under which the
optimal contract results in tranching of the net exposure. By
tranching, we mean slicing the net exposure so that, in exchange
for a lump sum paid to the originator, investors who buy the
tranche are entitled to a specific portion of the net exposure’s
cashflows. The optimal tranching levelminimizes the sensitivity of
these cashflows to both asymmetric information and the impact of
unsystematic risk, which is material to risk-neutral agents when
payoffs are nonlinear. Since we wish to minimize the cost to the
originator of issuing the tranche, the optimal tranche is the one
that is least risky from the investors’ viewpoint. In otherwords, the
optimal tranche is equivalent to the senior debt tranche in a debt
financing operation. Although we focus on the design of a single
tranche, our analysis could be extended to multiple tranches, as
in Plantin (2004) and DeMarzo (2005), for example. It could also be
extended beyond the securitization of a specific book of business
to encompass securities written on publicly available mortality
indices (such as the LifeMetrics indices1). For example, we can
obtain insights into how the strike levels of options on mortality
indices could be chosen by originatorswilling to repackage and sell
their longevity exposures.
We also address the issue of securitizing pools of exposures.

As in DeMarzo (2005), diversification benefits can be traded off

1 See http://www.lifemetrics.com.
against the detrimental effect of information loss from pooling
together low-longevity- and high-longevity-risk cashflows. We
obtain the result that pooling and then tranching can reduce
the negative impact of unsystematic risk at high ages and in
small portfolios. Also, the benefits from pooling and tranching
are magnified when private information is highly correlated
across exposures, while residual risk is not. This occurs, for
example, when issuers of securities pool different cohorts of
individuals belonging to the same geographic area or social class,
or pool several small portfolios with comparable demographic
characteristics. When considering securities written on publicly
available demographic indices, the model shows that ‘age-
bucketing’ (i.e., writing derivatives on the mortality experience of
an entire age range in a given population) can reduce asymmetric
information costs, in addition tomitigating basis risk (see Coughlan
et al., 2007).
We note that although we concentrate on longevity risk, our

analysis carries over to cashflows exposed to the risk of systematic
mortality increases (i.e., brevity risk). See Cowley and Cummins
(2005) and Bauer and Kramer (2007) for an overview of recent
transactions involving mortality catastrophe bonds.
The paper is organized as follows. In Section 2, we provide

a stylized description of longevity exposures, identifying a
systematic and an unsystematic longevity risk component. In
Section 3, we introduce asymmetry in the information available to
agents concerning the systematic risk component. In Section 4, we
provide an equilibrium model of the securitization of longevity-
linked cashflows. In Section 5, we study the optimal design of a
derivative written on a longevity exposure. In Section 6, we extend
our analysis to pools of longevity exposures. In Section 7, we give
a simple example of how the setup can be used with stochastic
intensities of mortality. Finally, Section 8 offers some concluding
remarks.

2. Longevity exposures

Denote the current time by 0 and let τ 1, . . . , τm be the residual
lifetimes of the individuals in a given population at time z ≥ 0,
such as insureds in a book of annuity policies or members of a
pension plan. For fixed time horizon T > z, denote by S the
proportion of individuals surviving up to time T and by D the
proportion of individuals dying by time T , i.e.

S =
1
m

m∑
j=1

1τ j>T−z = 1− D, (2.1)

where 1A denotes the indicator function of the event A. Expression
(2.1) is a simple representation of the longevity exposures faced
by annuity providers and pension funds. In a book of annuities, for
example, the annuity payments over [z, T ] can be assumed to be
proportional to the random variable S, while the reserves released
over the same period can be assumed to be proportional to D. In
practice, reversionary or indexed benefits might be provided, but
we abstract fromadditional sources of uncertainty such as financial
risk factors and minimum guarantees.
A longevity exposure is affected by two main sources of risk:

the risk of unsystematic fluctuations around expected levels of
mortality, and the risk of systematic departures from expected
levels. To fix ideas, consider first the random variable D and
the case of i.i.d. death times. Consider, for example, distinct
individuals of the same gender, the same age, and with similar
health characteristics at time z. Then τ 1, . . . , τm may be assumed
to be independent and to obey the same law. If the population is
large enough, the Law of Large Numbers yields

lim
m→∞

D(m) = E [D] = q, (2.2)

http://www.lifemetrics.com
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almost surely, where the notation D(m) emphasizes the depen-
dence of D on the population size, and q denotes the probability
of dying by time T (we use the notation p := 1 − q for the cor-
responding survival probability). Expression (2.2) lies at the heart
of any life insurance business, based on pooling together a large
number of risks tomake outflowsmore predictable. From (2.2), we
could use the representation

D = q+ η, (2.3)

with η a zeromean error term capturing unsystematic fluctuations
around the estimate q.
When dealing with longevity exposures, however, the most

challenging uncertainty is the one surrounding the trend in
longevity improvements, i.e., systematic longevity risk. One way
of formalizing this situation is to rewrite expression (2.3) as

D = q(Y )+ ε, (2.4)

with ε another error term. The estimate q in (2.2) is replaced
by a random variable dependent on a vector Y = (Y1, . . . , Yl)′
of relevant risk factors. The law for τ 1, . . . , τm depends now
on the common factor Y influencing systematic longevity risk,
and the predictability of the exposure is considerably reduced.
For instance, when the individuals’ death times are conditionally
independent, given Y , the limit in (2.2) holds only conditionally on
each outcome y of Y (e.g., Schervish, 1995, Lemma 1.61), reducing
the scope for risk reduction by pooling together a large number of
individuals.

3. Asymmetric information

Weconsider two types of agent interested in exposure (2.1): the
holder of the exposure (e.g., an annuity provider, a pension buyout
firm or an investment bank) and a multitude of agents that might
seek an investment exposure to longevity risk (e.g., institutional
investors, ILS investors, endowments or hedge funds). We build
on representation (2.4), and focus on exposures with the following
structure:

D = q(Y )+ ε. (3.1)

Much of our analysis actually applies to the alternative represen-
tation

D = q(Y ) exp(ε). (3.2)

Equivalent expressions can be formulated for S, with the trend
component denoted by p(Y ).
We assume that the holder has access to the entire information

carried by Y , while investors have access to a limited number
of signals on the trend component of (3.1) or (3.2). We can
think of the holder possessing valuable experience data or having
developed a superior forecasting technology by monitoring the
book of liabilities over time. We denote the private components
of Y by X = (X1, . . . , Xd), for some d ≤ l, and we will look at some
specific examples.
A typical situation is when the private signal allows the

holder to represent q(Y ) in terms of a mortality estimate relative
to a different group of individuals (e.g., aggregate population
or industry-wide experience), denoted by q̃, which is publicly
available. We can then set Y = (̃q, X) and write

q(Y ) = q̃+ a(X), (3.3)

for some adjustment factor a(X) ensuring that q(Y ) takes values in
[0, 1]. In other words, the private information allows the holder to
express D in terms of a reference exposure D̃ publicly monitored.
Similarly, we could set

q(Y ) = q̃ m(X), (3.4)

withm(X) a privately computable scaling factor.
Both examples (3.3) and (3.4) cover commonways of producing
mortality estimates based on adjusting reference forecasts pro-
vided by industry bodies and government statistics offices. Ap-
proach (3.4) is common in the life settlements market,2 where
mortality estimates are made by adjusting a baseline mortality ta-
ble with suitable impairment factors (see Modu, 2008).
In the following, we will be interested in the role played by

the private signal X , rather than in the optimal structure of Y to
produce estimates forD or S.We therefore focus on the special case
in which the signal is entirely private, i.e. X = Y , and assume that
q(X) is an unbiased conditional estimate of D, given X , i.e.

q(X) = E [D|X] .

