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A COMPUTATIONALLY EFFICIENT ALGORITHM

FOR ESTIMATING THE DISTRIBUTION OF FUTURE

ANNUITY VALUES UNDER INTEREST-RATE

AND LONGEVITY RISKS

Kevin Dowd,* David Blake,† and Andrew J. G. Cairns‡

ABSTRACT

This paper proposes a computationally efficient algorithm for quantifying the impact of interest-

rate risk and longevity risk on the distribution of annuity values in the distant future. The algorithm

simulates the state variables out to the end of the horizon period and then uses a Taylor series

approximation to compute approximate annuity values at the end of that period, thereby avoiding

a computationally expensive ‘‘simulation-within-simulation’’ problem. Illustrative results suggest

that annuity values are likely to rise considerably but are also quite uncertain. These findings have

some unpleasant implications both for defined contribution pension plans and for defined benefit

plan sponsors considering using annuities to hedge their exposure to these risks at some point in

the future.

1. INTRODUCTION

This paper examines the impact of interest-rate
risk and longevity risk on the distribution of an-
nuity values in the distant future. At first sight,
this might appear to be a rather arcane issue.
Most people do not care much about current an-
nuity values, so why would they care about pos-
sible annuity values in, say, 40 years’ time? None-
theless, we would suggest that the future values
of annuities are much more important than they
might first appear to be. One reason is suggested
by the global increase in longevity: People are liv-
ing longer than previously anticipated, and it is
natural to ask how much this is likely to cost. To
answer this question, we need some index of the
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cost of life expectancy, and a natural index is the
cost of a life annuity, that is, the expected present
value of an income steam of $1 per annum until
the buyer of the annuity dies. The cost of in-
creased longevity is then the likely increase in fu-
ture annuity values. Thus, an assessment of likely
future annuity values is a key to evaluating the
likely cost of higher longevity.

There is a second and often more personal rea-
son why we should care about future annuity
values. Consider the illustrative case of a male
currently aged 25 who is starting a defined
contribution (DC) pension plan and is planning
to retire in, say, 40 years’ time at the age of 65.
He anticipates that when he reaches that age, he
will convert his accumulated pension fund into a
life annuity to hedge his own longevity risk and
so avoid outliving his own financial resources. The
value of his retirement income will depend not
only on the value of his pension fund, but also on
the price of annuities at that time. Other things
being equal, this means that his retirement in-
come prospects will be affected by the distribu-
tion of future annuity values: The greater the dis-
persion of that distribution, the more risky his
retirement income will be. Hitherto, analyses of



238 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 15, NUMBER 2

DC plans have tended to focus on the risks facing
the member that arise from the uncertainty of
the future value of the pension fund itself; that
is, they have tended to focus on investment and
contribution risks during the accumulation stage
of the plan and, in so doing, have tended to over-
look the impact of distribution stage risks, most
notably interest rate and longevity risks, that can
affect retirement income through their impact on
annuity values. The superficially arcane issue of
the distribution of future annuity values therefore
turns out to be a key ingredient in determining
the risks associated with DC pension plans. The
same holds for defined benefit plan sponsors who
consider using annuities to hedge their exposure
to interest-rate and longevity risks at some point
in the future.

This paper investigates this issue further and
provides some illustrative results for a long-term
(40-year) horizon. As is well known, the principal
factors that determine annuity values are life-
expectancy prospects (which depend on future
mortality rates) and interest rates.1 To model fu-
ture annuity values, we therefore need a model of
future mortality rates. We also need a model of
future interest rates, since these will influence
the future price of the bonds the annuity provider
buys to make annuity payments and, in turn, the
discount rate used to value the annuity itself. The
models we use involve stochastic simulation, but
any naive attempt to use stochastic simulation
runs into a problem: If we simulate the state var-
iables out to some future horizon period T, we
then face the problem of how to obtain the future
time-T annuity values, contingent on the time-T
values of the state variables. The most obvious ap-
proach is to use stochastic simulation for this
purpose, but we would then find ourselves run-
ning ‘‘simulations within simulations’’ that can
be computationally very expensive. To operate
within feasible real-time constraints, we need to
find an alternative method to obtain the future
annuity values contingent on the outcomes of the
time-T state variables. We solve this problem us-
ing a Taylor series approximation: We simulate

