
 
 

DISCUSSION PAPER PI-0820 
 
Optimal Pension Asset Allocation Strategy 
when Terminal Utility is a Function of 
Replacement Ratio 
 
Qing-Ping Ma  
 
September 2008 
 
ISSN 1367-580X  
 
The Pensions Institute  
Cass Business School  
City University  
106 Bunhill Row London  
EC1Y 8TZ  
UNITED KINGDOM  
 
http://www.pensions-institute.org/  



 1 

Optimal pension asset allocation strategy when terminal utility is a function of 

replacement ratio 

Qing-Ping Ma 

School of Economics, Mathematics and Statistics, Birkbeck College, University of 

London, Malet Street, London WC1E 7HX 

 

Abstract 

 This paper considers the optimal asset allocation problem for defined-contribution 

pension plan members whose terminal utility is a function of replacement ratio, i.e. the 

pension-to-final wage ratio. When three asset types are available for investment, the 

optimal portfolio composition, which is horizon dependent, includes investment in both 

riskless and risky assets. The investment in risky assets has three components to hedge 

wage risk, to speculate on risk premiums and to hedge for financial market risk 

respectively.  

When the terminal utility is a power function, closed form solution is derived for 

the cases where there is no further contribution from wage incomes or there is no non-

hedgeable wage risk. The horizon dependence of optimal pension portfolio is 

deterministic under assumptions of constant equity risk premium, constant interest rate 

volatility and constant stock return volatility. The short-sale of wage replicating portfolio 

also contributes to the horizon dependence of pension plan financial wealth (the sum of 

pension portfolio and the short-sold wage replicating portfolio), and the effect is 

stochastic due to the stochastic interest rate and stock return. Therefore, the optimal asset 

allocation strategy in terms of financial wealth is “stochastic lifestyling”.  

For the cases where wage incomes cannot be hedged due to non-hedgeable wage 

risk, optimal asset proportions can be solved numerically by Monte Carlo simulation. The 

proportions invested in stocks and especially bonds are higher in early stages than those 

when wage replicating portfolio is used, hence more short-sale of cash assets. The 

optimal asset allocation derived by numerical simulation is also horizon dependent. 

Keywords: Optimal asset allocation; Defined-contribution pension plan; Annuity; Power 

utility; Hamilton-Jacobi-Bellman equation. 
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1. Introduction 

There are two types of pension plan, defined benefit (DB) plans and defined 

contribution (DC) plans, which are very different in their objectives. In a DB pension 

plan, where the benefits are fixed in advance according to final wages and years of 

service by the sponsor, the objective of fund sponsors is to maintain the fund in balance 

(and minimize the sponsor’s contribution). In a DC pension plan, the objective is to 

maximize the expected terminal utility of plan members. A difference in the terminal 

utility function can lead to different optimal asset allocation strategy. Early studies by 

Samuelson (1969) and Merton (1969, 1971) on consumption and portfolio strategy show 

that, an individual with utility as power function of consumption will have a horizon 

independent optimal portfolio composition. However, when utility is power function of 

consumption above a subsistence level, the optimal portfolio composition becomes 

horizon dependent (Samuelson 1989). The function form of terminal utility and its 

argument(s) have a principal influence on the optimal asset allocation strategy. 

 Different variables have been proposed as the argument(s) of terminal utility 

function. Battocchio and Menoncin (2004) assume that terminal utility is an exponential 

function of real wealth (wealth-to-price index ratio). The optimal asset allocation is 

horizon dependent, with percentage of riskless assets increasing over time and 

percentages of stocks and bonds decreasing over time. Their study is explicitly in 

nominal terms, whereas most portfolio and pension studies are implicitly in real terms, i.e. 

wealth is real wealth. Two criticisms may be raised against using real wealth as the 

argument of terminal utility function: 1) it does not take the pre-retirement standard of 

living into account, and 2) it does not provide downsize protection. Boulier et al (2001) 

and Deelstra et al (2003) consider a terminal utility that is a power function of cash 

surplus over minimum guaranteed benefits, because there is a real need for a downside 

protection when considering the retirement savings products. The optimal pension asset 

allocation is also horizon dependent, with percentage of riskless assets increasing over 

time and percentages of stocks and bonds decreasing over time. Choosing wealth surplus 

over minimum guaranteed benefits provides the downsize protection, but still does not 

take the pre-retirement standard of living into consideration. 
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In many countries, the principal retirement income vehicle in DC pension plans is 