This means that q(X) is all that matters for the private valuation of
exposure D.
So far, we have made no restrictions on the distribution of X .

We now require the following:

Assumption 3.1. The distribution of X has compact support and
the conditional distribution of D, given X , is continuous.

Under the above assumptions, it is easy to show that the support
of the distribution of q(X) is a compact interval, which we
denote by [qmin, qmax] ⊆ [0, 1]. For example, we set qmin :=
minx E [D|X = x]. The corresponding support for the distribution
of p(X) is denoted by [pmin, pmax], with pmin = 1 − qmax and
pmax = 1 − qmin. The width of these intervals gives a simple
characterization of the systematic uncertainty associated with the
exposure. Since we focus on longevity risk, the bounds qmin and
pmax will play a crucial role in determining how the effects of
asymmetric information influence the design of longevity-linked
securities.
As a practical example of the risks we are analyzing, Fig. 1 plots

one-year death rate estimates for ages 65, 70 and 75 from year
2008 to 2030, based on the projections of the ContinuousMortality
Investigation (CMI).3 These projections provide a standard bench-
mark for annuity and pension liabilities in the UK. Each death prob-
ability has three levels corresponding to so-called short-cohort,
medium-cohort and long-cohort projections. The terms ‘short’,
‘medium’ and ‘long’ refer to the degree of persistence in mortal-
ity improvements assumed in the forecasting model.
Fig. 1 gives an idea of the magnitude of trend uncertainty,

particularly at higher ages. The differences between the long-
cohort and short-cohort estimates for the three ages in 2013 are
0.013%, 0.083% and 0.343%. Bearing in mind that the historical
annualized volatilities for death rates at ages 65, 70 and 75
are4 0.95%, 1.22% and 1.59%, we see that we need to deal
with the uncertainty associated with both longevity trends and
unsystematic longevity risk.

4. Securitizing longevity exposures

We now consider the problem of transferring longevity
exposures to the capital markets. We assume that there is a single
riskless asset yielding an interest rate normalized to zero and that
there is a market populated by a large number of risk-neutral
investors that have no access to the information carried by X .
The holder of the longevity exposure is also risk neutral, but

2 An index based on the mortality experience in this market was developed by
Goldman Sachs in 2007: see http://www.qxx-index.com.
3 Projections based on CMI improvement factors applied to the PMA92mortality
table at the beginning of 2008: see http://www.actuaries.org.uk/knowledge/cmi.
4 Estimates for England and Wales, based on annual death probabili-
ties over the period 1841–2002 from the Human Mortality Database: see
http://www.mortality.org.

http://www.qxx-index.com
http://www.actuaries.org.uk/knowledge/cmi
http://www.mortality.org
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Fig. 1. CMI forecasts for death probabilities at ages 65, 70 and 75 over 2008–2030:
short-cohort (dotted), medium-cohort (solid) and long-cohort (dashed) forecast.
The interval [qmin, qmax] provides an example for the support of the private
valuation of the death rate relative to age 75 in 2013.

discounts future cashflows at a positive rate, because of solvency
requirements or to reflect the opportunity cost of alternative
investment opportunities. This provides an incentive to securitize
the exposure in exchange for cash.
Suppose that an infinitely divisible riskless asset α ≥ 0 backs a

promised payment that depends on the proportion of survivors in a
given population at some future date T . The final cashflow is given
by the difference between the value of the asset and the value of
the exposure (which we denote below as the net exposure),

α − S = (α − 1)+ D. (4.1)

Denoting by δ ∈ (0, 1) the issuer’s discount factor over [0, T ],
her valuation of cashflow (4.1) yields δE [α − S], which is lower
than the value E [α − S] she would place on (4.1) in the absence of
holding costs. On the other hand, the access to extra information
allows the issuer to formulate a private valuation of the net
exposure equal to

δE [α − S|X] = δ(α − p(X)) = δ(α − 1+ q(X)). (4.2)

The incentive to securitize the net exposure by issuing a security
with a terminal payoff proportional to α−S can then be quantified
by the privately assessed holding cost (1−δ)(α−p(X)).We assume
α ≥ pmax, so that we can think of (4.2) as an expected surplus
(the extension to the case of a deficit or a pure liability transfer
is discussed after Proposition 4.2 below).
A securitization transaction involves the following steps: (i)

once the private signal X is observed, the issuer computes (4.2);
(ii) anticipating an arbitrary market demand P for the security, the
issuer chooses a fraction γ ∈ [0, 1] of the net exposure to supply
to the market; (iii) at a later time T , the realized cashflows from
(4.1) are revealed to both the issuer and investors.
By an arbitrary market demand, we mean a bounded measur-

able function P from [0, 1] toR+. For a fixed securitization fraction
γ ∈ [0, 1], P(γ ) represents the market price of α− S perceived by
investors when the issuer retains (1− γ ) of the net exposure. For
given outcome x of X and demand schedule P , the issuer chooses
the optimal fraction to securitize by maximizing her private valu-
ation of the final cashflows originating from the transaction. These
are given by the discounted value of the retained net exposure plus
any securitization payoff:

E [δ(1− γ )(α − S)+ γ P(γ )|X = x]

= δ(α − p(x))+ γ [P(γ )− δ(α − p(x))] . (4.3)
se
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Fig. 2. Securitization payoff (4.4) and securitization fraction as a function of the
private valuation of the net exposure. The subdifferential of Π is −δΓ . The plot
is based on the parameter values α = 1 and δ = 0.9, so that α − p(X) = q(X)
represents the one-year death rate for age 75 in year 2009, with qmin coinciding
with the CMI long-cohort forecast.

The optimal fraction can then be found by maximizing the
securitization payoff,

Π(e) = sup
γ∈[0,1]

γ [P(γ )− δe] , (4.4)

with e = α − p(x), so that the ex-ante expected payoff resulting
from the securitization transaction is given by E [Π(α − p(X))].
The domain of the payoff, Π , is represented by the outcomes

of the issuer’s private valuation, e. We would like to express the
optimal securitization fraction supplied to themarket as a function
of the private valuation, denoted by Γ : [α − pmax, α − pmin] →
[0, 1]. The following standard proposition characterizes both Π
and Γ for an arbitrary demand schedule P:

Proposition 4.1. For any demand function P, assume that the issuer
determines the optimal fraction of the net exposure to securitize by
solving problem (4.4). If Γ (α − p(x)) solves (4.4) uniquely for each
outcome x of X, then

(i) the issuer’s payoff,Π , is nonincreasing and convex in the private
valuation of the net exposure;

(ii) the securitization fraction, Γ , is nonincreasing in the private
valuation of the net exposure.