1 If interest rates are low at the point of retirement, the price of the

annuity purchased will be high—equivalently the yield on the an-

nuity will be low—since the annuity provider buys bonds to make

the annuity payments and these will be expensive when interest

rates are low.

the state variables out to T, and then use the Tay-
lor series approximation to estimate the annuity
values at T as functions of the values of the state
variables.

This paper is organized as follows. Section 2
describes the stochastic mortality model used to
model longevity risk, and Section 3 outlines the
stochastic interest-rate model that we use.2 Sec-
tion 4 explains computational issues and pro-
poses a ‘‘Taylor series approximation within sim-
ulation’’ approach that allows us to estimate
future annuity values using simulated future val-
ues of the underlying state variables. Section 5
presents some illustrative results, and Section 6
concludes and elaborates on the implications of
our findings for the riskiness of DC plan retire-
ment incomes.

2. A STOCHASTIC MORTALITY MODEL

We model mortality stochastically using the
Cairns-Blake-Dowd (CBD) model described in
Cairns et al. (2006a) but with the parameteriza-
tion defined in Cairns et al. (2009). Let q(t 1 1,
x) be the realized mortality rate in year t 1 1
(that is, from time t to time t 1 1) for individuals
aged x at time t. We assume that q(t 1 1, x) is
governed by a two-factor Perks stochastic
process:

q(t 1 1, x)

5 exp[k (t 1 1) 1 k (t 1 1)(x 2 x̄)]1 2

/{1 1 exp[k (t 1 1) 1 k (t 1 1)(x 2 x̄)]},1 2

(1)

where k1(t 1 1) and k2(t 1 1) are themselves sto-
chastic processes that are measurable at time t 1

1 (see Perks 1932; Benjamin and Pollard 1993),
and is a constant that is typically set to thex̄
mean of the range of ages used to calibrate the

2 The present paper assumes that longevity and interest-rate risks are

independent of each other. We believe that this is a reasonable as-

sumption for most normal states of the world in the short run. We

recognize that there will be some extreme states—such as those as-

sociated with a global war, a pandemic, or a huge meteor hitting

Earth—where the assumption is not valid. In the long run, however,

increasing longevity, if it is associated with an increase in the length

of the working life, will increase the supply of labor relative to capital,

which, in turn, will increase the return on capital (i.e., the rate of

interest rate) relative to the wage rate.
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model. Now let k(t 1 1) 5 (k1(t 1 1), k2(t 1 1))9

and assume that k(t 1 1) is a random walk with
drift

k(t 1 1) 5 k(t) 1 m 1 CZ(t 1 1), (2)

where m is a constant 2 3 1 vector of drift param-
eters, C is a constant 2 3 2 lower triangular Cho-
leski square root matrix of the covariance matrix
V (that is, V 5 CCT), and Z(t 1 1) is a 2 3 1
vector of independent standard normal variables.
Cairns et al. (2006a, 2009) show that this model
provides a good fit to U.K. Office for National Sta-
tistics (ONS) data for English and Welsh males
over 1961–2004.

Now let S(t 1 1, x) be the survivor index at
time t 1 1 of a cohort aged x in year 0: that is,
S(t 1 1, x) is the probability, measured retro-
spectively, that an individual aged x at time 0 sur-
vives to time t. For any given x, S(0, x) 5 1 and
S(t 1 1, x) will decrease as t gets bigger and even-
tually approach 0 as t gets large. Given any path
of q(t 1 1, x) as obtained above, we then derive
a corresponding path of S(t 1 1, x) from the re-
lationship between mortality rates and the survi-
vor index:

S(t 1 1, x) 5 (1 2 q(t 1 1, x))S(t, x). (3)

Note that these survivor rates are driven off the
state variables k1(t 1 1) and k2(t 1 1). For our
purposes, we wish to simulate sets of state varia-
bles out to a future time T, and then estimate the
expectations of (3) conditional on surviving to
the specified future date and conditional on the
future values of the state variables k1(T) and
k2(T) at that date.

