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Abstract 

Optimal asset allocation strategies of defined-contribution pension plans for members 

whose terminal utility is a power function of wealth-to-wage ratio is investigated in 

this paper. The portfolio problem is to maximize the expected terminal utility in the 

presence of three risk sources, interest risk, asset risk and wage risk. A closed form 

solution is found for the asset allocation problem and the optimal portfolio 

composition is horizon independent when there is no non-hedgeable wage risk or 

there is no further contribution from wage incomes. When future contributions from 

wage income are hedged by short-selling a wage replicating portfolio, the optimal 

composition of financial wealth on hand (i.e. pension portfolio wealth + short-sold 

wage replicating portfolio) is horizon-dependent. The optimal asset allocation strategy 

is equivalent to invest in two mutual funds, one of which is to hedge wage risk and the 

other a speculative fund to satisfy the risk appetite of the plan member.  

  

Keywords : Defined-contribution pension plan; Wage risk; Optimal asset allocation; 

Power utility; Hamilton-Jacobi-Bellman equation 



 2 

1. Introduction 

The optimal asset allocation problem for defined-contribution (DC) pension 

plans can be viewed as a special form of consumption and portfolio problem. Most 

studies on the consumption and portfolio allocation strategies over multiple periods 

are built upon the classical dynamic optimization model by Merton (1969, 1971), 

which assumes constant interest rates and constant risk premiums without wage 

incomes. Since empirical studies show that stochastic variations in interest rates and 

in risk premiums exist, it may not be appropriate to assume a constant instantaneous 

interest rate in portfolios with a long horizon such as pension funds. Later studies 

extend Merton’s work with stochastic interest rates (Sorensen, 1999; Liu, 2001; 

Campbell and Viceira, 2002) or stochastic risk premiums (Kim and Omberg, 1996). 

Studies on DC plan strategies generally assume stochastic interest rates. 

With stochastic interest rates, the financial market is usually assumed to have 

three types of asset: cash, bonds and equities (stocks). Boulier et al (2001), Deelstra et 

al (2003) and Battocchio and Menoncin (2004) use these three assets in their studies 

on optimal asset allocation strategies for DC pension plans. In those studies, the stock 

price follows a geometric Brownian motion which includes volatilities from risk 

sources of both the interest rate and the stock market. Although stochastic interest 

rates make bonds distinct from cash and equities, in some studies bonds are not 

explicitly differentiated from other risky assets. Vigna and Haberman (2001) assume 

two assets: one low risk asset and one high risk asset. Haberman and Vigna later 

(2002) extended their assumption into a sequence of N assets with increasing returns 

and volatilities. Cairns et al (2006) use one risk-free asset and N risky assets, and the 

return on each risky asset follows a geometric Brownian motion with volatilities of N 

risk sources.  

While Merton type consumption and portfolio studies often ignore wage 

incomes for computational simplicity (Merton 1969, 1971; Kim and Omberg 1996; 

Sorensen 1999; Liu 2001), in pension asset allocation studies wage incomes usually 

appear explicitly in the asset allocation problem. Contributions from wage income and 

returns from investing pension wealth are both important for the growth of pension 
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wealth. Various treatments of wage income have been used in studies on asset 

allocation strategies for DC pension plan. Deterministic wage processes are used in 

Boulier et al (2001), Deelstra et al (2003), Vigna and Haberman (2001), and 

Haberman and Vigna (2002). Cairns et al (2006) and Battocchio and Menoncin (2004) 

used stochastic wage incomes, which are governed by geometric Brownian processes. 

The wage income process includes volatilities from risk sources of the interest rate 

and the stock market, with or without a non-hedgeable risk that is independent of 

financial market risk sources. Pension plan members will put a constant fraction of 

their wages into the pension fund. 