The greater the severity of longevity risk indicated by the
issuer’s private valuation, the greater the fraction of the longevity
exposure the issuer will wish to securitize. This is illustrated in
Fig. 2, where the slope of Π is increasing in the private valuation
of the net exposure, α − p(X). From (4.4), we see that, if Π is
differentiable, its differential is −δΓ , so that the securitization
fractionmust risewhen there is a lower private valuation of the net
exposure to ensure that Π is convex. The intuition is that a lower
private valuation of cashflow (4.1) makes retention relatively less
valuable and hence securitization relatively more valuable.
Although P has been taken to be arbitrarily given, one would

expect the demand schedule to be downward sloping, because
investors cannot observeX and face a ‘lemons’ problem. If investors
rationally anticipate that the amount of longevity exposure put up
for sale is increasing in the private valuation of longevity risk, their
demand for the security would decrease in response to an increase
in the securitization fraction. This is illustrated in Fig. 3.
While the above considerations are intuitive, Proposition 4.1

does not provide insights into how P and Γ might arise
endogenously in equilibrium. To explore this issue, we use a
signalling model of Walrasian market equilibrium, as in Gale
(1992) andDeMarzo andDuffie (1999). Because the retention costs
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faced by the issuer are assumed to be publicly known, retention
can be used as a credible signal to ‘prove’ the quality of cashflow
(4.1) to themarket. Conditional on X , the issuer computes p(X) and
puts up for sale a fraction Γ (α − p(X)) of the net exposure. The
uninformed agents then bid for the security using Γ to infer the
level of longevity risk associated with the exposure. In a rational
expectations equilibrium, their demand function satisfies

P(Γ (α − p(X))) = E [α − p(X)|Γ (α − p(X))] , (4.5)

and the signalling game results in a unique equilibrium (P∗,Γ ∗)
characterized in the following proposition.

Proposition 4.2. Consider the net exposure (4.1), with α > pmax.
The outcome of the signalling game is a unique separating equilibrium
(P∗,Γ ∗), satisfying

P∗(Γ ∗(α − p(X))) = α − p(X), (4.6)

and admitting the explicit representation

Γ ∗(α − p(X)) =
(
α − p(X)
α − pmax

) 1
δ−1

P∗(γ ) = γ δ−1
(
α − pmax

)
, 0 ≤ γ ≤ 1.

(4.7)

The equilibrium securitization payoff to the issuer is then given by

Π(α − p(X)) = (1− δ)
(
α − pmax

)
Γ ∗(α − p(X))δ. (4.8)

By letting pmax increase towards α, we can cover the case in which
the private valuation implies that the issuer expects the asset α
in (4.1) to be fully utilized in meeting the longevity exposure. The
limiting optimal securitization fraction is 1 for p(x) = α and 0 for
any p(x) ∈ [pmin, α).
The above proposition provides a useful benchmark for

understanding the effects of asymmetric information on the
demand for and liquidity of longevity exposures. From (4.7), we
see that a fundamental driver of investors’ demand is the worst-
case private valuation α − pmax, irrespective of the distribution of
X . If p(X) = pmax, it is optimal for the issuer to securitize the entire
net exposure in order to obtain

Π(α − pmax) = (1− δ)(α − pmax), (4.9)

since Γ ∗(α − pmax) = 1 in this case. Whenever the realized
private valuation p(x) is below theworst-case valuation, the issuer
retains a fraction of the exposure to signal her private assessment
of longevity risk, and the payoff from securitization is lower than
the full holding cost which equals (4.9). The issuer could always
obtain (1 − δ)E [α − S] in the case of symmetric information, but
in the presence of asymmetric information, the issuer will have to
incur a securitization cost that in expectation is at least as high as

(1− δ)E
[
(α − S)−

(
α − pmax

)]
= (1− δ)

(
pmax − E[p(X)]

)
. (4.10)

Another way of viewing asymmetric information costs, is to
examine off-equilibrium paths.5 As a result of the existence of
a separating equilibrium, we know that the optimal transaction
always involves a partial exchange of the exposure at a fair price,
irrespective of the realized private valuation p(x). When p(x) <
pmax, the holder of the exposure incurs the cost associated with
retaining a fraction (1−γ ∗) of the exposure. If shewere to transfer
a fraction γ higher than γ ∗, investors would infer that the severity
of longevity risk is higher, no matter what the issuer’s private
valuation is. As a result, they would demand a premium to take
on the exposure given by P∗(γ ∗)− P∗(γ ).
We note that inΓ ∗ the following ratio plays a fundamental role:

α − p(X)
α − pmax

. (4.11)

Expression (4.11) provides a simple measure of the degree
of uncertainty associated with the trend component in (3.1).
When the fact that X is private is taken into account, the
ratio also represents the sensitivity of the exposure to private
information (see DeMarzo and Duffie, 1999, Proposition 4), since
it compares the random outcome of the private valuation to
the worst possible valuation. Hence, Proposition 4.2 shows how
trend uncertainty combines with asymmetric information in
determining either the equilibrium retention levels or the risk
premia demanded by investors in a longevity risk transfer.
The abovemodel can be extended to the situation in which α <

pmax, i.e. the worst-case private valuation results in an expected
deficit. To illustrate how this can be done, consider for example
the case of α = 0 in (4.1), implying that we are transferring
only the liability S to the capital markets, not the assets. Retention
costs are now captured by a discount factor δ > 1, i.e. the issuer
discounts liabilities at a rate lower than the risk-free rate (which
is zero in our setting). We then allow the demand schedule P
to take negative values, to reflect the fact that investors would
be willing to take over a fraction γ of the liability in exchange
for receiving a premium (instead of making a payment) equal to
γ P(γ ) from the holder of the liability. Once these changes are
enforced, expressions (4.7) and (4.8) in Proposition 4.2 can be
directly applied to pure longevity risk transfers. The more general
case when (4.2) could result in an expected deficit or expected
surplus, depending on the private valuation, can be covered by
introducing a discount factor that is a function of α − p(X).
To give an idea of the practical implications of Proposition 4.2,

we consider the special case of α = 1, so that we are actually
transferring the random death rate D to the capital markets,
exactly as in mortality forwards and swaps6 recently marketed by
major investment banks (e.g., the q-forward contracts considered
in Coughlan et al., 2007). In this case, the ratio (4.11) reduces to
q(X)/qmin.

