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Abstract 

 Inter-temporal optimization and deterministic lifestyle asset allocation 

strategies for defined-contribution pension plans are investigated and compared both 

analytically and numerically. The pension plan is assumed to invest in two types of 

asset, risk free assets and equities, or bonds and equities, and the plan members‟ 

terminal utility a power function of pension wealth at retirement with their final 

wages as numeraire. The optimal asset allocation strategy using two assets is derived 

analytically for fully hedgeable wage incomes and compared numerically with that for 

non-hedgeable wage income and deterministic lifestyle strategy. The deterministic 

lifestyle strategy is shown to be replicable by a static allocation strategy with same 

expected returns and lower variances. The inter-temporal optimization strategy 

outperforms the lifestyle strategy in numerical simulations both when there is no 

further pension contribution or non-hedgeable wage risk and when the wage income is 

not fully hedgeable.  When there are further pension contributions, the optimal 

proportion invested in the more risky asset is higher than that when future pension 

contributions are transformed into augmented wealth by short-selling a replicating 

portfolio to be paid by future pension contributions. With usual assumptions on 

market parameters, the optimal pension portfolio composition is independent of the 

value of non-hedgeble wage risk and the value of pension contribution rate. 

 

Keywords: Optimal asset allocation; Defined-contribution pension plan; Lifestyle; 

Power utility; Hamilton-Jacobi-Bellman equation; wage risk. 
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1.  Introduction 

 It appears to be a received wisdom that for a defined-contribution (DC) 

pension plan more weight should be put into the potentially high-return, high risk 

stocks (equities) in the early years of the pension plan in order to increase the pension 

wealth, whereas more weight should be put into the riskless or low risk assets in the 

final years of the pension plan to avoid a sudden change in stock market eroding away 

its wealth. The “reason” given by people for doing this is that pension wealth may 

recover from a fall in stock value early in the pension plan, while a fall later may 

leave no time for the pension wealth to recover. Investment strategies guided by such 

thoughts have been termed as lifestyle strategies.  

 Although the lifestyle asset allocation strategy is popular with financial 

advisors and pension fund managers, the thinking behind the simple deterministic 

lifestyle strategy has been contested by academic studies. Samuelson (1969) showed 

that a rational maximizer of expected utility, with constant relative risk aversion and 

facing random-walk securities returns, would rationally invest the same fraction in 

equities at all ages. Mossin (1968), Merton (1969) and Hakansson (1970) also have 

similar conclusions. Campbell and Viceira (2002) gave a detailed exposition on the 

conditions under which the investment horizon is irrelevant. Investors who have only 

financial wealth and who face constant investment opportunities should behave 

myopically, choosing the portfolio that has the best short-term characteristics. Booth 

and Yakoubov (2000) found no evidence in the postwar data to suggest that a lifestyle 

strategy is beneficial. 

The key control variable in the deterministic lifestyle strategies, like in any 

asset allocation strategies, is the asset composition of the pension fund portfolio, 

which has a (higher risk asset to low risk asset) switch time and a simple asset 

composition-time (horizon) relationship. Blake et al (2001) have compared 

deterministic lifestyle and other two simple dynamic allocation strategies with two 

static ones by estimating their value-at-risk with Monte Carlo simulation. The two 

static strategies are a “50/50” allocation strategy with 50% in T-bills and 50% in 

bonds which was found to be the minimum-risk strategy for most asset-return models 

and a „pension-fund-average‟ (PFA) strategy (Blake et al, 2001) which uses the 

average allocation of pension funds in UK and might be considered a high-risk 

strategy on account of its high equity weighting. The deterministic lifestyle has a 
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100% weighting in the PFA portfolio before a certain switching time ts, followed by a 

1/(T-ts) per annum switch into the 50/50 portfolio during the remaining T-ts years of 

the accumulation phase.  Blake et al (2001) found that a static asset allocation strategy 

with a high equity weighting (the 100% PFA strategy) delivers substantially better 

results than the lifestyle strategy and other two simple dynamic strategies. 

 The study of Blake et al (2001) does not examine whether the PFA allocation 

is optimal, and a high risk portfolio could be the optimal asset allocation. As at 31 

March 2006, the PFA asset distribution is 35.8% in UK equities, 28.9% in overseas 

equities, 23.1% in bonds, 7.6% in index-linked gilts, 2.4% in property, 1.8% in cash, 

and 0.4% in other assets (Mellon Analytical Solutions: UK Pension Fund Analysis to 

31 March 2006). The pension funds as a whole may follow the optimal asset 

allocation strategy for pension plans, but it is not certain that this is the case. Nor is it 

clear whether a 100% equity strategy will outperform the lifestyle strategies. In the 

present paper, I try to derive the optimal asset allocation strategy from a simpler two 

asset model and compare the optimal allocation as well as the 100% equity strategy 

with the deterministic lifestyle strategy. 

Since the seminal studies of Samuelson (1969) and Merton (1969, 1971) on 

optimal consumption and portfolio strategies, optimal asset allocation problems have 

been solved under various assumptions (Kim and Omberg 1996; Brandt 1999; 

Sorensen 1999; Brennan et al 1997; Brennan and Xia 2000; Campbell and Viceira 

1999, 2001; Barberis 2000; Liu 2001; Wachter 2002). The later studies demonstrate 

that time-varying investment opportunities result in an inter-temporal hedging 

component in the optimal portfolio composition, whose magnitude depends on the 

investment horizon. Even for constant investment opportunities, the optimal portfolio 

composition may be horizon-dependent under certain conditions. Samuelson (1989) 

found that if an individual needs to assure at retirement a minimum (“subsistence”) 

level of wealth, she has greater risk-taking when young than old. Greater risk-taking 

may lead to a higher proportion of wealth invested in equities.  

The existence of wage incomes also affects the optimal portfolio composition 

and its horizon dependence. Bodie et al (1992) show that investors endowed with a 

(non-tradable) riskless stream of labor income (human wealth) hold more risky assets 

in their youth than with only financial wealth. Campbell and Viceira (2002) suggest 

that in the model with constant relative risk aversion, labor income affects portfolio 

choice by reducing the proportional sensitivity of consumption to financial asset 
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returns, thereby reducing the investor‟s aversion to financial risks. If labor income is 

riskless, a young, employed investor should invest more in stocks than a retired 

investor with identical risk aversion and financial wealth. This is consistent with the 

typical recommendation of financial advisors, but for different reasons. When labor 

income is not riskless, the impact of labor income on optimal portfolio proportions 

depends on the variance of labor income and the correlation between labor income 

and risky asset returns (Viceira 2001). A risky wage income with a positive 

correlation with stock returns tends to reduce the optimal allocation to risky assets 

compared with riskless labor incomes (and labor incomes negatively correlated with 

stock returns). 