life annuities. A life annuity will guarantee fixed retirement payments for however long 

an individual lives, thus protecting the retiree from outliving her resources. It has been 

shown that annuitization of pension wealth is generally utility increasing, because it 

protects a retiree from outliving her resources on one hand and prevents under-consuming 

her resources on the other hand (Yaari 1965). Life annuities are bond-based investments 

with longevity insurance, so that the improvement in longevity will increase the cost for 

life annuity providers and drive up the price of life annuities, and falls in bond yields will 

also make annuities more expensive to pension plan members. The continuing 

improvement in longevity and low bond yields raise the question whether life annuity is 

of good value over a long retirement period given that equities generally outperform 

bonds over long horizons. For more risk-tolerant pension plan members, annuitization 

removes the potential benefits of higher returns of investment in stock market. For more 

risk-averse plan members, life annuities are more preferable because they provide 

guaranteed benefits. In certain sense, pension from a DB plan is a life annuity that takes 

the pre-retirement standard of living (final wage) into consideration. 

 To relate the terminal utility with pre-retirement standard of living and take into 

account the fact that the principal retirement income vehicle in DC pension plans is life 

annuities, Cairns et al (2006) assume that the terminal utility is a power function of 

replacement ratio (pension-to-final wage ratio). Their assumption on terminal utility and 

DB pension plans indicates implicitly the need to have pension income comparable to 

existing wages in DC plans and some role of habit formation (Spinnewyn 1981; Becker 

and Murphy 1988) in terminal utility. Cairns et al (2006) find that the optimal asset 

allocation strategy is stochastic lifestyling using three mutual funds made of N risky 

assets and one riskless asset, which are dominated by cash assets, bonds and equities 

respectively and termed “cash fund”, “bond fund” and “equity fund”. In their stochastic 

lifestyling strategy, for power utility the pension fund invests a constant proportion of 

wealth in “equity fund” and time-dependent proportions in “cash fund” and “bond fund” 

and switches from “cash fund” to “bond fund” as retirement approaches.  

Cairns et al (2006) did not give a proof to their conclusion that the three mutual 

funds are dominated by cash, bonds and equities respectively. The dominance of cash in 
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the “cash fund” can only be understood when the three mutual funds invest in both 

riskless and risky assets. The present paper extends the study of Cairns et al (2006) by 

investigating both analytically and numerically the optimal composition of those mutual 

funds and separating bonds explicitly from equities. For simplicity, I assume that the 

pension plan can invest in three assets, cash, bond and stock (Boulier et al 2001; Deelstra 

et al 2003; Battocchio and Menoncin 2004). Stochastic interest rates are assumed in the 

present study, as in most recent pension asset allocation strategy studies (Boulier et al 

2001; Vigna and Haberman 2001; Haberman and Vigna 2002; Deelstra et al 2003; 

Battocchio and Menoncin 2004; Cairns et al 2006). Although deterministic wage incomes 

are often used in pension studies (Boulier et al 2001; Vigna and Haberman 2001; 

Haberman and Vigna 2002; Deelstra et al 2003), stochastic wage incomes are considered 

in the present study. I use the same assumption on wages as in Battocchio and Menoncin 

(2004) and Cairns et al (2006). 

In the present study I find that the optimal asset allocation in risky assets consists 

of three components: (i) a preference free component to hedge wage risk, (ii) a 

speculative component, proportional to both the portfolio Sharpe ratio and the inverse of 

the relative risk aversion index, and (iii) a hedging component depending on the state 

variable parameters. The third component, which corresponds to the “bond” fund of 

Cairns et al (2006), contains only bonds, whose weight in the portfolio is horizon 

dependent. The other two components all contain both bonds and equities, whose weight 

in the portfolio is horizon independent. The overall optimal pension wealth composition 

is deterministically horizon dependent, with a shift between cash and bonds. When wage 

income is fully hedgeable and a wage replicating portfolio is short-sold, the pension plan 

financial wealth (the sum of pension wealth and the short-sold wage replicating portfolio) 

is stochastically horizon dependent, because of the stochastic interest rate and stock 

returns. When wage income is not hedgeable, the optimal portfolio composition is also 

horizon dependent and the optimal proportions invested in bonds and stocks are higher 

than those when a wage replicating portfolio is used. 