5 We have not discussed the issue of out-of-equilibrium beliefs, which lead to
multiple equilibria in signalling models. We note that Proposition 4.2 gives the
unique equilibrium satisfying standard restrictions on off-equilibrium beliefs, as
discussed in DeMarzo and Duffie (1999).
6 Strictly speaking, our setup applies to fully-funded or fully-collateralized
transactions in these instruments.
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Fig. 4. Securitization fraction Γ ∗ for δ = 0.90 (solid line) and δ = 0.95 (dashed
line) as a function of q(x)/qmin , and values of the ratio for ages 65, 70 and 75 (dotted
lines).

In Fig. 4, we plot Γ ∗ for different values of the ratio and for
δ equal to 90% and 95%. As expected, the securitization fraction
is higher when δ is lower, since retention involves a higher cost
and hence is a more credible signal. We consider one-year death
rates for ages 65, 70 and 75 in 2013 (five years from the assumed
transaction year 2008, i.e. z = 4 and T = 5 in the notation
of Section 2). The values δ = 0.90 and δ = 0.95 correspond
in this case to annualized holding costs of approximately 2% and
1%, respectively. For the three ages, we assume that X makes
the worst-case private valuation qmin coincide with the midpoint
between themedium-cohort and the long-cohort forecast. In Fig. 4,
we plot the ratios q(x)/qmin corresponding to the event {X = x}
such that the private valuation coincides with the medium-cohort
forecast (the values of the ratio are 101.02% for age 65, 102.96% for
age 70, and 105.26% for age 75). We see that the higher parameter
uncertainty associated with higher ages increases the potential
cost of asymmetric information, simply because the support of the
distribution of the private valuations widens. The effective cost,
however, depends on the discount factor δ, which is likely to vary
depending on the relative contribution of the different ages to the
capital provisions required by exposure (4.1).
To emphasize the role of the risk-free cashflows in the longevity

risk transfer (i.e., those generated by the backing assets), we
examine the equilibrium retention levels for ages 65 and 70 when
the backing assets are increased by 2.04%. The case α = 1.0204
corresponds to a level at which the retention for age 70 is equal to
that for age 65 when α = 1. Fig. 5 plots the results, from which
it is apparent that the increase in the backing assets generates
a substantial increase in the optimal securitization fraction for
both ages. The reason is that the ratio (4.11) affecting liquidity
decreases quite rapidly as α increases. This means that the effect
of asymmetric information is diluted when longevity exposures
are bundled with other risks, as happens when entire books of
liabilities and their backing assets are securitized. Recent evidence
from the UK confirms this: bulk annuity buyouts (i.e., transfers
of books of longevity-linked pension liabilities together with the
pension fund assets) have been much more significant than pure
longevity risk transfers, because of the huge risk premia demanded
by investors in exchange for accepting these transfers.7

7 The general sentiment is that longevity solutions are currently ‘‘very
expensive’’, if not ‘‘outrageously expensive’’. Mark Wood, CEO of Paternoster, the
first of the new pension buyout firms established in the UK in 2006, says ‘‘We quote
for mortality only buyouts [insurance against people living longer than expected],
but we tend to find that when people want a quote for a mortality buyout, they end
up comparing it to a bulk buyout [a complete buyout of all pension liabilities] and
go for that instead’’ (‘Paying for a longer life’, Financial Times, June 1, 2008).
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Fig. 5. Securitization fraction Γ ∗ as a function of δ for ages 65 (dashed) and 70
(solid), when α = 1 and α = 1.021 (circles).

5. Tranching longevity exposures

While Proposition 4.2 is useful for understanding the effects of
asymmetric information on the liquidity of longevity exposures, it
does little to help improve the current design of longevity-linked
securities. We now consider the possibility of manufacturing
a derivative contract written on cashflow (4.1), rather than
transferring the exposure directly to capital markets as in
a securitization. Under the assumption of risk-neutrality, the
residual risks ε and ε in (3.1) and (3.2) have so far played no role
in our analysis, but will become crucial in the present context.
Throughout this section, we focus on the case α = 1 and securities
written on D. Equivalent results can be obtained for the more
general setup of Section 3.
We consider limited liability contracts with monotone payoffs.

A contract design is a nondecreasing functionφ acting on the range
of D such that φ(d) ≤ d for every d ∈ [0, 1]. The following steps
are involved: (i) before observing the outcome of X , the holder
of the exposure designs the contract; (ii) after X is observed, the
contract is put up for sale and passed on to investors according
to the signalling game described in Section 4; (iii) at maturity T ,
the final payoff is revealed to both the seller and the investors. By
steps (i)–(ii), investors cannot make inference on the severity of
longevity risk based on the design of the contract.
Setting C := φ(D), we wish to maximize the expected payoff to

the seller over all possible contracts C . As in the previous section,
given an arbitrary demand PC for contract C , the private valuation
of the final cashflows involves any proceeds from selling a fraction
γ of contract C , plus the expected present value of the residual
exposure D−C and of the cashflows from the unsold fraction of C:

E
[
γ PC (γ )+ δ(D− C)+ δ(1− γ )C |X

]
= δq(X)+ γ

[
PC (γ )− δc(X)

]
. (5.1)

Hence, the results of the previous section apply and the
equilibrium payoff ΠC takes the same form as (4.8). To simplify
notation, we drop superscript C fromΠ and P .
Since X is not known at the time when φ is chosen, we need to

solve

V (D) = max
C
E [Π(c(X))] , (5.2)

where c(x) := E[C |X = x] represents the conditional private
valuation of contract C . What does it mean to optimize over all
possible contract designs? From Proposition 4.2, the equilibrium
price of the contract depends on φ only through the worst-case
private valuation cmin := minx c(x), while the fraction of the
longevity exposure hedged depends on the sensitivity of φ to the
private information, as measured by the ratio c(X)/cmin. Hence,
for each fixed cmin, problem (5.2) identifies the contract that
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minimizes the sensitivity ratio among all those yielding a worst-
case cmin. If all possible contract designs were to achieve their
worst-case at a common x0 ∈ Rl, the solution would drastically
simplify. This is shown in the following proposition.

Proposition 5.1. Assume that q(X) is continuous and that ε (or ε)
is log-concave. Then, for every contract C, we have cmin = c(x0), for
some x0 ∈ Rl, and the optimal contract design is given by

C∗ = min(q∗,D) = q∗ −max(0, q∗ − D), (5.3)

for suitable tranching level q∗.