3. A STOCHASTIC INTEREST-RATE

MODEL

We also need a model of the interest-rate process,
and the simplest model that meets our require-
ments is the Cox-Ingersoll-Ross (CIR) model
(1985). This model postulates that the instanta-
neous spot interest rate r obeys the following
continuous-time process:

dr(t) 5 a(r̄ 2 r(t))dt 1 sÏr(t)dW(t), (4)

where a indicates the strength of the mean-
reversion process governing r, is the long-termr̄
mean instantaneous spot interest rate, s is the
interest-rate volatility, and dW(t) is a standard ge-
ometric Brownian motion. This model is attrac-

tive because it allows for interest rates to be
mean-reverting but does not allow them to be-
come negative.3 Another attractive feature is that
it gives us a straightforward formula for the spot-
rate term structure based on the current instan-
taneous spot rate: If R(t, T) is the time-t spot rate
for the fixed maturity date T (that is, T 2 t years
to maturity), then

21R(t, T) 5 2(T 2 t) ln P(t, T), (5)

where P(t, T) is the time-t price of a zero-coupon
bond with maturity T and where

P(t, T) 5 A(t, T) exp[2B(t, T)r(T)],

A(t, T) 5 (2g exp[(a 1 g)(T 2 t)/2]

/{(g 1 a)(exp[g(T 2 t)] 21)
22r̄a/s

1 2g}) ,

B(t, T) 5 2(exp[g(T 2 t)] 2 1)

/{(g 1 a)(exp[g(T 2 t)] 2 1) 1 2g},

2 2g 5 Ïa 1 2s .

From a computational perspective, the CIR
model is appealing because the exact distribution
of the instantaneous spot interest rate under the
CIR model is known. To be precise, if r(T) fol-
lows a CIR process, then (4ar(T))/{s2(1 2

exp[2aT])} has a noncentral chi-squared distri-
bution with degrees of freedom and a24ar̄/s

noncentrality parameter equal to (4ar(0))/
{s2(1 2 exp [2aT])} (Cairns 2004, Theorem 4.8
[c]). This means that we can simulate values of
r(T) directly from their exact distribution using
the CIR parameters and the current instantane-
ous spot rate r(0) as inputs. Once we have these
terminal instantaneous spot-rate values, we can
then use equation (4) to infer the spot-rate term
structures contingent on each of these values.

A typical distribution for r(T) is given in Figure
1 and Table 1, based on assumed values of a 5

0.20, s 5 0.10, and 5 0.04. Figure 1 shows ther̄
probability density function (pdf), and Table 1
gives some of its key parameters. We can see that
the pdf has a strong positive skew and a long
right-hand tail. What is perhaps most striking
about this pdf is the extent of its dispersion—for
example, 30% of simulated values are
under 0.02, 30% are above 0.049, and we get a

3 The model and its properties are discussed in Cairns (2004, p. 67).
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Figure 1

Probability Density Function for Future CIR Instantaneous Spot Interest Rate at a 40-Year Horizon
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Note: Figures shows a noncentral chi-squared distribution based on eq. (4) calibrated to a 5 0.20, s 5 0.10, 5 0.04, r(0) 5 0.04,r̄

and T 5 40.

Table 1

Properties of the Probability Density Function

of the Cox-Ingersoll-Ross Instantaneous Spot

Interest Rate in 40 Years’ Time

Parameter Parameter Value

Mean 0.040
Standard deviation 0.032
Skewness 1.581
Kurtosis 6.742
10th percentile 0.008
20th percentile 0.014
30th percentile 0.020
40th percentile 0.026
50th percentile 0.032
60th percentile 0.040
70th percentile 0.049
80th percentile 0.061
90th percentile 0.082

Note: The instantaneous spot interest rate is assumed to be governed
by a CIR process (given by eqs. [4]–[5] in the text) with parameters
a 5 0.20, a 5 0.10, and 5 0.04.r̄

small number of very high values in the long
right-hand tail—and this is the case even though
the spot-rate process is mean reverting.4

These findings confirm that interest-rate risk
will have a considerable impact on the distribu-
tion of future annuity values.