One important impact of wage income on the optimal portfolio problem is that 

analytical solution often cannot be derived for constant relative risk aversion (CRRA) 

utility with non-hedgeable wage risks. Most consumption and portfolio studies 

assume no wage income or fully hedgeable wage income so that analytical solution 

can be derived. Those studies dealing with non-hedgeable wage incomes either using 

numerical methods (Heaton and Lucas 1997; Koo 1998, 1999) or an approximate 

analytical solution (Campbell 1993; Campbell and Viceira 1999, 2001; Viceira 2001). 

In pension fund asset allocation strategy, the contribution from wage incomes has to 

be dealt with explicitly because of its prominent role in pension wealth growth. 

Deterministic or fully hedgeable wage incomes have been used in most pension fund 

strategy studies (Boulier et al 2001; Deelstra et al 2003; Vigna and Haberman 2001; 

Haberman and Vigna 2002; Cairns et al 2006). The optimal pension asset allocation 

strategy for CRRA utility with non-hedgeable wage risks has rarely been explored, 

nor is the comparison between lifestyle strategies and optimal pension asset allocation 

strategies with non-hedgeable wage risks. 

The argument(s) in utility functions can change substantially the solution of 

optimal allocation problems, as shown by Samuelson (1989). The objective of 

pension funds is to maximize expected terminal utility. Boulier et al (2001) and 

Deelstra et al (2003) assume that the expected terminal utility is a function of lump 

sum cash over guaranteed minimum benefits, which can be considered as subsistence 

consumption.  Cairns et al (2006) use replacement ratio or wealth-to-wage ratio, 

which take the current standard of living into account, as the argument of expected 

terminal utility. Taking current standard of living into account suggests a role of habit 

formation in the utility function (Spinnewyn 1981; Becker and Murphy 1988). 
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Defined-benefit pension plans are usually determined by final wages (and years of 

service), which also indicates that the need for post-retirement consumption has some 

influence from habit formation.  In this paper, I assume that the expected terminal 

utility is a function of wealth-to-wage ratio. The use of wealth-to-wage ratio as the 

argument of the terminal utility function incorporates the wage risk and its correlation 

with the interest rate and stock returns into the optimal asset allocation decision. It 

also leads to a computational advantage that the optimal portfolio composition with 

commonly assumed stochastic interest rate, stock return, and wage income models 

(Battocchio and Menoncin 2004; Cairns et al 2006) is no longer horizon dependent. 

Since dynamic allocation strategies tend to use two assets or two mutual funds 

and the switch is usually between the riskless asset/low-risk mutual and high-risk 

equities/mutual fund, I use two asset (either cash and equity or bond and equity) inter-

temporal optimization models for the present investigation. In this paper, I first derive 

optimal portfolio composition for pension plans with fully hedgeable wage income 

and model the deterministic lifestyle allocation strategies mathematically; I then show 

that lifestyle allocation strategies can be replicated by a corresponding static 

allocation with same expected returns and less variance; I compare by numerical 

simulation the deterministic lifestyle allocation strategies with the (fully hedgeable 

wage) optimal allocation applied to fully hedgeable wage and non-hedgeable wage 

cases, which show that in both cases the optimal allocation outperforms the 

deterministic lifestyle strategy; finally I try to derive and compare optimal asset 

allocation for both fully hedgeable wage and non-hedgeable wage cases by numerical 

methods.  

This paper is structured as follows. Section 2 presents the market model and 

derives the optimal asset allocation for two assets, cash (or bond) and stock. Section 3 

derives a mathematic presentation of the deterministic lifestyle strategy and its static 

equivalent, which shows that the deterministic lifestyle strategy can be replicated by a 

static allocation with same expected returns and lower variances. Section 4 compares 

the lifestyle allocation strategies with the (fully hedgeable wage) optimal allocation 

applied to fully hedgeable wage and non-hedgeable wage cases and investigates by 

numerical methods the effects of values of non-hedgeable wage risk and pension 

contribution rate on the optimal asset allocation. Section 5 discusses and summarizes 

our results in this paper. 
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2. Model formulation and inter-temporal optimization 

 In this section I will present a market model with three types of asset, riskless 

assets, bonds and equities (stocks), and derive optimal asset allocation strategies for 

pension plans investing in riskless assets and equities, or bonds and equities. The 

reason to limit investment to two assets is for convenience in comparison with 

lifestyle strategies. Lifestyle strategies are most readily modelled with two assets. 

2.1. Market structure and wealth growth model  

The framework of financial market models in Boulier et al (2001), Deelstra et 

al (2003) and Battocchio and Menoncin (2004) are used here. The market is 

frictionless, and there is no transaction cost or constraint on short-sale. The 

uncertainty in the financial market is described by two standard and independent 

Brownian motions Zr(t) and ZS(t) with ],0[ Tt , defined on a complete probability 

space (, F, P) where P is the real world probability. The filtration F =F (t) 

],0[ Tt  generated by the Brownian motions can be interpreted as the information 

set available to the investor at time t.  

The instantaneous risk-free rate of interest r(t) follows an Ornstein-Uhlenbeck 

process  

)())(()( tdZdttrtdr rr  , 

0)0( rr  .        (1) 

In equation (1),  and  are strictly positive constants, and r is the volatility of 

interest rate (Vasicek, 1977). 

The price of zero-coupon bonds for any date of maturity  at time t, B(t, , r), 

is governed by the diffusion equation (Vasicek 1977; Boulier et al 2001; Deelstra 

2003)  

)(),()),()((
),,(

),,(
tdZtbdttbtr

rtB

rtdB
rrr 




 , 

1),( B , 

where  is the market price of interest rate risk assumed to be constant, and 




 )(1
),(

te
tb


 . 

There are three types of asset in the financial market: cash, bonds and equities. 

The riskless asset has a price process governed by 
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dttrtRtdR )()()(  , 

0)0( RR  .        (2) 

The riskless asset can be considered as a cash fund and the value of units in the cash 

fund at t is then 

 




 

t

dssrRtR
0

)(exp)0()( .      (3) 

There are zero-coupon bonds for any date of maturity, and a bond rolling over zero 

coupon bonds with constant maturity K (Boulier et al, 2001). The price of the zero 

coupon bond with constant maturity K is denoted by BK(t, r) with 

)(])([
),(

),(
tdZbdtbtr

rtB

rtdB
rrKrK

K

K    ,   (4)  

where  



K

K

e
b




1
 . 

For simplicity, only one equity asset, a stock, is considered, which can 

represent the index of a stock market. The total return (the value of a single premium 

investment in the stock with reinvestment of dividend income) of the stock follows 

the stochastic differential equation (SDE)  

 )()(),()()( tdZtdZvdttrtStdS SSrrrSS   , 

0)0( SS  ,        (5) 

where 

222
)()()(),( SrrSSSSS vtrtrmtrtr     (6) 

is the instantaneous percentage change in stock price per unit time. The total stock 

instantaneous volatility  and the market price of stock risk S are assumed to be 

constant, and vrS represents a volatility scale factor measuring how the interest rate 

volatility affects the stock volatility. The risk premium on the stock is SSm  .  