At maturity, the contract pays the amount q∗ to the investor
when the realized death rate exceeds the tranching level. However,
the amount is reduced when the realized death rate falls below
the tranching level, thereby capping the exposure of the contract
seller to a survival rate of p∗ = 1− q∗. The seller therefore has an
effective hedge against longevity risk. In turn, one can think of the
investor as holding a riskless bond issued by the seller and paying
q∗ atmaturity, but also short a put optionwhich is held by the seller
andwhichwill expirewith amaturity value of q∗−D if the realized
death rate falls below the tranching level.
The log-concavity assumption requires that the cumulative

distribution function of ε (or ε) is log-concave, a property satisfied
in a number of interesting cases8 (see Karlin, 1968, for an
overview). Continuity of q(X) and log-concavity of ε (or ε) ensure
that we can find an outcome x0 of X that is a uniform worst case
for D, and hence for C (see the Appendix for details). The optimal
design problem then simplifies because we can replace problem
(5.2) with the simpler problem of optimizing over all possible
tranching levels. At the optimum, given by

{q∗} = argmax
k
E [Π (E [min(k,D)|X])] ,

the marginal benefit to the seller from making the contract more
attractive to the investor by adding further positive cashflows
(i.e., offering a higher q∗) is at most zero. When q∗ < qmax, it is
possible to tranche the exposure to create a derivative contract
written on D. Otherwise, the optimal contract transfers the entire
exposure to the capital markets, and the signalling game results in
the kind of arrangement that is common in annuity reinsurance,
namely a ‘quota share’ (i.e., a contract whereby the liabilities
arising from a portfolio are shared in fixed proportions between
the annuity provider and the reinsurer).
Another way of understanding Proposition 5.1 is to rewrite

expression (5.3) as

C∗ = D−max(0,D− q∗) = q∗ −max(0, S − p∗).

The first equality shows that the seller is transferring the random
death rate D to investors in exchange for receiving a call option
on the realized death rate, with strike level q∗, so that the call will
expire in the money if at maturity D > q∗. The seller recognises
that the exposure could turn out to be less risky in the end than
originally anticipated (for example, if the outcome of D is some
d > E[D]) and does not want to pay investors more than q∗
to hedge her longevity risk. The second equality shows that the
seller promises to pay investors q∗ in exchange for a call option
on survivorship, with strike price p∗ := 1 − q∗. The intuition is
that p∗ measures the optimal level of protection against longevity
risk that the seller is willing to obtain from the market, given the
costs of capital requirements and asymmetric information. Hence,
Proposition 5.1 provides a framework for determining the optimal

8 The property is satisfied, for example, by the Uniform, Normal, Exponential, and
Extreme Value distributions and is preserved under truncation and convolution.
strike levels for mortality options in the presence of differential
information about longevity trends by holders and investors.
We note that an optimal ‘debt contract’ such as (5.3) was

obtained by Innes (1990) in a ‘hidden effort’ (or moral hazard)
model under the monotone likelihood ratio property9 and
by DeMarzo and Duffie (1999) in a ‘hidden information’ (or
adverse selection) model under the more general condition of the
existence of a uniform worst case. Related issues are studied in
the risk sharing literature (e.g. Eeckhoudt et al., 2005; Dana and
Scarsini, 2007), where the tranching level could be interpreted as
a deductible. While we have concentrated on identifying a single
tranche, multiple tranches could be obtained in equilibrium by
allowing for heterogeneous investors (e.g., Plantin, 2004), or by
considering the possibility of designing multiple tranches before
X is revealed (DeMarzo, 2005, explores this situation under the
monotone likelihood ratio property).
In analogy with expression (4.9) above, the maximum payoff

the seller can expect to obtain from selling a contract C is (1 −
δ)cmin, i.e. the cost from holding the contract in the worst case.
Since φ(d) ≤ d for all d ∈ [0, 1], we have

c(X) = E [φ(D)|X] ≤ E [D|X] = q(X),

which yields cmin ≤ qmin. Using the fact thatΠ is decreasing in the
private valuation, we can write

Π(c(X)) ≤ Π(cmin) = (1− δ)cmin ≤ (1− δ)qmin, (5.4)

showing that the maximum payoff that can be achieved is lower
than the one given in (4.9). The reason is that by issuing contract
C , we allow the residual risk to enter into the picture, and hence
an additional risk premium payable to investors materializes in
the transaction. Despite agents being risk neutral, a positive risk
premium arises endogenously through the contract design on
account of the nonlinear payoffs of the optimal contract.
If the seller observes c(x) > cmin, she will retain a fraction of

the contract, in order to signal the lower severity of longevity risk,
and hence reduce her payoff from the transaction. Still, the ex-ante
expected payoff associated with C might be higher than the one
delivered by securitizing the exposure D directly. Contract (5.3)
therefore optimally resolves (ex-ante) the trade-off between the
costs associated with residual risk, asymmetric information and
capital requirements.
As in the previous section, a useful benchmark is the case

in which there is no asymmetric information and the seller can
expect a transaction payoff equal to (1 − δ)E[C]. By analogy with
expression (4.10), we can use (5.4) to compute

(1− δ)E
[
C − cmin

]
= (1− δ)

(
E[c(X)] − cmin

)
, (5.5)

the minimum cost the seller can expect to incur when selling C if
only residual risk is taken into account.
To emphasize these two dimensions affecting the contract

design, we depict in Fig. 6 the densities for the one-year death
rate D = q(X) + ε of a 75-year-old individual in year 2009 and
year 2013, as seen from the beginning of year 2008. Clearly, the
longer the time horizon, the greater the variance of the death rate.
The solid lines on the plane (x, y) represent the CMI short-cohort
and long-cohort forecasts over the period 2008–2013. The worst-
case private valuation qmin, in this case, is assumed to coincidewith
the long-cohort forecast. In the setup in the previous section, the
density curves were of no interest to either side of the transaction,
and had no impact on the equilibrium results. When nonlinear
contracts are written instead, the situation changes dramatically

9 In our setting, this means imposing the extra restriction that q(x) is monotone
in x. This is usually a strong restriction for multifactor stochastic mortality models.
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Fig. 6. Densities of the death rate of a 75-year old in 2009 and 2013 viewed from
2008. The solid lines qmax and qmin represent, respectively, the CMI short-cohort
and long-cohort forecasts for age 75 over 2008–2013. The lines indicated by q∗ and
q represent, respectively, the optimal tranching level and a suboptimal tranching
level over 2008–2013.
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Fig. 7. Optimality of the tranching/strike level q∗ in Fig. 6.

and the entire distribution of D (jointly determined by q(X) and ε)
enters the picture. This can be seen by comparing the two lines
representing the strike levels for a suboptimal contract (strike
q) and for the optimal contract (strike q∗). The optimal contract
maximizes the payoff to the seller and optimally trades off the level
of protection against longevity risk and the cost of doing so, as can
be seen from Fig. 7. The suboptimal contract (strike q) is cheaper,
but provides too high a cap on survival rates (too low a floor on
death rates).
To assess the practical implications of Proposition 5.1, we

consider the case of an exposureD = q(X)+ε, where the one-year
death rate refers to individuals aged 70 in 2013 (5 years from the
assumed transaction year 2008), with X such that qmin corresponds
to the long-cohort CMI estimate and q(X) is uniformly distributed
with lower bound qmin and mean coinciding with the medium-
cohort CMI forecast. The residual risk component is distributed
as a truncated Normal with mean 0, variance σ 2, and with the
truncation ensuring that D takes values in [0, 1].
Fig. 8 reports the expected payoff for different strike levels and

different volatility parameters σ . For low values of σ (cases a, b,
and c), the relative weight of residual risk with respect to the
cost of asymmetric information means that it is optimal for the
seller to get protection against longevity risk at an optimal level
q∗ < qmin. The lower the residual risk, themore q∗ approaches qmin,
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Fig. 8. Ex-ante securitization payoff for δ = 0.90 and different values for the
standard deviation of ε: σ = 0.0001 (0.885% of E[D]) in case a, σ = 0.0010 (8.85%
of E[D]) in case b, σ = 0.0020 (17.71% of E[D]) in case c, σ = 0.0050 (44.27% of
E[D]) in case d.