One important difference between pension fund asset allocation problem and 

Merton’s consumption and portfolio problem is that, the objective of pension plans is 

to maximize the terminal utility and there is no consumption or consumption-derived 

utility before retirement. The optimal allocation strategy for a DC pension plan 

depends critically on the specifications of terminal utility function. Power utility 

(Boulier et al 2001; Deelstra et al 2003; Cairns et al 2006), exponential utility 

(Battocchio and Menoncin 2004; Hendersen 2005) and quadratic disutility (Vigna and 

Haberman, 2001; Haberman and Vigna, 2002) have been used in solving the optimal 

asset allocation problem for DC pension plans. Since power utility is usually thought 

to be more consistent with empirical data, most DC pension plan studies have 

assumed a power function for terminal utility (Boulier et al, 2001; Cairns et al, 2006; 

Deelstra et al, 2003). With power utility, people make the same decision regardless of 

their wealth levels when the risks and the cost to avoid them are expressed as 

fractions of wealth. 

Defined benefits (DB) pension plans have often been used as bench mark to 

assess the performance of DC pension plans. Pensions from defined benefits (DB) 

plans are generally based on final wages, implicitly assuming that pension income 

should be comparable to the existing standard of living. The intention to match DB 

plan benefits indicates implicitly the need to have pension income comparable to 

existing wages in DC plans and some role of habit formation (Spinnewyn 1981; 

Becker and Murphy 1988) in terminal utility. To relate terminal utility with the 
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existing standard of living, Cairns et al (2006) assume that terminal utility is a 

function of wealth-to-wage ratio or replacement ratio (pension-to-final wage ratio). 

The use of replacement ratio is more appropriate for an individual who intends to 

convert her pension wealth into a life annuity on retirement, which suggests that she is 

more risk averse and perceiving life annuities as good value. 

Using one risk-free asset and N risky assets, Cairns et al (2006) find that 

optimal asset allocation in risky assets needs three efficient mutual funds if the 

terminal utility is a function of replacement ratio. One mutual fund (which is heavily 

dominated with equities) is to satisfy the risk appetite of the plan member. The second 

fund (which is heavily dominated with cash) is to hedge the wage risk. The third fund 

(which is heavily dominated with bonds) is to hedge interest rate risk. Cairns et al 

(2006) call the three funds “equity”, “cash” and “bond” fund respectively. If the 

terminal utility is a function of wealth-to-wage ratio, the optimal asset allocation 

needs only the “equity” fund and the “cash fund”.  

Although Cairns et al (2006) indicated that the “equity”, “cash” and “bond” 

funds are heavily dominated by equities, cash and bonds respectively, they did not 

provide a measure on how to gauge the dominance. Is it possible that the “equity” 

fund is dominated by bonds in some scenarios? The present paper extends the study of 

Cairns et al (2006) by investigating the composition of those mutual funds. For 

simplicity, I assume that the pension plan can invest in three assets, cash, bond and 

stock (Boulier et al 2001; Deelstra et al 2003; Battocchio and Menoncin 2004) and 

that the terminal utility is a function of wealth-to-wage ratio. The assumption of 

wealth-to-wage ratio as the argument of terminal utility function is more appropriate 

for individuals who are reluctant to annuitize their pension wealth on retirement, 

which has been shown to be the case for most people (Brown and Warshawsky 2001).  

In the present study I find that the optimal asset allocation in risky assets 

consists of three components: (i) a preference free component to hedge wage risk, (ii) 

a speculative component, proportional to both the portfolio Sharpe ratio and the 

inverse of the relative risk aversion index, and (iii) a hedging component depending 

on the state variable parameters. With the same assumptions on the wage process and 
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risky assets as those in Battocchio and Menoncin (2004) and Cairns et al (2006), the 

third component (which corresponds to the “bond” fund of Cairns et al) disappears. 

The other two components all contain both bonds and equities, and the preference free 

hedging component (corresponding to the “cash” fund of Cairns et al) does not 

contain cash assets (because this is an investment in risky assets) if the proportion of 

investment in the riskless asset ( ∑−= =
N
i AiA pp 10 1 in Cairns et al 2006) is not 

included.  

This paper is organized as follows. Section 2 formulates the financial market, 

wage and pension wealth growth models. Section 3 presents the optimization problem 

and the Hamilton-Jacobi-Bellman equation. Section 4 solves the optimal asset 

allocation problem for power utility. Since optimization for power utility with 

non-hedgeable wage income risk cannot be solved in closed-form, I only solve the 

cases where pension contribution has stopped or wage risk is fully hedgeable. Section 

5 discusses and summarizes the results in this paper. 