The market as assumed above has a diffusion matrix given by 

 









SrrS

rK

v

b



 0
,       (7) 

and r and S are assumed to be different from zero and the diffusion matrix is 

invertible. 
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The plan member‟s wage, Y(t), evolves according to the SDE (Battochio and 

Menoncin 2004; Cairns et al 2006) 

  )()()())(()()( tdZtdZvtdZvdttrtYtdY YYSSSYrrrYY   , 

0)0( YY  ,        (8) 

where Y(t) and Y are assumed to be constant for simplicity. Here ZY(t) a standard 

Brownian motion independent of Zr(t) and ZS(t); vrY and vSY are volatility scaling 

factors measuring how interest rate volatility and stock volatility affect wage volatility, 

respectively. When Y = 0, the market is complete. Otherwise the market is 

incomplete. The pension fund invests in stock and one of the two other assets, cash 

and bond. The reason for investigating both cash-stock and bond-stock strategies, is to 

take into account the difference between academic portfolio studies and fund 

management practices. Portfolio studies normally use cash (risk free) and stock (risky) 

in two assets models, while fund managers are more likely to use bond and stock.  

When there is no non-hedgeable wage risk (Y = 0), the fully hedgeable wage 

income is governed by 

 )]()())[(()( tdZvtdZvdtrtYtdY SSSYrrrYY   .   (9) 

If the pension fund invests in cash and stock, the SDE governing the wealth process is  

  

. )()()]()()()([

)()()(

SSSrrrSSSSR

SR

dZtWdZvtWdttYmrtWrtW

dttY
S

dS

R

dR
tWtdW

















 

          (10) 

If the pension fund invests in bonds and stock, the SDE governing the wealth process 

is  

  

. )())((

)]()()()()([

)()()(

SSSrrrSSKB

SSrKB

SB

dZtWdZvbtW

dttYmrtWbrtW

dttY
S

dS

R

dR
tWtdW





















   (11) 

2.2. Optimal asset allocation for power terminal utility 

With fully hedgeable wage income, the market value at time t of future 

contributions payable between t and T is then  
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          (12) 

where Q is the risk-neutral pricing measure (Cairns et al 2006),r is a measure of how 

interest/bond volatility will affect wage, and S is a scale factor measuring how stock 

price volatility affects wages. The pension plan can have an additional wealth 

of )()( tftY by short-selling a replicating portfolio of value )()( tftY , which will 

be paid off exactly by future contributions from wage incomes. The total pension 

wealth enhanced with the present market value of future contributions is the 

augmented wealth )()()()(
~

tftYtWtW  .  

Using Ito‟s lemma and substituting dW and dY, the process governing the 

augmented wealth-to-wage ratio )(/)(
~

)(
~

tYtWtX   can be written as 

 dZXdtXuMtXd
~

)''(
~

)()(
~

  ,    (13) 

 )()(
~

TXTX  . 

Using  as the proportion of wealth invested in stock, for pension funds investing in 

cash and stock, 

 
22

SSYrrYrSS vvvmM   , 

 
2222

SSYrrYY vvu   , 

   ' SrrSv   , 

   ' SsYrrY vv   , 

   ' Sr ZZZ  .       (14) 

For pension funds investing in bond and stock, M, u and  are different 

 
22

)( SSYrrYrSKrYrKS vvvbvbmM   , 

 
222

)( SSYrKrYrYYrK vbvvbu   , 

   ' )( SrrSK vb   .      (15) 
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The stochastic optimal control problem for terminal utility that is a function of 

terminal wealth-to-wage ratio is: 

  )),((max TTXUE


 

subject to 

 dZ
X

dt
XMX

w
d

w































~

'

'
~~




, 

 TtXXww  0,
~

)0(
~

,)0( 00 ,     (16) 

where, 
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
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

      (17) 

The corresponding Hamilton-Jacobi-Bellman equation is  
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          (18) 

The system of the first order conditions on H with respect to  is  

 0~
~

)''(
~

~'~
~

2

2
2

2






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


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


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J
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J
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


. (19) 

The optimal portfolio composition is 

 

XX

Xw

XX

X

JX

J

JX

J
M

~~

~
1

~~

~
11

~')'(~)'(')'(*   .  (20) 

Equation (20) shows that the optimal allocation in the stock contains three 

components, which is consistent with earlier studies (Battocchio and Menoncin 2004; 

Cairns et al 2006).  

Assuming that the maximized expected terminal utility of plan members has 

the functional form 

 






 1),(

1

1
),,( xwtgwxtJ ,      (21) 
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the optimal asset allocation problem can be solved analytically. The optimal 

proportion invested in stocks for pension funds investing in cash and stock is 

 

. 
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1
)'(')'(*
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   (22) 

The optimal proportion of pension wealth invested in stocks for pension funds 

investing in bond and stock is 
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
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

          (23) 

The optimal proportion of pension wealth invested in cash or bonds is *1  . The 

optimal portfolio composition is horizon independent. For details of the above 

derivation see Appendix A. From the above analysis, we have the following 

proposition: 

 

Proposition 1: For a pension plan of individuals with fully hedgeable wage income 

and constant relative risk aversion (CRRA) utility, the optimal portfolio composition 

is horizon independent. 

 

Proposition 1 indicates that for fully hedgeable wage incomes, a deterministic lifestyle 

strategy is unlikely to be optimal. 

3. Deterministic lifestyle 

 In order to compare with inter-temporal optimization, I start the analysis with 

a pure equity (stock) strategy as the high risk strategy instead of using the PFA. The 

deterministic lifestyle strategy is assumed to be shifting from equities to riskless 

assets or/and low risk bonds over the lifetime of the pension plan. The “optimization” 

problem in a deterministic life style strategy can be characterized in the following 

way:  

 Let t(0)=0 be the pension plan starting date, T be the pension fund mature date. 

In the market structure as described above, choose an optimal switching-starting time 

ts, Tt s 0 . All pension wealth will be invested in equities before ts, and after ts, a 

proportion  
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s

s

tT

tt




        (24) 

of the pension wealth will be invested in the low risk cash fund or bonds. Two 

different lifestyle strategies are considered: one switches from equities to cash fund 

(equity-cash), and the other switches from equities to bonds (equity-bond). Before I 

try to show that there is no unique optimal switching time for lifestyle strategies, I 

will first demonstrate that the simple deterministic lifestyle strategy can be replicated 

by a static allocation with same expected returns and smaller variances. 

3.1. Replicating deterministic lifestyle strategy with a static allocation 

Markowitz‟s pioneering work on mean-variance analysis demonstrates that 

portfolios with same expected returns can have vary different variance, the risk averse 

investors should choose the one with least variance (Markowitz 1952). Samuelson 

(1969) showed that a rational maximizer of expected utility, with constant relative 

risk aversion and facing random-walk securities returns, would rationally invest the 

same fraction in equities at all ages rather than varying the proportions at different 

ages. Mark Kritzman (2000) more illustratively pointed out in a chapter entitled “Half 

stocks all the time or all stocks half the time?” in his book Puzzles of Finance, that 

these two strategies have the same expected simple return, but the later is riskier. It is 

easy to show that simple lifestyle strategies can be better replicated with static 

allocation strategies, and the corresponding static strategy has the same expected 

return and is less risky. 