This paper is organized as follows. Section 2 formulates the financial market, 

wage, pension wealth, and current replacement ratio growth models. Section 3 presents 

the optimization problem and the Hamilton-Jacobi-Bellman equation. Section 4 solves 
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the optimal asset allocation problem for power utility analytically. Since optimization for 

power utility with non-hedgeable wage income risk cannot be solved in closed-form, I 

only solve the cases where pension contribution has stopped or wage risk is fully 

hedgeable. Section 5 solves the optimal asset allocation problem when wage income is 

not hedgeable by numerical simulation. Section 6 discusses and summarizes the results in 

this paper. 

2. The model 

 In this section, the terminal utility, financial market structure, wage process and 

current replacement ratio process are presented.  

2.1. Terminal utility 

The same definition of terminal utility as in Cairns et al. (2006) is used here, 

        )()(/)())(,(/)()(),(/)( TGuTYTPuTrTaTXuTrTXTWu  . 

Where P(T) is the annual pension purchased at T,  

 
))(,(

)(
)(
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TW
TP   
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)(
)(

TrTa
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TY

TP
TG         (1) 

is the replacement ratio.  

2.2. Market structure  

The financial market, assumed similarly to those in Boulier et al (2001), Deelstra 

et al (2003) and Battocchio and Menoncin (2004), is frictionless and continuously open, 

with no arbitrage. The uncertainty in the financial market is described by two standard 

and independent Brownian motions Zr(t) and ZS(t) with ],0[ Tt , defined on a complete 

probability space (, F, P) where P is the real world probability. The filtration F =F (t) 

],0[ Tt  generated by the Brownian motions can be interpreted as the information set 

available to the investor at time t.  

The instantaneous risk-free rate of interest r(t) follows an Ornstein-Uhlenbeck 

process (Vasicek model)  



 6 

)())(()( tdZdttrtdr rr  ,   

0)0( rr  .         (2) 

In equation (2),  and  are strictly positive constants, and r is the volatility of interest 

rate. The process is mean-reverting, and the instantaneous drift ))(( tr  represents a 

force pulling the process towards its long term mean  with magnitude proportional to the 

deviation of the process from the mean. The stochastic element Zr(t) causes the process to 

fluctuate around the level  (Vasicek, 1977). 

The price of zero-coupon bonds for any date of maturity  at time t, B(t, , r), with 

the instantaneous interest rate process described by equation (2),  is governed by the 

diffusion equation (Vasicek 1977; Boulier et al 2001; Deelstra 2003)  

)(),()),()((
),,(

),,(
tdZtbdttbtr

rtB

rtdB
rrr 




 , 

1),( B , 

where , assumed to be constant, is the market price of interest rate risk, and 




 )(1
),(

te
tb


 . 

There are three types of asset in the financial market for investment. The first is a 

riskless asset, which follows a price process governed by 

 dttrtRtdR )()()(  , 

 0)0( RR  .        (3) 

The riskless asset can be considered as a cash fund, i.e. a bank account paying the 

instantaneous interest rate r(t) without any default risk. The value of units in the cash 

fund at t is then 

  




 

t

dssrRtR
0

)(exp)0()( .      (4) 

The second asset is a bond rolling over zero coupon bonds with constant maturity K. The 

price of the zero coupon bond with constant maturity K is denoted by BK(t, r) with 

 )(])([
),(

),(
tdZbdtbtr

rtB

rtdB
rrKrK

K

K    ,   (5)  

where  
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The relationship between B(t, , r) and BK(t,r) through the riskless cash asset R(t) 

(Boulier et al, 2001) is  
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The above equation shows that the “rolling bond” can be obtained by a portfolio of one 

zero coupon bond and the cash asset, and similarly, other bonds can be obtained through 

a portfolio of the riskless asset and the “rolling bond”. 

The third asset, stock, has a process of the total return (the value of a single 

premium investment in the stock with reinvestment of dividend income) governed by 

stochastic differential equation (SDE)  

  )()(),()()( tdZtdZvdttrtStdS SSrrrSS   , 

 0)0( SS  ,        (6) 

where 

 SS mtrtr  )(),(        (7) 

is the instantaneous percentage change in stock price per unit time. In equations (6) and 

(7), mS is the risk premium on the stock, S the stock specific volatility, and vrS a 

volatility scale factor measuring how the interest rate volatility affects the stock volatility.  

The market as assumed above has a diffusion matrix given by 

  









SrrS

rK

v

b



 0
,       (8) 

and r and S are assumed to be different from zero and the diffusion matrix is invertible. 