2. The model 

In this section I introduce the financial market structure, wage process and 

pension wealth process using wage as a numeraire. 

2.1. Market structure  

The specifications of the financial market are similar to those in Boulier et al 

(2001), Deelstra et al (2003) and Battocchio and Menoncin (2004). The financial 

market is frictionless and continuously open, with no arbitrage. There are three types 

of asset in the financial market: cash, bonds and equities. For simplicity, I assume 

only one equity asset, a stock, available, which can be considered as the index of a 

stock market. The uncertainty in the financial market is described by two standard and 

independent Brownian motions Zr(t) and ZS(t) with ],0[ Tt ∈ , defined on a complete 

probability space (Ω, F, P) where P is the real world probability. The filtration F =F (t) 
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],0[ Tt ∈∀  generated by the Brownian motions can be interpreted as the information 

set available to the investor at time t.  

The instantaneous risk-free rate of interest r(t) follows an Ornstein-Uhlenbeck 

process (Vasicek model)  

)())(()( tdZdttrtdr rrσβα +−= , 

  0)0( rr = .             (1) 

In equation (1), α and β  are strictly positive constants, and σr is the volatility of 

interest rate. The instantaneous drift ))(( tr−βα  has an effect to pull the process 

towards its long term mean β  with magnitude proportional to the deviation of the 

process from the mean (mean-reverting). The stochastic element Zr(t) causes the 

process to fluctuate in an erratic, but continuous fashion (Vasicek, 1977). 

When the interest rate process is described by equation (1), the price of 

zero-coupon bonds for any date of maturity τ at time t, B(t, τ, r), is governed by the 

diffusion equation (Vasicek 1977; Boulier et al 2001; Deelstra 2003)  

  )(),()),()((
),,(
),,(

tdZtbdttbtr
rtB
rtdB

rrr στξστ
τ
τ

−+= , 

  1),( =ττB , 

where ξ is the market price of interest rate risk assumed to be constant, and 

  
α

τ
τα )(1

),(
te

tb
−−−

= . 

The riskless asset has a price process governed by 

  dttrtRtdR )()()( = , 

  0)0( RR = .             (2) 

The riskless asset can be considered as a cash fund paying the instantaneous interest 

rate r(t) without any default risk. The value of the cash fund at t is then 

  



= ∫

t
dssrRtR

0
)(exp)0()( .         (3) 
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There are zero-coupon bonds for any date of maturity, and a bond rolling over 

zero coupon bonds with constant maturity K. The price of the zero coupon bond with 

constant maturity K is denoted by BK(t, r) with 

 )(])([
),(
),(

tdZbdtbtr
rtB
rtdB

rrKrK
K

K σξσ −+=  ,      (4)  

where  

 
α

αK

K
e

b
−−

=
1

 . 

The relationship between B(t, τ, r) and BK(t,r) through the riskless cash asset 

R(t) (Boulier et al, 2001) is  

 
),(
),(),(

)(
)(),(

1
),,(
),,(

rtB
rtdB

b
tb

tR
tdR

b
tb

rtB
rtdB

K

K

KK

ττ
τ
τ

+







−= . 

The above equation shows that the “rolling bond” can be obtained by a portfolio of 

one zero coupon bond  and the cash asset, and that other bonds can also be obtained 

through a portfolio of the riskless asset and the “rolling bond”. 

The stock has a process of the total return (that is, the value of a single 

premium investment in the stock with reinvestment of dividend income) governed by 

stochastic differential equation (SDE)  

 [ ])()(),()()( tdZtdZvdttrtStdS SSrrrSS σσµ ++= , 

 0)0( SS = ,              (5) 

where 

 SS trtr σξµ += )(),(             (6) 

is the instantaneous percentage change in stock price per unit time. The total stock 

instantaneous volatility 222
SrrSv σσσ +=  is assumed to be constant, and the 

volatility scale factor vrS measures how the interest rate volatility affects the stock 

volatility. The risk premium on the stock is SSm σξ= , where the market price of 

stock risk, ξS, is assumed to be constant.  