 For simplicity, the interest rate is assumed to be constant here so that cash and 

bond assets are the same. Other assumptions are kept the same as those in section 2; 

the initial wealth is W0 and there is no further contribution. Let the switching time be 

ts. The wealth process before the switching time is simply 

 )()(
)(

)(
tdZdtmr

tW

tdW
SSS  .    

And the wealth process after the switching time is  

  )()(
)(

)(
tdZdtmr

tT

tT
rdt

tT

tt

tW

tdW
SSS

SS

S 








 . 

The terminal value of the first process is the initial value of the second process. The 

expected terminal pension wealth at the beginning of the pension plan should be the 

expected terminal value of the second process. 
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The expected terminal pension wealth is  
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It is easy to see that the gradual switch between riskless and risky assets has the same 

expected terminal wealth as a static 50/50 allocation. The expected ts value of pension 

wealth at the beginning of pension plan is 

    
  
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Combining the two results, we have 
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 (25) 

The above equation shows that a simple lifestyle strategy with a switching 

time ts can be readily replicated in terms of expected terminal wealth by a static 

allocation portfolio with a proportion of 
T

tT s

2


invested in the riskless asset and a 

proportion of 
T

tT s

2


 invested in the risky asset.  

While the annualized variance of the lifestyle portfolio return will vary along 

with the changing proportion invested in the risky asset, the annualized variance for 

the static allocation portfolio is constant. Fig. 1 uses parameters given in Table 1 and 

illustrates the terminal wealth distributions from 3 different switching times, from 

beginning (ts=0), ts=15 and ts=30 for a plan of 45 years and their corresponding static 

replicating schemes. The values in Table 1 are commonly used in other pension 

studies (Boulier et al 2001; Deelstra et al 2003; Cairns et al 2006; Battocchio and 

Menoncin 2004) and chosen to facilitate comparison with those earlier studies. The 
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difference in the cumulative wealth distribution density curve between any of the 

lifestyle schemes and their corresponding static ones is small, but the static allocations 

have a smaller probability for lower wealth.  

 

 

Table 1 Parameters used in numerical simulation 

 

Interest rate      Main value Alternative value 

 Mean reversion, ,    0.2 

 Mean rat,      0.05 

 Volatility,r     0.02 

 Initial rate, r0     0.05    

Fixed maturity bond 

 Maturity, K     20 years 

 Market price of risk,     0.15 

Stock 

 Risk Premium, mS    0.06 

 Stock own volatility, S   0.19 

 Interest volatility scale factor, vrS  1    

Wage 

 Wage premium, Y    0.01 

 Non-hedgeable volatility,Y    0.01 

 Interest volatility scale factor, vrY  0.7   

 Stock volatility scale factor, vSY  0.9 

 Initial wage, Y0    10k 

Contribution rate,      10% 

Risk aversion 

 Relative risk aversion,    2   0.8 

Length of pension plan, T    45 
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Fig.1 Distribution of terminal pension wealth (wealth at retirement) of 

lifestyle strategies and their corresponding static strategies. Corresponding 

static schemes are 50% in risk free assets and 50% in equities for ts=0, 1/3 

in risk free assets and 2/3 in equities for ts=15, and 1/6 in risk free assets 

and 5/6 in equities for ts=30. Results are from 1000 simulations of wealth 

growth paths. 

 

 To compare the variances of the lifestyle strategy and its corresponding static 

allocation, the logarithms of portfolio values are used because they are 

computationally simpler. The wealth process before the switching time is simply 

 )()(
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)(
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tWd SSS  .   (26) 

The variance of ))0(ln)((ln WtW s   is 
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And the wealth process after the switching time is  
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The corresponding static allocation process is 
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The variance of ))(var(ln TW is  
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The difference between lifestyle and corresponding static allocation is 
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Therefore, the replicating static portfolio has the same expected return and a smaller 

variance, i.e., the replicating static allocation second-order stochastically dominates 

the lifestyle strategy.  

 In Fig.1, the difference in variances between the lifestyle schemes and the 

corresponding static allocations appears to be small. The maximum additional 

variance can be derived from the first-order condition of the function 
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by the ts=15 (T/3, T=45) curves in Fig.1B, they appear to have the largest difference 

among the three groups. The maximum relative difference in their variances can be 

derived by the first order condition of the function 
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Differentiating g(ts) with respect to ts yields 0* st and the maximum relative 

difference 1/3, or approximately 33.3%. Given 19.0S and the wealth involved in 

the simulation, a 1/3 increase in the variance may not be obvious. This may partly 

explain why the lifestyle strategy is still popular with many financial advisors: the 

actual difference is probably not big enough to show a definite advantage of the static 

allocation. Based on these results, we have 

 

Proposition 2: The simple deterministic lifestyle asset allocation strategy can be 

replicated by a static allocation strategy with same expected return and smaller 

variance (when the instantaneous interest rate is constant). The static allocation 

strategy second order dominates its corresponding lifestyle strategy. 

 

 The preceding analysis also applies to scenarios with stochastic short interest 

rates and risk premiums. To derive the replicating proportions invested in the two 

assets in the case of stochastic short interest rates and risk premiums, explicit function 

forms of r(t) and mS(t) need to be specified. 

 In this subsection I have shown that the simple deterministic lifestyle strategy 

can be readily replicated with a static allocation strategy with less risk. In the 

following subsections I am going to investigate whether there is an optimal switching 

time for lifestyle strategies. 

3.2. Lifestyle strategy for power terminal utility 

In section 2 I have derived the optimal asset allocation for two assets and the optimal 

proportion of stock is constant in both cases. The lifestyle strategy is in fact 

equivalent to providing an allocation strategy for HJB equation with proportion of 

stock  

 
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The optimal switching starting time ts (i.e. strategy ts) will maximize terminal utility if 

such an optimal switching time exists.  

 Obviously there is no such ts that can make the min function, 














stT

tT
,1min , 

satisfy a constant optimal proportion from intertemporal optimization. Therefore, 
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there is no such optimal switching time in a deterministic lifestyle strategy that can 

optimize asset allocation for an individual with power terminal utility function. 

I conjecture that the best or “optimal” switching time for a deterministic 

lifestyle strategy is such a time point that the average proportion over the 

accumulation phase invested in equities equals to the above optimal condition for  

from inter-temporal optimization. The average proportion over accumulation phase 

for a deterministic lifestyle strategy can be calculated with 

 
T

tT

T

tT

T

t sss

22

)( 



 . 