since it becomes easier to design a contract with the conditional
private valuation close to the level yielding the maximum payoff
computed in (5.4). In the case of no residual risk (ε = 0), the
strike level coincides with qmin. For high enough residual risk, the
contract issued is so risky to investors (i.e., they are willing to
accept only a very low tranching level q∗ to assume the risk, one
which is suboptimally low for the seller), that the seller’s expected
payoff might be higher by securitizing the entire net exposure
rather than tranching it (case d).

6. Pooling multiple exposures

Extending the analysis of the previous sections to multiple ex-
posures is relevant for two main reasons. First, if a market for
longevity-linked securities were to take off, an important role
would be played by institutions willing to take on (i.e., aggregate)
longevity exposures for later repackaging and selling on to in-
vestors. Second, while a book of liabilities is typically regarded as a
single liability, despite including several cohorts of policyholders,
the holder might be better off securitizing only those exposures
incurring high retention costs or likely to yield a higher securitiza-
tion payoff. Similarly, some hedge suppliers find that aggregation
of mortality rates by age ranges (‘age bucketing’) make mortality
derivatives more attractive by reducing basis risk and enhancing
the hedging potential of the instrument (see, e.g., Coughlan et al.,
2008). Here we show that age bucketing can also reduce the costs
associated with asymmetric information.
We assume that the seller has n longevity exposures such as the

one formalized in (3.1),10 i.e.

Di = qi(X)+ εi, (i = 1, . . . , n) (6.1)

where qi(X) = E
[
Di|X

]
represents a conditional unbiased

estimate of the trend component of Di, given the private signal X .
We further require the following:

Assumption 6.1. For each i = 1, . . . , n, the conditional distri-
bution of qi(X), given the private valuations (q1(X), . . . , qi−1(X),
qi+1(X), . . . , qn(X)), is continuous andhas support [qi,min, qi,max]⊆
[0, 1].

10 The results of this section do not apply to the alternative representation (3.2).
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The above implies that there remains uncertainty with respect
to (say) qi(X), i.e., qi,min < qi,max, no matter what information
is available about any other qj(X), with j 6= i. Also, each lower
bound qi,min is independent of the available information on the
other exposures.
If the holder were to securitize the exposures separately, she

could use Proposition 4.2 to determine the equilibrium payoff (4.8)
for each individual exposure, after observing the outcome of X .
Note that Π depends on the distribution of the private valuation
qi(X) only through the worst case qi,min. This means that even if
investors were to learn something about the distribution of qi(X)
from prior sales of Dj (j 6= i), the equilibriumwould be unchanged.
Similarly, any information onX acquired by the seller before selling
Di would have no impact on theworst case qi,min, which is constant
by Assumption 6.1. In other words, we do not allow for learning.
Moving on to the aggregation of the exposures, the seller could

determine the equilibrium payoff by treating
∑n
i=1 D

i as a single
exposure. Convexity ofΠ immediately reveals that selling the pool
is suboptimal, since

n∑
i=1

Π(qi(X)) ≥ Π

(
n∑
i=1

qi(X)

)
.

The intuition is that the seller holds an option to choose the
retention levels for the individual exposures, whichmeans that her
payoff is convex in the privately assessed severity of longevity risk
(see Fig. 2 for example). Hence combining low-longevity- andhigh-
longevity-risk cashflows destroys the private information on the
trend component.
On the other hand, we know that aggregation of exposures

should allow the seller to benefit from risk pooling. We therefore
examine whether the above result can be weakened by writing
a contract on the pooled cashflows, as we did in the previous
section, rather than passing them on directly to capital markets as
in securitization. We denote the average exposure by

Dn =
1
n

n∑
i=1

Di, (6.2)

and by qminn :=
1
n

∑n
i=1 q

i,min the average worst case. We do
not consider the possibility of assigning different weights to the
individual exposures, although the analysis could be extended
to that case at the price of analytical tractability. For some
nondecreasing function ψ , we define a contract on Dn by setting
Cn := ψ(Dn). As before,we denote its private valuation by cn(X) :=
E[Cn|X]. The idea is to find conditions under which the expected
payoff per exposure to the issuer is higher under pooling than
under individual sale. Using the fact that Π is homogeneous of
degree one, this happens when

1
n
V

(∑
i

Di
)
= V (Dn) ≥

1
n

n∑
i=1

V (Di). (6.3)

As in DeMarzo (2005), the trade-off between diversification
benefits and the loss of private information from pooling can be
optimally resolved as follows:

Proposition 6.2. For i = 1, . . . , n assume that each exposure Di has
worst case qi,min > 0, and that the (εi) are log-concave i.i.d. and
independent of (qi(X)). Then, it is optimal to pool and tranche the
exposures, and the optimal contract is given by

C∗ = min(q∗n,Dn) = q
∗

n −max(0, q
∗

n − Dn).

Consider now a sequence of exposures D1,D2, . . . satisfying the above
assumptions and having bounded second moments. Assume that
limn→∞ qminn = qmin exists. Then, the limiting ex-ante securitization
payoff is given by

lim
n→∞

V (Dn) = (1− δ)qmin, (6.4)

with limiting tranching level limn→∞ q∗n = q
min.

Interpretation of the optimal strike level q∗n is as in the previous
section. As expected, the benefit from pooling is increasing in the
size of the pool. In the limit, the optimal contract is the one which
is least insensitive to both private information and residual risk, as
we now show. By following the same steps as in (5.4), we canwrite

V (Dn) = E
[
Π(c∗n (X))

]
≤ (1− δ)c∗,minn ≤ (1− δ)qminn , (6.5)

where c∗,minn := minx c∗n (x). The term on the right-hand side
represents the average holding cost of the n exposures. By taking
limits on both sides of (6.5) and using (6.4), we then see that
limn→∞ c∗,minn = qmin. This shows that pooling and tranching drive
the securitization cost to the level computed in (4.10), the lowest
possible cost associated with asymmetric information. Hence the
additional cost associated with residual risk vanishes in a large
enough pool, provided the assumptions of Proposition 6.2 are
satisfied.
In the previous section, we saw (e.g., Fig. 8) that tranching

might be suboptimal when the residual risk is very high. The
diversification benefits arising from pooling different exposures
can be used to make tranching optimal. This is important when
the seller writes contracts on volatile exposures, such as mortality
rates relating to high ages or to small annuity books. For the
opposite casewhen residual risk is undiversifiable, the information
loss effect prevails and the following result holds:

Proposition 6.3. If εi = ε for all i, then it is optimal to securitize the
exposures individually.