2.3. Wages 

The plan member’s wage, Y(t), evolves according to the SDE 

  )()()())()(()()( tdZtdZvtdZvdttrttYtdY YYSSSYrrrYY   , 

0)0( YY  ,         (9) 

where Y(t) is a deterministic function of time, age and other individual characteristics 

such as education and occupations; Y is a constant and ZY(t) a standard Brownian motion, 
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independent of Zr(t) and ZS(t); and vrY and vSY are volatility scaling factors measuring how 

interest rate volatility and stock volatility affect wage volatility, respectively. The 

parameter Y is a non-hedgeable volatility whose risk source does not belong to the set of 

the financial market risk sources. When Y = 0, the market is complete. Otherwise the 

market is incomplete.  

2.4. Replacement ratio process 

The value of the plan member’s pension fund is denoted by W(t), and the 

proportions of fund wealth invested in the riskless asset, bonds and stock are denoted as  

R(t), B(t) and S(t) respectively, 

  1)()()(  ttt SBR  ,      (10) 

The SDE governing the pension wealth is   
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   (11) 

Using Ito’s formula, the process of current wealth-to-wage ratio, X(t)=W(t)/Y(t) is 

governed by the SDE 

 )(
1

)(
1

)(
2

2

32
dWdY

Y
dY

Y

W
dY

Y

W
dW

Y
tdX   .    (12) 

The current replacement ratio (the ratio between the life annuity if annuitizing the 

pension wealth now and the current wage) is defined as 
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Using Ito’s formula gives the process governing the replacement ratio 
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           (14) 

The process governing ))(,( trta , which is actually a function of r(t) only, can be found by 

using Ito’s formula,  
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Following Cairns et al (2006), the above equation can be written as  
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In the second equality, the Vasicek model of interest rate is used 

 )())(()( tdZdttrtdr rr  . 

 In the equation, )(rda is the duration of the annuity function, )(rca is its convexity 
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By substituting W, dW, X, ))(,( trta , dX and ),( rtda , the SDE governing the replacement 

ratio process is: 

 dZGdtuMGtdG )'''()'()(   ,     (18) 

where 

   ' SB   , 
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   ' YSr ZZZZ  .        (19) 

 The new diffusion matrix for the financial market is given by . (’) is assumed 

to be invertible. The objective of the pension fund manager is to choose a portfolio 
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strategy that maximizes the expected value of a terminal utility function. The terminal 

utility function is a function of the replacement ratio G(t).   

3. The optimization problem and Hamilton-Jacobi-Bellman equation 

 The stochastic optimal control problem is  

  )),((max TTGUE


,   

subject to 

 dZdtdw w '  ,        (20) 

where, 
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The corresponding Hamiltonian is  
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The system of the first order conditions on H with respect to  is: 
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The optimal portfolio composition is: 
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The three terms (components) on the right hand side of equation (24) can be viewed as 

three funds and designated as 1*, 2* and 3* respectively, which are themselves vectors 

with two elements corresponding to certain proportions of investment in bonds and stock. 

The three components correspond to the three mutual funds in Cairns et al (2006). From 

this analysis, we have the following proposition. 
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Proposition 1: The optimal asset allocation in the risky assets consists of three 

components: (i) a preference-free hedging component, 
G




1

1* ; (ii) a speculative 

component proportional to both the portfolio Sharpe ratio and the inverse of the Arrow-

Pratt absolute risk aversion index 
GG

G

GJ

J
M1

2 )'(*  ; and (iii) a hedging 

component depending on the state variable parameters 
GG

wG

GJ

J
 1

3* .  

 It can be seen that the first portfolio component minimizes the instantaneous 

variance of replacement ratio differentials, since 

 dtdGVar )'''2'()( '   .     (25) 

The second component is to satisfy the risk appetite of plan members and the third 

component is to hedge the financial market risks.  

4. Optimal asset allocation for power terminal utility  

If the expected terminal utility is of the form 






 1),(

1

1
)),(,( GwtgwtGtJ  

where  is the relative risk aversion coefficient, the optimal allocation strategy can be 

solved only for scenarios where 1) there is no contribution from future wage incomes 

( 0 ), and 2) but there is no non-hedgeable wage risk ( 0Y ). When there are both 

pension contributions from wage incomes ( 0 ) and a non-hedgeable wage risk 

( 0Y ), there is no analytical solution for the optimal asset allocation problem (20). In 

the present study I will only work on the two scenarios with analytical solutions.  