4. COMPUTATIONAL ISSUES

If we combine these models, we have three ran-
dom state variables: the k1(.) and k2(.) state var-
iables from the mortality model, and the in-
stantaneous spot interest rate r(.) from the
interest-rate model. Suppose that the current
time is time 0 and we wish to simulate these state
variables out to some future period T. Suppose,
then, that we take J simulation paths of each

4 It is also worth noting that the CIR process is widely regarded by

interest-rate practitioners as underestimating the true distribution of

instantaneous spot rates at long horizons. To the extent that this is

the case, then our later results will understate the impact of interest-

rate risk on the distribution of future annuity values and therefore

underestimate the riskiness of DC pension plans.
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state variable out to period T, and let j[k (T),1

r j(T)] be the jth set of simulated state var-jk (T),2

iables for period T. The fair value of an annuity at
time T, a(T), then depends on the values of these
state variables, so we will, from time to time, use
the extended notation a(T) [ a(T; k1(T), k2(T),
r(T)) to reflect the fair value’s dependence on the
state variables. Similarly, in the case of interest
rates, we have R(T, T 1 i) [ R(T, T 1 i; r(T)).
The fair value of the annuity, conditional on the
simulated state variables under simulation path j,
is thus

j j j ja (T) 5 a(T; k (T), k (T), r (T))1 2

50

j
5 (1 1 f) exp(2iR(T, T 1 i; r (T)))O

i51

E[S(T 1 i, x)/S(T, x) u
j jk (T), k (T)],1 2 (6)

where f is the cost loading factor built into the
annuity value and R(T, T 1 i; r(T)) is the spot
interest rate prevailing over the period from T to
T 1 i given r(T). Equation (6) is a sum of the
product of future expected survivor rates from
age 66 to age 115 (conditional on surviving to
age 65) and the price of a zero-coupon bond ma-
turing with unit value at the same age, and we
assume that no one lives beyond age 115. The
term E[S(T 1 i, x)/S(T, x) u is to bej jk (T), k (T)]1 2

interpreted as the expected probability that an
individual currently aged x will survive to year
T 1 i conditional on their surviving to T and
conditional on the mortality state parameters
at T.

However, we cannot compute equation (6) di-
rectly because there is no simple formula for
E[S(T 1 i, x)/S(T, x) uk1(T), k2(T)] in terms of
the mortality state variables and Thej jk (T) k (T).1 2

most obvious solution to this problem would be
to use stochastic simulation to estimate E[S(T 1

i, x)/S(T, x) uk1(T), k2(T)], for each set of jk (T)1

and For example, we might use M simula-jk (T).2

tion trial paths to generate j 5 1, . . . , M pairs
of simulated time-T state variables andjk (T)1

From each such pair, we might then gen-jk (T).2

erate k 5 1, . . . , M sets of paths for the post-T
survivor rates S jk(T 1 i, x)/S jk(T, x) and obtain
E[S j(T 1 i, x)/S j(T, x) u as theirj jk (T), k (T)]1 1

average. In principle, this solution would work,
but it involves our taking M2 simulation paths,

and this would be computationally extremely
expensive.5

A simple way to reduce this computational bur-
den is to use a Taylor series approximation, as
suggested by Cairns (2011). Let k 5 [k1(T),
k2(T)]9 and let 5 E[k] be the expectation ofk̂

the mortality state variables at T. Define f(i, x, k)
5 F21(E[S(T 1 i, x)/S(T, x) uk 5 (k1(T), k2(T))])
as the probit transformation of E[S(T 1 i, x)/S(T,
x) uk 5 (k1(T), k2(T))], where F(.) is the stan-
dard normal distribution function.6 We then take
the following second-order Taylor series expan-
sion of f(i, x, k) around k:ˆ