This is to find the lifestyle equivalent of a static allocation with the same expected 

return, a reverse of what was done earlier – to find the static equivalent of a lifestyle 

strategy. Using this equation I hypothesize that the best switching time for an equity-

cash lifestyle strategy is 
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Whether there is a Tt s   depends on the first term in the brackets on the right-hand-

side. If the first term is less than 1, which implies
222

)1()( SSYrrSrYrS vvvv   , 

there must be a Tt s   when  approaches infinity. This condition is satisfied with 

usual (or other plausible) market parameters. 

The best switching time for an equity-bond lifestyle strategy is 
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The condition for Tt s   when  approaches infinity is 

222
)1(])[( SSYrrSrYrSKrSrY vvvvbvv   , which is also satisfied with usual 

(or other plausible) market parameters. These switching times will produce the same 

expected terminal wealth as that of inter-temporal optimization, but with a larger 

variance. From the above equations, an “implied relative risk aversion” can be 

calculated if a preferred switching time ratio Tt s /  in the equity-cash strategy exists 

for an individual, 
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The “implied relative risk aversion” if a preferred switching time ratio Tt s /  in the 

equity-bond strategy exists for an individual is, 
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 The above relations between the “implied relative risk aversion” and switching 

time ratio Tt s /  are drawn in Fig. 2. With the parameters in Table 1, starting from a 

100% stock strategy the “implied relative risk aversion” increases as switching time 

ratio Tt s /  becomes smaller (switch earlier). The “implied relative risk aversion” in a 

equity-cash strategy goes to infinity as Tt s /  approaches the point where 
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This result is consistent with the fact that switching is usually started in the later years 

of a pension plan. As shown in Fig.2A, a switching time ratio of 0.8 (equivalent to 8 

years before retirement for 40 years plan) implies a relative risk aversion (RRA) well 

above 100 (the value is 340).  

The point where the “implied relative risk aversion” in an equity-bond strategy 

goes to infinity is 
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As shown in Fig. 2B with the bond-stock portfolio, a switching time ratio of 0.83 

implies a RRA well above 60 (the value is 169). When the switching time ratio is 

greater than 0.9, the “implied relative risk aversion” is in a plausible range of 2.584-

6.142. The value of 2.584 corresponds to 1/ Tt s . 
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Fig. 2 The relationship between the switching time ratio Tt s /  of lifestyle 

strategy and its “implied relative risk aversion”. A. In cash-stock 

portfolios. B. In bond-stock portfolios. 

  

4. Comparison by numerical methods 

 In this section, I compare the expected terminal utility between lifestyle 

strategies and the optimal asset allocation strategy by numerical simulation. I also try 

to derive the optimal asset allocation for non-hedgeable risk by numerical methods. 

4.1. Parameters for numerical simulation 

 Different values of vrS (for example, -1 and 1) could lead to very different 

optimal bond and cash proportions for more risk averse investors (larger ) (Ma 2007). 

I have tested both 1rSv  and 1rSv . Since there is no substantial difference in the 

optimal allocations between 1rSv  and 1rSv  with the two  values (0.8 and 2) in 

Table 1, I will only present the results from the 1rSv  case.  Table 2 shows the 

optimal proportions invested in different assets for different allocation strategies with 

parameters in Table 1. 

In Table 2, the proportions are analytical solution for fully hedgeable wage 

income ( 0 and 0Y ), but they have also been used for testing numerically the 

scenario where 0 and 0Y . These tests show that the presence of non-

hedgeable risk has only a small effect on the performance of different portfolios and 

the optimal asset allocation, suggesting that if the optimal portfolio composition for 

0 and 0Y scenario is solved numerically, it would be similar to the optimal 
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composition for 0 and 0Y scenario. Minus sign (-) indicates short-sale; -0.271 

in cash means short-selling cash asset valued as 27.1% of the net pension wealth. 

With short-sale of cash asset, the proportion invested in stock is 127.1% of the net 

pension wealth. For the power utility, the optimal proportions are dependent on the 

relative risk aversion.  

 

Table 2 Optimal proportions invested in different assets 

 

Strategies  Utility   Cash  Bond  Stock 

 

Cash-stock  power   -0.271    1.271 

 

Bond-stock  power     -0.0252 1.0252 

 

4.2. Numerical simulation method 

 The Euler-Maruyama method is used for numerical simulation of stochastic 

differential equation (Higham 2001). The SDE 

 )())(())(()( tdZtXgdttXftdX      (35) 

is simulated over [0,T] by using  

 )()()(()( 1111   jjjjjj ZZXgtXfXX   j=1,2,…,N. 

         (36) 

In the above difference equation, RhNTt  /  , tjj  and 
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The terminal utility is calculated from the terminal wealth-to-wage ratio of each 

simulation and 1000 simulations performed for each allocation strategy. The 

cumulative terminal utility distribution density as well as the mean and the standard 

deviation (SD) are then calculated for each allocation strategy.  

4.3. Comparison between lifestyle strategies and inter-temporal optimization 

 Three lifestyle strategies, two inter-temporal optimal strategies, 100% cash or 

100% bond, and 100% equity (stock) strategies are compared by numerical simulation 
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using parameters in Tables 1 and 2. In the lifestyle strategies, the wage contribution is 

added to the pension wealth as it comes in and no short-sale involved. In the inter-

temporal optimal allocation strategy “optimal power, augmented wealth” (“power 

solution borrow” in Fig.3), the present value of future wage contributions is used as 

pension wealth by short-selling a wage replicating portfolio, which will be paid off by 

future wage contributions. In the inter-temporal optimal allocation strategy “optimal 

power, non-augmented” (“power solution no borrow” in Fig.3), the wage contribution 

is added to the pension wealth as it comes in and no short-sale of the wage replicating 

portfolio is involved. In the 100% cash, 100% bond, and 100% equity (stock) 

strategies, the wage contribution is added to the pension wealth as it comes in and no 

short-sale of the wage replicating portfolio is involved. 

Numerical simulations on the expected utility and the utility distribution with 

parameters given in Tables 1 and 2 indicate that optimization for power terminal 

utility dominates the lifestyle strategy with three different switching times for both the 

equity-cash and the equity-bond cases (Tables 3 and Fig.3). Even when the optimal 

allocation derived from borrowing against future wages (“Optimal power, augmented 

wealth”) is used for allocating contribution from wage income and cumulated wealth 

only (without transforming the future wage income contributions into an initial 

augmented pension wealth by short-selling a replicating portfolio) (“Optimal power, 

non-augmented”), the inter-temporal optimization still has a higher expected terminal 

utility than the lifestyle strategy. In the “Optimal power, non-augmented” case, short-

sale in implementing the optimal asset allocation derived for 0Y  scenario is still 

allowed; “non-augmented” means no short-selling the replicating portfolio in order to 

transform the future wage income contributions into the initial augmented pension 

wealth. The 100% stock strategy with parameters commonly used in pension studies 

also has a higher expected terminal utility than the lifestyle strategies. In contrast, the 

100% cash or 100% bonds strategy is least efficient (Table 3). These results are 

consistent with the findings by Blake et al (2001).  