The above proposition applies to caseswhere ε relates to events
that affect all members of the pool equally, such as a catastrophic
mortality event (e.g., an avian flu pandemic) or the development of
a cure for cancer.
In Assumption 6.1 and Proposition 6.2, we have imposed

no restriction on the dependence structure of the qi(X)’s, apart
from not being perfectly correlated (for otherwise the conditional
support of qi(X), given the other private valuations, would collapse
to a singleton). The following proposition helps us understand the
role played by dependence in shaping the optimal contract (6.2):

Proposition 6.4. Set D′n = q
′(X) + 1

n

∑n
i=1 ε

i, with q′(X) := 1
n∑n

i=1 q
i′(X). If q′(X) is a mean-preserving spread of q(X) := 1

n∑n
i=1 q

i(X), then V (D′n) ≥ V (Dn).

Hence, pooling and tranching are more valuable when the
private information on the severity of longevity risk affects
the entire pool rather than being specific to each individual
exposure. This is the case of death rates relating to individuals of
different ages, but belonging to the same population, or relating to
different cohorts of policyholders, but with similar underwriting
characteristics. The above result may also justify the higher
liquidity of mortality derivatives based on age bucketing.
As a practical example, consider several exposuresDi = qi(X)+

εi (i = 1, . . . , n) modelled as in the example at the end of the
previous section. For simplicity, we assume that each qi(X) has the
same lower bound qi,min = qmin. Fig. 9 plots the expected payoff
per exposure that can be obtained by writing contracts on pools
of different sizes. As n increases, the payoff per exposure increases
toward (1− δ)qmin and the optimal strike level q∗n becomes closer
to qmin.
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n = 1 in case a, n = 5 in case b, n = 10 in case c and n = 20 in case d. As n grows
larger, the optimal tranching level approaches qmin (dashed).
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Fig. 10. Expected payoff V (D20) (solid lines) and 1
20

∑20
i=1 V (D

i) (dashed line) for
net exposures of type qi(X)+ εi (case a) and qi(X)+ ε (case b), with the qi(X)’s i.i.d.
uniformly distributed as in Section 5, and the εi ’s and ε i.i.d. truncated Normal with
mean zero and standard deviation 0.001.

To emphasize the role played by residual risk, we compare in
Fig. 10 the expected payoffs in the case of i.i.d. residual risks with
those relative to the case of undiversifiable residual risk (εi = ε for
all i). If residual risk is diversifiable, the holder achieves not only a
higher securitization payoff by pooling and tranching, but also a
higher protection level against longevity risk. When exposures are
tranched separately instead, the resulting payoff is unaffected by
whether the residual risk is diversifiable or undiversifiable.
Finally, in Fig. 11, we provide an illustration of Proposition 6.4,

by considering a mean-preserving spread for the average trend
component.When the private information on individual exposures
is positively correlated, the payoff from pooling and tranching
increases and the optimal contract results in a higher degree of
protection against longevity risk for the seller.

7. Intensities of mortality

The framework of Section 3 can be easily recast in the familiar
setting of stochastic intensities ofmortality. Consider, for example,
the survival rate S defined in (2.1). Set z = 0 and denote
by p(Y ) the trend component of S. Assume that the random
times τ 1, . . . , τ n are conditionally Poisson over [0, T ], given the
information generated by (µt)t∈[0,T ], a process representing the
common intensity ofmortality of the individuals in the population.
We can then write (e.g., Brémaud, 1981)

E [S] = E
[
e−

∫ T
0 µsds

]
. (7.1)

Consider now the case whereµ can be expressed asµ = µ̃+Z ,
where (µ̃t)t∈[0,T ] is the intensity of a reference population, while
x 10–4

b

a

b

a

9

ex
pe

ct
ed

 p
ay

of
f t

o 
se

lle
r

8

10

0.0092 0.0094 0.0096 0.0098 0.01 0.0102 0.0104 0.0106 0.0108

strike level

0.009 0.011

Fig. 11. Expected payoff V (D1) (dashed) and V (D5) (solid) with qi′(X) + εi (case
a) and qi(X) + εi (case b), with the qi(X)’s independent and the qi′(X)’s having
0.5 correlation. The εi ’s are i.i.d. truncated Normal with mean zero and standard
deviation 0.001.

(Zt)t∈[0,T ] is an independent adjustment process. If the dynamics
of µ̃ can be publicly estimated, while those of Z are available to the
informed agent only, we can set X = Z0, Y = (µ̃0, Z0) and obtain
an expression for the private valuation of S similar to (3.4):

p(Y ) = E[S|Y ] = E
[
e−

∫ T
0 (µ̃s+Zs)ds

∣∣∣ Y]
= E

[
e−

∫ T
0 µ̃sds|µ̃0

]
E
[
e−

∫ T
0 Zsds|Z0

]
= p̃(µ̃0)m(Z0). (7.2)

In Section 4, we allowed the holder of the longevity exposure to
transfer it to the capital markets. The following steps are involved:
(i) immediately before time 0, the seller chooses the contract de-
sign; (ii) at time 0, the seller observes Z0 and sells a fraction of the
contract to the investors based on her private valuation of the ex-
posure; (iii) at date T , the final payoff is revealed to both the seller
and the investors. If an investor were to take over the exposure at
time 0, she would be able to back out the dynamics of the signal Z
by monitoring the exposure over (0, T ]. Still, information on Z0 is
only available to the holder of the exposure before sale.
Proposition 5.1 can be used with representation S = p(Y ) + ε

(or S = p(Y ) exp(ε)) and p(Y ) given by (7.2), provided S admits
a uniform worst case. This occurs, for example, when ε (or ε) and
p̃(µ̃0) are log-concave and m(Z0) is continuous. A special case is
when µ̃ is deterministic, which means that the signal is entirely
private.