f(i, x, k) < D (i, x) 1 D (i, x)9(k 2 k)ˆ0 1

1
–1 (k 2 k)9D (i, x)(k 2 k), (7)ˆ ˆ2 2

where D0(i, x) is a scalar function of i and x,
D1(i, x) is a 2 3 1 vector of first derivatives, and
D2(i, x) is a 2 3 2 matrix of second derivatives.
For any given i and x, these D terms are param-
eters that are easily computed by Monte Carlo
simulation.7 Once we have these, simulated time-
i expected survivor rates out to i 5 50 years can
be recovered from

j jE[S(T 1 i, x)/S(T, x) uk (T), k (T)]1 2

j< F(D (i, x) 1 D (i, x)9(k 2 k)ˆ0 1

1 j j
–1 (k 2 k)9D (i, x)(k 2 k)). (8)ˆ ˆ2 2

Each simulated E[S(T 1 i, x)/S(T, x) u jk (T),1

can then be plugged into equation (6) tojk (T)]2

5 For example, with M 5 10,000 simulation paths in each stage for

each of the mortality state variables, this would require 200 million

simulation paths for the mortality state variables alone; combined

with all the other calculations required, this implies a computational

burden that is not for practical purposes feasible under real-time

constraints.
6 The purpose of the probit transformation is purely to extend the

domain of the function from [0 to 1] to the full real line and hence

eliminate potential boundary problems.
7 For more on the implementation of this approach, see Cairns

(2011) who carries out numerical tests on the accuracy of the ap-

proximation. He reports results indicating that the quadratic ap-

proximation is accurate even at long horizons. Approximate values

can be either above or below true values. However, a very small bias

can creep in if is not calibrated to the relevant time horizon, i.e.,k̂

5 E [k(T )]. If we focused on a single simulation time horizon,k̂

T, however, then the errors above can be reduced by calibrating

5 E [k(T )] to that specific time horizon.k̂
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give us the corresponding simulated future an-
nuity value we are seeking.

5. THE DISTRIBUTION OF FUTURE

ANNUITY VALUES UNDER INTEREST-
RATE AND LONGEVITY RISKS: SOME

ILLUSTRATIVE RESULTS

We now provide an example based on a deferred
annuity with a starting age of 65 and purchased
at the age of 25, a current instantaneous spot
interest rate equal to 4%, and 10,000 simulation
trials. The annuity makes level payments of $1 for
each year the annuitant survives, and the annuity
value is assumed to incorporate a loading factor
of 10%.8 Results are also presented for two ver-
sions of the mortality model: a version that as-
sumes that the parameters of the mortality model
are estimated with certainty (the PC case), and a
version that takes account of uncertainty in those
parameters (the PU case).9

We examine three different cases. In the first
case, we allow for longevity risk but not interest-
rate risk: We model future longevity improve-
ments using simulations from our mortality
model, but we take the future instantaneous spot
interest rate to be equal to its current value of
4%. In the second case, we assume that there are
no changes in future longevity, but we allow the
instantaneous spot interest rate to be stochastic
and use our interest-rate model to simulate its
value at T 5 40. In the third case, we allow both
interest rates and longevity to evolve stochasti-

8 This is approximately equal to the average loading factor found

by Finkelstein and Poterba (2002) for U.K. insurers selling level

annuities.
9 The parameter-certain case uses the estimated values of the m and

C parameters, whereas the parameter-uncertain case makes use of

simulated values of these parameters drawn from the appropriate

distributions. More details of the model and the simulation proce-

dures (including the method used to allow for parameter uncer-

tainty) are given in Cairns et al. (2006a).

The simulations reported in this paper did not allow for any dif-

ference between the real-world and risk-neutral probability and pric-

ing measures. We did not allow for this difference for two reasons.