4.1. Optimal asset allocation without wage income contribution, =0 

 Since 0 , and the plan member no longer makes pension contributions, u in 

the SDE governing pension ratio process can be rewritten as uG 
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          (26) 
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Substituting the derivatives of the expected terminal power utility function 

( 
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


 1),(
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1
)),(,( GwtgwtGtJ  ) and the optimal proportion composition of pension 

fund investment * into the above HJB equation and simplifying give (for details of 

derivation see Appendix) 

. 0)'('
)(2

1
')'('

11

)'(
2

1
')'('

1
'

1

2

1

1







































gMMMu

gtrgMg wwwwt


















  (27) 

 

By the Feynman-Kac formula (Øksendal 2000; Duffie 2001), there exists a probability 

measure Q() such that 

 

 ]|),())(~,([))(,( )( tQ FTtDTwTgEtwtg  .     (28) 

 

where )(~ sw is governed by the SDE 
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where 

 MMMus 1

2

1 )'('
)(2

1
')'('

11
)(  























 .  (31) 

 

Since the terminal utility U(G(T)) depends only on the replacement ratio,  

 1))(,( TwTg . 

The optimal pension composition is 
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Since only u explicitly depends on the state variables,  
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The first item in the right hand side of the above equation is 
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This preference free component is to hedge wage risk, corresponding to the “cash” fund 

in Cairns et al (2006). Since this term represents a proportion in risky assets, it does not 

contain any cash asset and therefore cannot be dominated by cash. In Cairns et al (2006), 

the investment in riskless assets is split into three parts and added to the three mutual 

funds, hence the “cash” fund contains cash assets and can be dominated by cash assets. 

The second item is 
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where  

 
22222
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 )(
22

2 SrSYrSrrSK vmvb   . 

 

This second item (speculative component) contains both bonds and equities, which 

corresponds to the “equity fund” of Cairns et al (2006). The present result seems not so 

consistent with the conclusion of Cairns et al (2006) that the “equity” fund is dominated 

by equities. Using the usual assumptions on market parameters in Table 1, I calculate the 

proportions of bonds and stocks in the speculative component. As shown in Fig.1, for the 

market parameters assumed, the “equity” fund is dominated by bonds instead of stocks 

for a wide range of relative risk aversion coefficient .  
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Table 1 Parameters used in numerical simulation 

_____________________________________________________________________ 

Interest rate       Value  

 Mean reversion, ,     0.2 

 Mean rate,       0.05 

 Volatility,r      0.02 

 Initial rate, r0      0.05    

 

Fixed maturity bond 

 Maturity, K      20 years 

 Market price of risk,      0.15 

 

Stock 

 Risk Premium, mS     0.06 

 Stock own volatility, S    0.19 

 Interest volatility scale factor, vrS   1    

 

Wage 

 Wage premium, Y     0.01 

 Non-hedgeable volatility,Y     0.01 

 Interest volatility scale factor, vrY   0.7   

 Stock volatility scale factor, vSY   0.9 

 Initial wage, Y0     10k 

 

Contribution rate,       10% 

 

Length of pension plan, T     45 
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Optimal proportions of bond and stock in the 

speculative component ("equity" fund)
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Fig.1 The relationship between the optimal proportions of bond and stock in 

the speculative component and the relative risk aversion coefficient . 

Parameters in Table 1 are used for calculation. 

 

It is necessary to find out the modified process of r for computing the third term 

in the above equation. The matrix product 
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The modified processes of state variables are 
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The solutions of the above processes, for ts  , are 
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The expected value of the modified interest rate process at time t is 

 )(

2

2

)( 1

]))[(1(

)(~)](~[ st
r

rrrya

st
t e

vd

etrsrE  




 









, 

)()(~ trtr   (the boundary condition) .      (40) 

 

The integral in the third term is 

 







 








 




































0

1

0

)(

][

)(

][

][
)( 

  

)(

 

  

 

  
 

  

Tt
a

T

t

st
a

T

t
t

T

t
t

t
T

t
t

eddsed

ds
tY

uE

ds
tr

uE

dsuE
w


.  (41) 

 

The third item 

 

 
. 