8. Conclusions

In this paper, we examined the impact of asymmetric informa-
tion and parameter uncertainty on the securitization and tranch-
ing of longevity exposures when agents are risk neutral. We first
considered the securitization of annuity-like liabilities and their
backing assets. The use of a signalling model has allowed us to
understand the optimal retention levels or risk premia that would
materialize in a transaction where investors have partial informa-
tion on longevity risk and the holder faces regulatory retention
costs. We then considered the optimal design of a derivative con-
tract written on longevity-linked cashflows, emphasizing the joint
role played by both systematic and unsystematic longevity risks.
In several interesting cases, it is optimal to tranche the exposure
or, equivalently, to transfer the liabilities in exchange for a call op-
tion on mortality rates (or a put option on survival rates). We used
the equilibriummodel to understand how the strike levels on such
options can be set to minimize the impact of asymmetric informa-
tion and maximize the option seller’s payoff. Finally, we examined
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the benefits arising from pooling and tranching several longevity
exposures. The results shed light into the way regulatory costs and
asymmetric information can shape the longevity risk premia orig-
inating from transactions in longevity-linked securities. Our anal-
ysis provides a useful theoretical basis for designing strategies for
securitizing, tranching and pooling of longevity exposures as well
as designing option contracts on these exposures.
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Appendix. Proofs

Proof of Proposition 4.1. (i) For fixed δ and γ , the function
π(p) = γ (P(γ ) − δ(α − p)) is increasing affine. Hence Π
is the upper envelope of a family of affine functions decreasing
in the private valuation of (4.1). As a result, Π is nonincreasing
and convex in the private valuation. (ii) The subdifferential of Π
contains −δΓ . Hence, Γ is nonincreasing in the private valuation
of the net exposure. �

Proof of Proposition 4.2. We can first verify that the separation
property (4.6) holds for Γ ∗ defined by (4.7). Since the latter is
decreasing in the private valuation, by (4.5) we have:

P∗(Γ ∗(α − p(X))) = E
[
α − p(X)|Γ ∗(α − p(X))

]
= α − E [p(X)|p(X)] = α − p(X).

Denote byU(e, P(γ ), γ ) := γ (P(γ )−δe) the securitization payoff
to the holder when the private valuation of the net exposure is e =
α−p(x). It can be verified thatU satisfies the conditions ofMailath
(1987, Theorem 3). In particular, the single crossing property is
satisfied, in that the map U3(·, P(γ ), γ )/U2(·, P(γ ), γ ) is strictly
monotone (with Uh denoting partial derivative with respect to the
hth argument). Hence there exists a unique separating equilibrium
(P∗,Γ ∗), with P∗ differentiable. The latter can be found by
using the first-order conditions for problem (4.4), yielding the
differential equation{
γ P ′(γ )+ P(γ )− δe = 0
P(1) = α − pmax.

By the separation property, we can replace e with P(γ ) and
solve the above to obtain P∗(γ ) = γ δ−1(α − pmax). Finally, the
optimal Γ ∗ can be found by inverting P∗ and using once again the
separation property:

Γ ∗(α − p(X)) =
(
P∗(γ )
α − pmax

) 1
δ−1

=

(
α − p(X)
α − pmax

) 1
δ−1

. �
Proof of Proposition 5.1. We begin by giving a definition of the
uniform worst-case property, introduced by DeMarzo and Duffie
(1999) and related to the concept of uniform conditional stochastic
order (Whitt, 1980, 1982). Letting λx denote the conditional law of
D, given an outcome x of X , we define:

Definition A.1. An outcome x0 ∈ Rl of X is a ‘uniform worst case’
for D if, for every subinterval B of [0, 1] and every other outcome
x of X , we have that λx(B) > 0 implies λx0(B) > 0 and that,
conditionally on B, λx stochastically dominates λx0 .

Since q(X) is continuous, and ε (or ε) is log-concave, x0 is a
uniformworst case for C (e.g., Keilson and Sumita, 1982). Denoting
by lx,x0 the Radon–Nikodym derivative of λx with respect to λx0 ,
by the definition of uniform worst case we have that lx,x0 exists
and can be chosen to be increasing. As a result, for any contract
C = φ(D) (with φ nondecreasing and satisfying φ(d) ≤ d on
[0, 1]), the following holds:

min
x
E [C |X = x] = min

x

∫ 1

0
φ(u) λx(du)

= min
x

∫ 1

0
φ(u) lx,x0(u) λx0(du)

=

∫ 1

0
φ(u) λx0(du) = E [C |X = x0] =: c

min.

From here the proof is essentially as in DeMarzo and Duffie
(1999, Proposition 10). We cover it for completeness. Consider the
contract C = min(k,D). Since both c(x) = E [C |X = x] and cmin
are continuous in k, we can choose k = k∗ such that cmin = c(x).
For some nondecreasing function ψ satisfying ψ(d) ≤ d on [0, 1],
consider another contract Ĉ = ψ(D) and set ĉ(x) = E[Ĉ |X = x].
Define now C̃ := Ĉ − C . Since x0 is a uniform worst case for D, we
have ĉmin = cmin and hence c̃min = 0. For each outcome x of X , we
can write

c̃(x) = E[C̃ |X = x] =
∫ 1

0
(ψ(u)− φ(u)) lx,x0(u) λx0(du).

Since φ and ψ are both nondecreasing and bounded by d for all
d ∈ [0, 1], we have that C̃ ≥ 0 if and only if D ≥ d∗ for some d∗.
From the above, we then have

c̃(x) ≥
∫ 1

0
(ψ(u)− φ(u)) lx,x0(d

∗) λx0(du)

= lx,x0(d
∗)

∫ 1

0
(ψ(u)− φ(u)) λx0(du) = lx,x0(d

∗) c̃min = 0.

As a consequence, ĉ(X) ≥ c(X) for any contract Ĉ . Since Π is
decreasing in the private valuation by Proposition 5.1(ii), we have
thatΠ(ĉ(X)) ≤ Π(c(X)) and hence

E
[
Π(ĉ(X))

]
≤ max

C
E [Π(c(X))] = V (D).

The optimal contract is then some C∗ = min(k∗,D), with the
optimal strike level k∗ given by

{k∗} = argmax
k
E [Π(E [min(k,D)|X])] . �

Proof of Proposition 6.2. See DeMarzo (2005, Theorem 2). �

Proof of Proposition 6.3. For fixed n, by Proposition 5.1, the
optimal contract written on Dn is C∗n = min(q∗n,Dn). Since the
private valuation c∗n (x) = E

[
C∗n |X = x

]
= E

[
min(q∗n, q(x)+ ε)

]
is concave in q(x) = 1

n

∑
i q
i(x), we have c∗n (x) ≥

1
n

∑
i c
i,∗(x) for
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every outcome x of X . Using the fact that the equilibrium payoff
(4.8) is decreasing and convex, we then have

Π
(
c∗n (X)

)
≤ Π

(
1
n

∑
i

c i,∗(X)

)
≤
1
n

∑
i

Π
(
c i,∗(X)

)
.

Taking the expectation,we finally obtainV (Dn) ≤ 1
n

∑
i V (D

i). �

Proof of Proposition 6.4. For each outcome x of X , we have that
c∗n (x) = E[min(q∗n, q(x) +

1
n

∑n
i=1 ε

i)] is nondecreasing and
concave in q(x). Similarly, c ′∗n (x) = E

[
min(q′∗n , q

′(x)+ 1
n

∑n
i=1 ε

i)
]

is nondecreasing and concave in q′(x). Since Π is decreasing and
convex, and q′(x) is a mean-preserving spread of q(x), we have
E[Π(c ′∗(X))] ≥ E[Π(c∗(X))] (Rothschild and Stiglitz, 1970). �
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