When the optimal asset allocation derived for 0Y  scenario is applied for 

the 0  and 0Y scenario, both the “optimal power, augmented wealth” and 

“optimal power, non-augmented” cases still dominate the lifestyle strategies. There is 

little difference in the performance of the optimal asset allocation between the 0Y  

scenario and the 0  and 0Y scenario (Table 3 and Fig.3). The terminal utility 
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of all asset allocation strategies in the 0Y  scenario is lower than that in the 

0Y  scenario for power utility (Tables 3), suggesting that an extra risk source 

reduces utility. 

 

 

 

Fig.3 Comparison between simple deterministic lifestyle strategies and 

intertemporal optimization, evaluated for power utility, =2. Results are from 

1000 simulations. “Power solution borrow” (i.e. with augmented wealth) is to 

invest in optimal proportions the cash borrowed by hedging against future 

wage income. “Power solution no borrow” (i.e. with non-augmented wealth) 

is to invest the contemporary wage income and cumulated wealth according to 

the optimal proportions without borrowing cash against future wage income. 

A. Equity-cash strategy, 0Y . B. Equity-bond strategy, 0Y . C. Equity-

cash strategy, 0Y . D. Equity-bond strategy, 0Y  

 

The order of expected terminal utility for different allocation strategies using 

bonds and stock is the same as that using cash and stock. The 100% bonds strategy 

has larger expected terminal utility than 100% cash strategy (Tables 3). When =0.8 is 
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used in the simulations, the change in relative risk aversion does not change the order 

of expected terminal utility for different allocation strategies. From those numerical 

results, we have the following proposition. 

 

Proposition 3: The optimal asset allocation from intertemporal optimization, applied 

to both hedgeable and non-hedgeable wage cases, outperforms the simple lifestyle 

asset allocation strategy when the expected terminal utility is a function of wealth-to-

wage ratio. With the current market parameters, the high risk 100% equity strategy 

also outperforms the simple lifestyle strategy.   

 

Table 3 Expected utility of lifestyle strategies and optimal asset allocation  

 

Strategy 

0Y  0Y  

Equity-

cash,  

Equity-

cash,, 

Equity-

bond,  

Equity-

cash,,  

Equity-

bond,  

ts=0 -0.10816 8.085152 -0.12331 -0.14206 -0.12717 

ts=15 -0.09313 8.260456 -0.10353 -0.11486 -0.10857 

ts=30 -0.07580 8.479618 -0.08073 -0.08498 -0.08656 

Optimal power, 

augmented wealth 
-0.03516 10.547960 -0.04023 -0.03534 -0.04031 

Optimal power, 

non-augmented 
-0.05176 9.714139 -0.05809 -0.05179 -0.05809 

100% cash -0.22877 7.069287  -0.22905  

100% bond   -0.19374  -0.19393 

100% equity -0.06009 8.783799 -0.06009 -0.06014 -0.06014 

 

The results shown in Fig.3 and Table 3 are from simulations with RRA=2, 

which is at the lower end of usual RRA estimates. Simulations with RRA=6 produced 

similar results, although the optimal proportion invested in stocks is lower for larger 

RRA value. The optimal proportions with RRA=6 and other parameters in Table 1 are 

shown in Table 4. The short-sale of cash assets in the cash-equity scenario is smaller 
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than that for RRA=2, and there is a positive holding of bonds in the bond-equity 

scenario (whereas there is a short-sale of bond for RRA=2). 

 

Table 4 Optimal proportions invested in different assets with RRA=6 

 

Strategies  Utility   Cash  Bond  Stock 

 

Cash-stock  power   -0.02215   1.022146 

 

Bond-stock  power     0.049143 0.950857 

 

 

Table 5 Expected utility of lifestyle strategies and optimal asset allocation (
410 ) 

with RRA=6 

 

Strategy 

0Y  0Y  

Equity-

cash,  

Equity-

bond,  

Equity-

cash,,  

Equity-

bond,  

ts=0 -0.43051 -1.83301 -1.48325 -0.49921 

ts=15 -0.11739 -0.42752 -0.32436 -0.14434 

ts=30 -0.01635 -0.0346 -0.02924 -0.03799 

Optimal power, 

augmented wealth 
-0.00003 -0.00024 -0.00027 -0.00025 

Optimal power, 

non-augmented 
-0.00164 -0.00155 -0.00168 -0.00158 

100% cash -25.965  -26.3845  

100% bond  -30.8723  -31.9074 

100% equity -0.00171 -0.00171 -0.00176 -0.00176 

 

  

Table 5 summarizes the expected utility of different allocation strategies for 

RRA=6 by numerical simulation. The general pattern is similar to that of RRA=2, 
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with the inter-temporal optimal allocation with augmented wealth producing the best 

outcome and without short-selling wage replicating portfolio (non-augmented) 

producing the second best outcome. The 100% equity strategy leads to better 

outcomes than the lifestyle strategies. The 100% cash and 100% bond strategies have 

the worst outcomes. 

The results of numerical simulation summarized in Fig.3 and Tables 3 and 5 

indicate that the inter-temporal optimal allocation strategy dominates the deterministic 

lifestyle strategies with the usual assumptions on market parameters and the usual 

estimates on relative risk aversion coefficient, no matter whether it is applied by 

short-selling a wage replicating portfolio or just adding the wage contribution to 

pension wealth as it comes in. The high risk 100% equity strategy also outperforms 

the deterministic lifestyle strategies. 

 

4.4. Simulation with lower equity risk premium 

 In the numerical simulation of preceding subsection, I have used an equity risk 

premium of 0.06 (Table 1), which is an estimate based on historical stock return data 

in the United States. It has been argued that average stock returns are likely to be 

lower in the future than they have been in the past (Blanchard 1993; Campbell and 

Shiller 2001; Fama and French 2002; Jagannathan, McGrattan and Scherbina 2001). 

Using an equity risk premium of 0.04 is a fairly common choice in recent literature 

(Fama and French 2002; Campbell and Viceira 2002; Gomes and Michaelides 2005). 

In this subsection I investigate how a lower equity risk premium affect the optimal 

asset allocation strategy and compare the performances between deterministic 

lifestyle strategies and the inter-temporal optimal allocations by numerical simulation. 

 When equity risk premium is 0.04 and RRA=2, the optimal proportions 

invested in cash and stocks are 0.003151 and 0.996849 respectively for cash-stock 

scenario; and the optimal proportion invested in bonds and stocks are 0.174696 and 

0.825304 respectively for bond-stock scenario. The proportions invested in stocks are 

lower than those for equity risk premium of 0.06. The results on the expected utility 

are shown in Table 6. The intertemporal optimal asset allocation with or without 

short-selling the wage replicating portfolio outperforms the lifestyle strategies. One 

noticeable result is that the 100% stock strategy outperforms both the lifestyle 

strategies and the intertemporal optimal asset allocation without short-selling the 

wage replicating portfolio (“optimal power, non-augmented”) in the two equity-cash 
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scenarios. This result indicates that the 100% stock strategy is closer to the “real” 

optimal allocation, when a wage replicating portfolio is not used, than the “optimal 

power, non-augmented” allocation in the two equity-cash scenarios. 