0

11

0

1

0

)(11

][')'(
1

*

)(

)(

 

  

1
3








 









 







 

















Tt
a

K

Tt
a

SYK

SYrSrY

K

t
T

t
t

ed

b

ed

vYb

vvvY

b

dsuE
w


















     (42) 

 



 17 

This state variable dependent hedging component contains only bonds and it is horizon-

dependent. The optimal proportions of pension wealth invested in bonds and equities are 
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          (43) 

The optimal proportion of pension wealth invested in risk-free assets can be calculated by 

using 

 *)(*)(1)*( ttt SBR   .      (44) 

  

From the above results, it is clear that optimal asset allocation is horizon-

dependent when terminal utility is a function of the replacement ratio. The horizon 

dependent change is a shift between cash and bond funds, whereas the proportion in the 

stock is constant. When the relative risk aversion >1, there is shift from cash to bond 

over time. When the relative risk aversion <1, there is shift from bond to cash over time. 

When the relative risk aversion =1, there is no shift between bond to cash over time. 

The wage and current pension ratio process is simulated with parameters in 

Table1 by a numerical method (Higham 2001). I assume that ))(,( trta  is of the form 

)](exp[ 10 trdd  with 30 d and 5.31 d , as Cairns et al (2006). This assumption of the 

annuity rate implies 5.3ad and 25.12ac . Because of the assumption that there is no 

further contribution, the initial replacement ratio has been assumed to be 0.05. Fig. 2 

shows the relationship between relative risk aversion and the evolution of the 

replacement ratio for 1 . The larger the relative risk aversion, the smaller the expected 

final replacement ratio, because the less risk averse individual will short-sell more cash 

asset to hold more assets in bond and stock.  
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Fig.2 The evolution of current replacement ratio during the accumulation 

phase for different values of relative risk aversion, no contribution. Results 

are from 100 simulations for each curve. 

 

 

 

 

 

Fig.3 The evolution of optimal proportions of pension wealth invested in cash, 

bond and stock d during the accumulation phase for two different values of 

relative risk aversion, . A.  =2. B.  =6.  

 

When <1, the terminal replacement ratio increases with  initially. After reaching a 

maximum, the terminal replacement ratio decreases as  increases. With parameters in 
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Table 1,  for the maximum of expected terminal replacement ratio is around 0.6, when 

the short-sale of cash asset is the highest. Fig.3 shows how the optimal proportions of 

pension wealth invested in cash, bond and stock evolve during the accumulation phase of 

the pension plan. The proportion invested in stock is constant over lifetime of the pension 

plan. For the more risk averse plan members (=6), the proportions in stock and bond are 

smaller than more risk tolerant plan members (=2), so is the short-sale of cash assets. 

For >1, the shift from cash to bond over time is actually an increase in the amount of 

cash borrowed in order to buy more bonds. 

 

 

 

 

Fig.4 The evolution of optimal proportions of pension wealth invested in cash, 

bond and stock d during the accumulation phase for two different values of 

relative risk aversion, , with the risk premium mS=0.04. A.  =2. B.  =6.  

 

The parameters used in the simulations, like volatilities, r and S, have a profound 

influence on the optimal proportions of the three assets. The proportion of wealth 

invested in the stock decreases in the stock volatility S and increases in the stock risk 

premium mS. The proportion invested in the bond decreases in interest rate volatility r. 

The proportion invested in cash assets increases in S and decreases in interest rate 

volatility r. Those parameters commonly used in pension and portfolio studies tend to 

indicate that equities are not so risky relative to their expected returns. The risk premium 

appears to more than compensate the extra risk. The equity risk premium of 0.06 in Table 

1 is an estimate based on historical stock return data in the United States, and it may not 
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be as high in future as in the past (Blanchard 1993; Campbell and Shiller 2001; Fama and 

French 2002; Jagannathan, McGrattan and Scherbina 2001). Fig.4 shows the optimal 

asset allocation with an equity risk premium of 0.04, which is fairly common choice in 

recent literature (Fama and French 2002; Campbell and Viceira 2002; Gomes and 

Michaelides 2005). The proportion invested in stocks is much lower than that with an 

equity risk premium of 0.06, while the proportion in bonds only marginally lower. 