First, we do not have hard empirical evidence on what the relevant

market price of risk in the mortality model would be, and we need

this to specify the risk-neutral probability measure; and, second,

some illustrative results presented in Cairns et al. (2006a) suggest

that the prices of the longevity bond examined in their paper are

fairly insensitive to the specific market prices of risk they assumed.

cally over the period to T 5 40. In all cases, the
future annuity values are obtained by taking the
T 5 40 present value of later cash flows dis-
counted at the relevant spot interest rate, where
these later rates are obtained from the calibrated
CIR interest rate model. Our results are pre-
sented in Table 2 and Figures 2–4.

Table 2 shows that the current fair value of an
annuity for a 65-year-old male is 13.050 if we take
the parameters of the mortality model to be cer-
tain, and 13.141 if we allow for uncertainty in the
estimates of those parameters. These values pro-
vide benchmarks against which we can assess the
prospective annuity prices that our current 25-
year-old might face when he reaches 65.

The first two columns in the table give the main
features of the distribution of future annuity val-
ues 40 years hence in the presence of longevity
risk but no interest-rate risk. They show that fu-
ture annuity values have a mean of 16.208 if we
take the mortality parameters as certain (the PC
case) and a mean of 16.044 if we allow for them
to be uncertain (the PU case). These are, respec-
tively, 24.2% and 22.1% higher than the values of
comparable annuities for 65-year-olds bought
now. Clearly, future annuity values are expected
to rise because the model projects further lon-
gevity improvements in the future. But what is
less clear is the impact on future annuity values
of longevity risk, that is, the uncertainty attached
to future longevity projections. Columns 1 and 2
show that future annuity values have an 80% con-
fidence interval equal to [15.356 16.958] for the
PC case and a somewhat wider 80% confidence
interval of [14.449 17.422] in the PU case.10 (The
corresponding standard deviations are 0.666 and
1.253.) These results indicate that longevity risk
has a considerable impact on both the mean fu-
ture annuity value and the dispersion of future
annuity values, and that the degree of dispersion
increases as we take account of parameter
uncertainty.

Columns 3 and 4 give the comparable results
for the case where we allow for interest-rate risk
but not longevity risk. The mean future annuity
values are now 13.135 (in the PC case) and
13.227 (in the PU case), which are much closer

10 The 80% confidence interval comes from comparing the differ-

ence between the 10th and 90th percentiles.
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Table 2

Current Annuity Values and the Probability Density Function of Annuity Values in 40 Years’ Time1

Inputs

Age at retirement 65
Years to retirement 40
Current year 2007
Current instantaneous spot interest rate 0.04
Loading factor in annuity value 0.10
Number of simulation trials 10,000

Results for the Current Annuity Value

Current annuity value (PC)2 13.050
Current annuity value (PU)3 13.141

Results for Annuity Values at T 5 40

Parameters of
Annuity Value
Distribution

With Longevity Risk4 but
No Interest Rate Risk5

With Interest Rate Risk6

but No Longevity Risk7

With Longevity Risk4 and
Interest Rate Risk6

PC PU PC PU PC PU
Mean 16.208 16.044 13.135 13.227 16.321 16.155
Std Dev 0.666 1.253 1.234 1.245 1.744 2.037
Skewness 20.952 21.108 21.121 21.121 20.8278 20.571
Kurtosis 4.484 5.883 4.391 4.389 3.746 3.294
10th perc. 15.356 14.449 11.428 11.504 13.952 13.362
20th perc. 15.735 15.171 12.203 12.286 14.938 14.482
30th perc. 15.968 15.620 12.693 12.781 15.654 15.243
40th perc. 16.146 15.940 13.082 13.174 16.158 15.871
50th perc. 16.298 16.227 13.398 13.493 16.591 16.384
60th perc. 16.431 16.476 13.685 13.782 16.990 16.879
70th perc. 16.581 16.731 13.949 14.049 17.392 17.367
80th perc. 16.739 17.018 14.208 14.310 17.824 17.903
90th perc. 16.957 17.422 14.474 14.579 18.323 18.580