 

Table 6 Expected utility of lifestyle strategies and optimal asset allocation with 

equity risk premium of 0.04 and RRA=2 

 

Strategy 

0Y  0Y  

Equity-

cash,  

Equity-

bond,  

Equity-

cash,,  

Equity-

bond,  

ts=0 -0.17093 -0.14899 -0.17072 -0.13537 

ts=15 -0.15278 -0.13802 -0.15255 -0.13001 

ts=30 -0.13005 -0.12326 -0.12981 -0.12637 

Optimal power, 

augmented wealth 
-0.09864 -0.09309 -0.09929 -0.09334 

Optimal power, 

non-augmented 
-0.10627 -0.10043 -0.11031 -0.10016 

100% cash -0.22877  -0.22905  

100% bond  -0.19374  -0.19393 

100% equity -0.10621 -0.10621 -0.10629 -0.10629 

 

 

 When equity risk premium is 0.02 and RRA=2, the optimal proportions 

invested in cash and stocks are 0.277123 and 0.722877 respectively for cash-stock 

scenario; and the optimal proportion invested in bonds and stocks are 0.3746 and 

0.6254 respectively. The proportions invested in stocks are even lower than those for 

equity risk premium of 0.04. The results on the expected utility are shown in Table 7. 

The inter-temporal optimal asset allocation with short-selling the wage replicating 

portfolio (“optimal power, augmented wealth”) produces the best outcome, and the 

inter-temporal optimal asset allocation without short-selling the wage replicating 

portfolio (“optimal power, non-augmented”) produces the second best outcome. The 

100% stock strategy does not outperform the inter-temporal optimal asset allocation 

without short-selling the wage replicating portfolio (“optimal power, non-augmented”) 
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in the equity-cash scenarios. The deterministic lifestyle strategy with switching time 

ts=0 outperforms the 100% stock strategy in the two equity-bond scenarios. The 

results in this subsection suggest that a lower equity risk premium reduces the optimal 

proportion invested in stocks, but the optimal allocation with short-sale of the wage 

replicating portfolio still produces the best outcome; however, the optimal allocation 

derived with short-selling the wage replicating portfolio may not be the optimal 

allocation for the scenario where short-selling wage replicating portfolio is not 

allowed. 

 

Table 7 Expected utility of lifestyle strategies and optimal asset allocation with 

equity risk premium of 0.02 and RRA=2 

 

Strategy 

0Y  0Y  

Equity-

cash,  

Equity-

bond,  

Equity-

cash,,  

Equity-

bond,  

ts=0 -0.20158 -0.17672 -0.20137 -0.16115 

ts=15 -0.19566 -0.1774 -0.19541 -0.16714 

ts=30 -0.18757 -0.17798 -0.18727 -0.18038 

Optimal power, 

augmented wealth 
-0.14957 -0.12458 -0.15002 -0.12502 

Optimal power, 

non-augmented 
-0.16982 -0.14198 -0.16997 -0.15961 

100% cash -0.22877  -0.22905  

100% bond  -0.19374  -0.19393 

100% equity -0.17702 -0.17702 -0.17714 -0.17714 

 

 

4.5. The effects of non-hedgeable wage risk and pension contribution rate on the 

optimal asset allocation 

Although Table 3 and Fig.3 appear to indicate that the optimal proportions 

solved for the 0Y  scenario is still optimal for the 0  and 0Y scenario, the 

results in Table 6 suggest the optimal allocation derived with short-selling the wage 
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replicating portfolio may not be the optimal allocation for the scenario where short-

selling wage replicating portfolio is not allowed. In this subsection I will explore 1) 

whether the value of non-hedgeable wage risk ( Y ) will affect the optimal asset 

allocation, and 2) whether different pension contribution rate will affect the optimal 

allocation when short-selling wage replicating portfolio is not used. Since there is no 

analytical solution for power utility when contribution from wage incomes is not 

hedged or stopped, these two problems have to be solved by numerical simulations.  

 

Table 8 Optimal proportion in stock for augmented pension wealth  

(with parameters in Table 1 except Y  and ) 

 
Equity-cash Equity-bond 

= 0.02 1.0  5.0  02.0  1.0  5.0  

0Y  1.29 1.29 1.29 1.04 1.04 1.04 

01.0Y  1.29 1.29 1.29 1.04 1.04 1.04 

02.0Y  1.29 1.29 1.29 1.04 1.04 1.04 

1.0Y  1.29 1.29 1.29 1.04 1.04 1.04 

2.0Y  1.29 1.29 1.29 1.04 1.04 1.04 

 

Table 8 summarizes the results for different values of non-hedgeable wage 

risk ( Y ) and pension contribution rate () when a wage replicating portfolio is short-

sold for both 0Y  and 0Y scenarios (even though the wage income cannot be 

fully hedgeable for 0Y ). If the investors short-sell the same replicating portfolio 

of value )()( tftY according to equation (12) when 0Y , the optimal proportion 

invested in stocks for the pension portfolio (excluding the short-sold replicating 

portfolio) is the same as that when 0Y for pension plans investing in cash and 

stocks (Table 8). This is also true for pension plans investing in bonds and stocks. The 

value of pension contribution rates has no effect on the optimal proportion invested in 

stocks. These results show that the optimal proportion in stocks is independent of the 

value of Y or the pension contribution rate  (Table 8). It has been shown in the 

subsection 4.3 that the expected terminal utility is lower in the 0Y case than that 

in the 0Y case for the pension portfolio. Since the replicating portfolio of value 
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)()( tftY according to equation (12) may not be exactly paid by the future pension 

contributions in the 0Y case, the expected terminal utility from overall wealth (the 

sum of pension portfolio and the short-sold replicating portfolio) is lower in the 

0Y case than that in the 0Y case. The value of optimal proportion in stock by 

numerical methods is slightly different from the earlier analytical solution, because 

the number grids are discrete and there are rounding errors in computation. 

Table 9 summarizes the results for different values of non-hedgeable wage 

risk ( Y ) and pension contribution rate () when a wage replicating portfolio is not 

short-sold for either 0Y  or 0Y scenarios. If the investors do not augment their 

initial pension wealth by short-selling the replicating portfolio of value 

)()( tftY according to equation (12), the optimal proportion invested in stocks is 

the same for both 0Y and 0Y cases. This is true for pension plans investing in 

cash and stocks as well as pension plans investing in bonds and stocks (Table 9). The 

value of Y or the pension contribution rate  does not affect the optimal proportion 

in stocks. The optimal proportion in stocks without short-selling the replicating 

portfolio is higher than that with augmented pension wealth (by comparing Table 9 

with Table 8), which is consistent with previous studies (Bodie et al 1992; Viceira 

2001).  