 

4.2. Optimal asset allocation with hedgeable wage income 

 When the market is complete and wage incomes are fully hedgeable ( 0Y ), u, 

,  and Z in equation (18), become  

 )]()
2

1
([

2222
rdvdcvdvG

a
u aSSYraarYarYY  


, 











SrrS

rK

v

b



 0
' , 

  ' )( SSYrrYa vvd   , 

   ' Sr ZZZ  .        (45) 

The diffusing term of the state variables in equation (20) becomes 
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To borrow against future wage income it is necessary to calculate the market 

value at time t for future premiums payable between t and T. Let Q be the risk-neutral 

pricing measure and )(
~

tZ r  and )(
~

tZ S  independent standard Q-Brownian motions (Cairns 

et al 2006), the wage process under Q is 

 

  )(
~

)(
~

))()(()()( tZdvtZdvdtvvtrttYtdY SSSYrrrYSSYSrrYrY   , 

           (47) 

which implies that  
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           (48) 

Here r is a measure of how interest/bond volatility will affect wage, and S is a scale 

factor measuring how stock price volatility affects wages. The market value at time t for 

future premiums payable between t and T is then 
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           (49) 

The pension plan can have an additional wealth of )()( tftY by short-selling a 

replicating portfolio of value )()( tftY , which will be paid off exactly by future 

contributions from wage incomes. The total pension wealth enhanced with the present 

market value of future contributions is )()()( tftYtW  . The optimal composition of 

pension fund will be the same as in the case of no wage income contribution, but the 

optimal terminal utility function will have the form 
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The optimal strategy is to hold )()( tftY  in the replicating portfolio and invest the 

)()()( tftYtW   in the optimal composition of pension fund wealth. Such a treatment 

of hedgeable wage income risk is often applied in portfolio and pension studies (Deestra 

et al 2003; Cairns et al 2006). The composition of the replicating portfolio can be written 

in vector form 
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In the above equation, the superscript R indicates replicating portfolio. 

The sum )()()()(
~

tftYtWtW  can be denoted as the augmented pension 

wealth and
),(

)(
)()(

~

rta

tf
tGtG  augmented wealth-to-wage ratio. The matrix 

representation of the replacement ratio SDE and the HJB equation for the augmented 

replacement ratio is the same as that when there is no further income contribution, 

although the parameters u, , , Z and  in equations (18) and (20) are replaced by those 

defined in equations (45) and (46). The optimal portfolio composition when expressed in 

matrix form is the same as that without further contributions from wage incomes in the 

preceding subsection.  

Substituting , , Z and  in equations (45) and (46) into the optimal solution, 

equation (27) or (28), the optimal proportions of pension wealth invested in bonds and 

equities are 
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          (52) 

The optimal proportion of pension wealth invested in risk-free assets can be calculated by 

using 

 *)(*)(1)*( ttt SBR   .      (53) 

From the above results, it is clear that the optimal proportions of pension wealth invested 

in the three asset categories are horizon-dependent. The horizon dependent change, like 

that with non-hedgeable wage risk and no further pension contribution, only happens in 

the cash and bond funds. The proportion invested in the stock does not change. 
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Profiles of Replacement Ratio during 

Accumulation Phase

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45

Time

R
e
p

la
c
e
m

e
n

t 
ra

ti
o

1

1.5

2

5

10

20

 

 

Fig.5 The evolution of current replacement ratio during the accumulation 

phase for different values of relative risk aversion, with fully hedgeable wage 

income. Results are from 100 simulations for each curve. 

 

 

 

Fig.6 The evolution of optimal proportions of financial wealth (the sum 

of pension wealth and the short-sold wage replicating portfolio) invested in 

cash, bond and stock during the accumulation phase for two different values 

of relative risk aversion, . A.  =2. B.  =6. 

 

Optimal Proportions of Cash, Bond and Share in

Financial Wealth: =6, equity risk premium=0.06
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 Using the same set of parameters as those in Table 1, I have simulated the current 

pension ratio process for hedgeable wage income with a contribution rate of 10% (Fig. 5). 

The patterns of results are essentially the same as that of a lump sum invested at the 

beginning with non-hedgeable wage risk and no further pension contribution. With the 

short-sale of wage-replicating portfolio, the pension plan in fact consists of two portfolios. 

One is the pension portfolio, and the other the short-sold wage replicating portfolio which 

is to be paid off by future wage contributions. The sum of the two is the financial wealth 

(in hand) of the pension plan. Since the value of the wage replicating portfolio will 

decrease gradually and stochastically to zero by the time of retirement, it adds further 

horizon dependence of the optimal portfolio composition. Fig.6 shows the optimal 

proportions invested in the financial wealth over lifetime of the pension plan. 