1 In all cases, discounting is carried out at the spot interest rate for the relevant maturity as determined by the calibrated CIR interest-rate
model.
2 PC means that the simulations assume the parameters of the stochastic mortality model to be certain.
3 PU means that the simulations allow for uncertainty in the parameters of the Cairns-Blake-Dowd (CBD) stochastic mortality model using the
method outlined in Cairns et al. (2006a).
4 Longevity risk is modeled using simulated values of k1(40) and k2(40) obtained using the CBD model and taking account of interim stochastic
mortality improvement in the period since 2002. These parameter values are based on estimates of the mortality of English and Welsh males
aged 65 over the period 1982–2002. See eqs. (1)–(2).
5 The instantaneous spot interest rate at T 5 40 is assumed to be equal to 0.04.
6 The instantaneous spot interest rate and term structure of interest rates are assumed to be governed by a CIR process (given by eq. [6]) with
parameters a 5 0.20, s 5 0.10, and 5 0.04.r̄
7 Mortality rates are assumed to be unchanged from their current levels.

to the current annuity values. Thus, allowing for
interest-rate risk on its own has a much smaller
impact on expected future annuity values—in
fact, it leads the expected value to rise by only
0.7% in each case—than allowing for longevity
risk on its own. This follows because of the mean
reversion embodied in the CIR model (4). The
80% confidence intervals are now [11.428
14.474] and [11.504 14.579] for the PC and PU
cases, respectively. (The corresponding standard
deviations are about 1.2 in both cases.) So al-
though interest-rate risk on its own has a negli-
gible effect on the mean future annuity value, it
has an impact on the dispersion of future annuity
values broadly comparable to that of longevity

risk (in the PU case, although not in the PC
case).

Finally, columns 5 and 6 show the results when
we allow for both longevity and interest-rate risk.
The mean future annuity values now rise to
16.321 and 16.155: The impact of both longevity
risk and interest-rate risk is to increase expected
future annuity values by 25.1% in the PC case and
22.9% in the PU case, relative to current values.
The 80% confidence intervals are now [13.952
18.323] and [13.362 18.580], respectively, for
the PC and PU cases, and the corresponding stan-
dard deviations are 1.744 and 2.037.

Figure 2 shows the histogram of simulated fu-
ture annuity values if we allow for longevity risk
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Figure 2

Histogram of Simulated Future Annuity Values under Longevity Risk but No Interest-Rate Risk
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but not interest-rate risk, Figure 3 shows the
same histogram if we allow for interest-rate risk
but not longevity risk, and Figure 4 shows the
histogram if we allow for both these risks simul-
taneously. Figure 4 indicates that the distribution
of future annuity values has a fairly strong nega-
tive skew when we allow for both risks. Figure 2
reveals that the distribution has a very small neg-
ative skew if only longevity risk is considered. Fig-
ure 2 confirms that the cause of the negative
skew in Figure 4 is predominantly caused by the
negative skew in the distribution of future annu-
ity values due to interest rate risk, and this is the
direct counterpart of the strong positive skew
in the distribution of interest rates shown in
Figure 1.

6. CONCLUSIONS AND IMPLICATIONS

FOR DC PENSION PLAN MEMBERS

This paper proposes a simple computationally ef-
ficient algorithm for estimating the distribution

of future annuity values in the presence of both
longevity and interest-rate risk. The algorithm is
based on a second-order Taylor series expansion
of the probit transformation of the expected val-
ues of a survivor index in future years, conditional
on an individual surviving to the previous year and
conditional on the state parameters governing
the stochastic mortality model. The algorithm al-
lows us to avoid the computational problem of
simulation-within-simulation and hence increase
computational efficiency by a factor of 10,000 in
the case where we wish to estimate the distri-
bution of future annuity prices using 10,000
simulations.