 

Table 9 “Optimal” proportion in stock for non-augmented pension wealth and 

wage contributions  

(with parameters in Table 1 except Y  and ) 

 
Equity-cash Equity-bond 

= 0.02 1.0  5.0  02.0  1.0  5.0  

0Y  1.41 1.41 1.41 1.08 1.08 1.08 

01.0Y  1.41 1.41 1.41 1.08 1.08 1.08 

02.0Y  1.41 1.41 1.41 1.08 1.08 1.08 

1.0Y  1.41 1.41 1.41 1.08 1.08 1.08 

2.0Y  1.41 1.41 1.41 1.08 1.08 1.08 

 



 31 

 The results in this subsection can explain why the 100% stock strategy 

outperforms the “optimal power, non-augmented” strategy in the equity-cash scenario 

with an equity risk premium of 0.04 in the preceding subsection 4.4. With a future 

contribution stream, the optimal proportion in the risky assets is higher than that 

without a future contribution stream. With an equity risk premium of 0.04, the optimal 

proportion in the risky asset happens to be more than 100% for the equity-cash 

scenario with a future contribution stream, whereas the optimal proportion in the risky 

asset for the equity-cash scenario without a future contribution stream is smaller than 

100%. Therefore, the 100% stock strategy is closer to the optimal proportion. From 

the numerical results in this subsection, we have the following proposition. 

 

Proposition 4: If the optimal asset allocation strategy for the non-hedgeable wage 

( 0Y ) case is horizon-independent, it is the same as the optimal asset allocation 

strategy for the fully hedgeable wage ( 0Y ) case. 

 

 To be accurate, the “optimal” proportions in Table 5 are in fact the best or 

optimal static allocation. The numerical procedure used here is to search the best 

static allocation that leads to the highest utility when applied to all time points. Only 

when the horizon-independence of the optimal strategy for the non-augmented 

pension wealth and wage contributions has been proved, can these proportions be the 

true optimal allocation. This paper has not proved the horizon-independence. The 

numerical procedure for the true optimal allocation will look for the optimal 

proportion at each time point, which is computationally more demanding. From the 

studies of Bodie et al (1992) and Viceira (2001), the optimal strategy for the non-

augmented pension wealth and wage contributions is likely to be horizon dependent. 

However, the horizon-dependence might be true for both 0Y and 0Y cases if a 

wage replicating portfolio is not short-sold, and my conjecture is that the optimal 

allocation is still the same for both 0Y and 0Y cases. 

5. Conclusion  

 In this paper I derive optimal asset allocation strategies for power terminal 

utilities using two assets, cash and stock, or bond and stock, when wage incomes are 

fully hedgeable. The optimal allocation from the two asset models is used as a 
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benchmark for comparison with deterministic lifestyle asset allocation strategies and 

with non-hedgeable wage risk scenario.  

The deterministic lifestyle strategies can be mimicked by static allocation 

strategies with same expected return and less risk, and therefore they are second order 

dominated by their corresponding static allocation strategies. They cannot be the 

optimal asset allocation strategies for pension funds. A risk-averse investor would 

prefer a static portfolio with the same expected return and less risk. There is no 

solution of optimal parameters for deterministic lifestyle strategies that can lead to the 

same result of inter-temporal optimization in terms of the expected terminal utility. 

The conditions for optimization cannot be met by choosing a suitable switching time 

or scheme in deterministic lifestyle strategies.    

 When terminal utility is a function of wealth-to-wage ratio, a pure cash or pure 

bond strategy is the most risky, with both a lower expected terminal utility and a 

higher variance. This result arises because wage growth is more in line with the 

growth of economy and stock market than risk free interest rate. Therefore, risk free 

assets are more risky in terms of wealth-to-wage ratio than high risk equities with 

commonly used market parameters. The deterministic lifestyle strategies produce 

worse results than inter-temporal optimization or a static high risk 100% equity 

strategy in numerical simulations. With the commonly assumed market parameters, if 

there is a constraint on short-sale, the optimal asset allocation strategy would be the 

100% equity strategy. 

 The optimal portfolio composition is independent of the value of non-

hedgeable wage risk ( Y ) and pension contribution rate () in the range examined in 

the present paper. The existence of a future contribution stream increases the optimal 

proportion invested in the risky asset by the same amount, no matter whether 

0Y and 0Y . As long as the hedgeable part of wage income is hedged by short-

selling a replicating portfolio, the optimal asset allocation is the same no matter 

whether 0Y and 0Y . An increase in relative risk aversion or a decrease in 

equity risk premium reduces the optimal proportion invested in the risky asset (stock). 

The expected terminal utility is lower for 0Y case than that for the 0Y case. 

 In conclusion, the optimal asset allocation strategy from inter-temporal 

optimization produces higher expected terminal utility than that of deterministic 

lifestyle strategies. The deterministic lifestyle strategies produce lower expected 
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terminal utility than the 100% equity strategy with commonly assumed equity risk 

premium. The 100% cash or 100% bond strategy is the least efficient and most risky 

in long term. The optimal portfolio composition is the same for the 

0Y and 0Y cases when the pension wealth is augmented by short-selling a 

replicating portfolio or when contribution from wage income is added to the pension 

when it comes in. 
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 Appendix A  Solution for two assests with hedgeable wage 

income (power utility) 

The corresponding Hamilton-Jacobi-Bellman equation for the optimal asset 

allocation problem using two assets is  
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The optimal portfolio composition from the first order condition is 
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Assuming that the maximized expected terminal utility of plan members has 

the functional form 
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In the above equations Jw, Jxw and gw are vectors, and Jww and gww are matrices. 

Substituting the derivatives of expected terminal power utility function into the above 

HJB equation gives 
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          (A-4) 

Substituting the optimal proportion composition of pension fund investment * and 

simplifying, the above equation becomes 
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By the Feynman-Kac formula (Øksendal 2000; Duffie 2001), there exists a 

probability measure Q() such that 
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In equation (A-6), Ft is the filtration, which can be interpreted as the information 

available to the investor at time t. The s in )(s stands for time, and the function is 

written as )(s  to indicate that  might be a function of time (if one or more of the 

parameters in M, ,  and u are time dependent). In this paper, all parameters in M, , 

 and u are assumed to be constant, and therefore )(s are constant. 



 41 

Using the results from the Feynman-Kac formula, i.e. (A-6), the optimal 

portfolio composition (equation (A-2)) is 
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Since all the terms in the function (s) do not depend on the state variables r and Y, its 

derivatives with respect to wt are zero and the above equation becomes 
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In equation (A-8), only the second term, i.e. the speculative component, depends on 

the relative risk aversion .  

For pension plans investing in cash and stocks, the first item in the above 

equation is 
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The optimal proportion of pension wealth invested in stocks is 
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For pension plans investing in bonds and stocks, the first item in the equation (A-8) is 
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The second item is 
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The optimal proportion of pension wealth invested in cash or bonds is *1  . 
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