 

5. Optimal asset allocation when wage income is not hedgeable 

In section 4, the wage income is hedgeable such that future pension contributions 

can be used in pension portfolio investment by short-selling a portfolio that replicates the 

wage income. If the wage income is not hedgeable, there is no analytical solution for the 

optimal asset allocation problem with power utility. With the market parameters in Table 

1, the optimal proportions invested in cash, bond and stock are derived by numerical 

simulation. Because deriving the optimal asset allocation strategy for a continuous-time 

process spanning 45 years by Monte Carlo simulation needs considerable computing 

power, the solution is approximated by dividing the 45 years into 10 periods starting at 

the beginning of year 1, 6, 11, 16, 21, 26, 31, 36, 41 and 45 respectively and assuming 

that the asset allocation strategy does not change within each period. With each period, 

the asset return and the growth of pension wealth are simulated as continuous-time 

processes. This simplification greatly reduces the computing complexity of the problem, 

and the results still provide some useful insight on the optimal asset allocation strategy 

when wage incomes are not hedgeable. 

The simulation is performed by using the same numerical method in Section 4 

(Higham 2001) for stochastic differential equation. An allocation grid of proportions in 

bond and stock in each period is used to generate the terminal wealth and calculate the 

terminal utility. One hundred simulations are carried out for each sequence of 
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combinations over the 10 periods. The expected terminal utility is calculated as the 

average of terminal utilities from the 100 simulations. The sequence of combinations 

over the 10 periods that gives the highest expected terminal utility is the (approximated) 

optimal asset allocation strategy. 

 

 

Fig.7 The evolution of optimal proportions of pension wealth invested in 

cash, bond and stock during the accumulation phase when the wage income is 

not hedgeable, for two different values of relative risk aversion, . A.  =2. B. 

 =6. Results are from 100 simulations for each curve. 

 

 The results are shown in Fig.7. The optimal asset allocation is still horizon 

dependent. The proportions invested in bonds and stocks are higher in early stages than 

those when wage replicating portfolio is used, hence more short-sale of cash assets. The 

increase in the proportion of risky assets is mainly in bonds. The increase in stock is 

small. There are two opposing effects in the evolution of optimal proportion in bonds. 

The effect of non-hedgeable wage decreases the optimal proportion in bond (and stock) 

as retirement approaches; while the optimal proportion in bond without wage income 

contribution increases as retirement approaches. Since neither effect is linear, the change 

in the optimal proportion over time seems to have a pattern of decrease, increase, 

decrease and then increase. 

6. Conclusion  

 The optimal asset allocation problem during accumulation phase for terminal 

utility that is a function of replacement ratio is solved analytically and numerically in this 
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paper. When terminal utility is a function of replacement ratio, the optimal portfolio 

composition is horizon-dependent. The proportion invested in equities is constant when 

wage income is hedgeable. There is a switch between cash and stock depends as the 

retirement approaches. When relative risk aversion >1, the switch is from cash to bonds; 

when <1, the switch is from bonds to cash. The proportion invested in the speculative 

component, which corresponds to the “equity fund” of Cairns et al (2006), is constant, 

but the speculative component contains both bonds and equities.  

The horizon dependence of optimal pension portfolio is deterministic under 

assumptions of constant equity risk premium, constant interest rate volatility and constant 

stock return volatility. The short-sale of wage replicating portfolio also contributes to the 

horizon dependence of pension plan financial wealth (the sum of pension portfolio and 

the short-sold wage replicating portfolio), and the effect is stochastic due to the stochastic 

interest rate and stock return. Therefore, the optimal asset allocation strategy in terms of 

financial wealth is “stochastic lifestyling”.  

When wage incomes cannot be hedged due to non-hedgeable wage risk, optimal 

asset proportions can be solved numerically by Monte Carlo simulation. The optimal 

asset allocation is also horizon dependent. The proportions invested in stocks and 

especially in bonds are higher in early stages than those when wage replicating portfolio 

is used, hence more short-sale of cash assets.  
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Substituting the derivatives of the expected terminal power utility function 
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Substituting the optimal proportion composition of pension fund investment * gives 

. 0)(''')'(
1

')'(')'(2

)'(
1

')'(')'(

'')'(
1

')'(')'(

2

1

'')'(
1

')'(')'(

1
)('

2

1

1
'

')'(
1

')'(')'(
1

11111

1111

1111

111111

1112211

1111111

































































































































































GgMgg

Mgg

Mgg

GggMgg

GggGggtrGgg

GguMMggGgg

w

w

w

ww

wwwww

wt
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