Illustrative results suggest that the combined
effect of longevity and interest-rate risks is to
considerably widen the dispersion of future an-
nuity values, in comparison with the cases in
which each is treated separately. The mean future
annuity value is also considerably higher than the
current annuity value, but, as we have seen, this
is principally due to projected future improve-
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Figure 3

Histogram of Simulated Future Annuity Values under Interest-Rate Risk but No Longevity Risk
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ments in longevity rather than to any effects of
interest rate risk. Interest-rate risk is largely re-
sponsible for giving the distribution of future an-
nuity values a strong negative skew.

It is helpful if we end by elaborating a little on
the implications of these findings for those in the
early stages of a DC pension plan, such as our
illustrative 25-year-old male plan member. Let us
suppose that the value of the accumulated pen-
sion fund is given by F. For an individual aged 65
and retiring now, we see from Table 2 that his
annual retirement income would be F/13.141 if
we use the parameter-uncertain annuity valua-
tion. However, our current 25-year-old is likely to
be much less fortunate in terms of his retirement
income. Since he faces an expected future annu-
ity value of 16.155 (if we use with the parameter-
uncertain valuation and allow for both longevity
and interest-rate risk), his expected retirement
income is only F/16.155, or 18.7% lower, other
things being equal. This reduction in expected re-
tirement income is due primarily to projected

longevity improvements over the course of his
working lifetime.11

Worse still, his pension also becomes more
risky. One cause of this increase in risk is the
dispersion in the distribution of future annuity
values. Of particular concern is the positive tail
of this distribution. If we examine the quantiles
of this tail, there is a 20% probability of a value
in excess of 17.903, a 10% probability of a value
in excess of 18.580, and so forth. Translated into
their retirement-income equivalents, there is a
20% probability that our 25-year-old will have a
retirement income that is at least 26.6% (i.e.,
13.141/17.903 2 1) lower than that received by
a male retiring now, and there is a 10% probabil-
ity that he will receive an income that is at least

11 Perhaps the most obvious response to this reduction would be for

him to anticipate working longer: After all, if he is anticipating living

longer, it might be reasonable for him to be prepared to work longer.

The alternative to this, of course, is contribute around nearly 20%

more to his pension plan than his 40-year-older compatriot did.
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Figure 4

Histogram of Simulated Future Annuity Values under Longevity Risk and Interest-Rate Risk
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29.3% (i.e., 13.141/18.580 2 1) lower than his
older counterpart, other things remaining equal,
in particular the size of the retirement fund.12

These amount to a gloomy prognosis for a risk-
averse pension plan member. Still, the good news
(such as it is) is that although the news is always
bad, it is not always quite so bad: If we look at
the other, more fortunate, tail of the distribution,
there is also a 10% probability that he will get a
retirement income that is almost as good as that

12 Our results about the riskiness of DC pensions are, however, open

to two offsetting sources of bias. On the one hand, as mentioned in

note 4, the distribution of future instantaneous spot interest rates is

likely to be underestimated by the choice of a CIR interest-rate pro-

cess, and a more empirically plausible interest rate process would

lead the distribution of future annuity prices to become even more

dispersed. On the other hand, we have implicitly assumed that the

pension fund value, F, is fixed. In practice, it is much more likely that

F would be stochastic and positively correlated with long-term in-

terest rates, particularly if the assets in the pension fund were dom-

inated by bonds. In this case, higher interest rates would be likely to

produce both a high value of F and higher annuity prices, and DC

pension outcomes would be more stable and less dispersed than we

have suggested. We thank Tony Webb for this latter point.

received by the older pensioner now. He might
just get lucky.

Finally, our analysis has identified an important
need for pension plans and their members to
hedge the interest-rate and longevity risks in
their future annuity purchases. They could do this
using annuity futures or annuity futures options
as suggested in Blake et al. (2006). Unfortu-
nately, these contracts do not yet exist, in either
capital markets or over-the-counter form. But we
believe this is only a matter of time. The frame-
work outlined in Cairns et al. (2006b) shows how
these contracts can be priced, while the compu-
tationally efficient algorithm outlined above
would allow the contract pricing to be done in
real time.
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