The market as assumed above has a diffusion matrix given by 
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  






−
≡Σ

SrrS

rK

v
b

σσ
σ 0

,            (7) 

and σr and σS are assumed to be different from zero and the diffusion matrix is 

invertible. 

2.2. Wages 

The plan member’s wage, Y(t), evolves according to the SDE 

  [ ])()()())()(()()( tdZtdZvtdZvdttrttYtdY YYSSSYrrrYY σσσµ ++++= , 

0)0( YY = ,              (8) 

where µY(t) is a deterministic function of time, age and other individual characteristics 

such as education and occupations. These assumptions on wage processes are similar 

to those by Battochio and Menoncin (2004) and Cairns et al (2006). Here σY is a 

constant and ZY(t) a standard Brownian motion, independent of Zr(t) and ZS(t). The 

volatility scaling factors, vrY and vSY, measure how interest rate volatility and stock 

volatility affect wage volatility, respectively. The parameter σY is a non-hedgeable 

volatility whose risk source does not belong to the set of the financial market risk 

sources. When σY = 0, the market is complete. Otherwise the market is incomplete.  

2.3. The fund wealth and wealth-to-wage ratio 

The value of the plan member’s pension fund is denoted by W(t), and the 

proportions of fund wealth invested in the riskless asset, bonds and stock are denoted 

as  θR(t), θB(t) and θS(t) respectively. Since all pension wealth is invested in those 

three types of asset, 

  1)()()( =++ ttt SBR θθθ ,           (9) 

The change in the pension wealth (dW) at time t comes from two sources: returns 

from investment of pension wealth and contributions from the wage income (Y) at 

time t. Using 1)()()( =++ ttt SBR θθθ , the SDE governing the pension wealth process 

is 
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. )())((

)}(])()1)[(({

)()1()()(

SSSrrrSSKB

SSrKBSB

SBSB

dZtWdZvbtW
dttYbrrtW

dttY
S
dS

B
dB

R
dR

tWtdW

σθσθθ
πµθξσθθθ

πθθθθ

++−+
++++−−=

+



 ++−−=

   (10)  

where π  is the proportion of wage contributed to the pension plan and Y(t) is the wage 

income at period t.  

As in Cairns et al (2006), the terminal utility is assumed to be a function of 

terminal pension wealth-to-final wage ratio, )(/)()( TYTWTX = and independent of 

the interest rate at time T, r(T), 

  ))(())(),(( TXUTrTXU ≡ . 

Applying Itô’s lemma, the SDE governing the wealth-to-wage ratio is 

  )(
1

)(
1

)(
2

2
32

dWdY
Y

dY
Y
W

dY
Y
W

dW
Y

tdX −+−= .     (11) 

By substituting the value of W, Y, dW and dY, the SDE governing this pension 

wealth-to-wage ratio process is: 

 XdZdtXuMtdX )'''(])'[()( Λ+Γ+++= θπθ ,      (12)  

where, 

  [ ]SB θθθ ≡' , 

  








−−
+

≡ 22

2

SSYrrSrYS

rrYKrK

vvvm
vbb

M
σσ

σξσ
, 

  
22222

YSSYrrYY vvu σσσµ +++−≡ , 

  






−
≡Γ

0
00

'
SrrS

rK

v
b

σσ
σ

, 

  [ ]YSSYrrY vv σσσ −−−≡Λ ' , 

  [ ]' YSr ZZZZ ≡ .            (13) 

The new diffusion matrix for the financial market is given by Γ. I assume that 

( ΓΓ' ) is invertible in all following sections.  
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3. The optimization problem and Hamilton-Jacobi-Bellman equation 

I assume that the expected terminal utility has the functional form  

[ ]ytYrtrxtXTYTrTXUEyrxtV ==== )(,)(,)(|))(),(),(();,,,( θθ  (14) 

where Xθ(t) is the path of X(t) given the strategy θ. The optimal asset allocation 

problem is to find the strategy θ that maximize the expected terminal utility of a plan 

member,  

  );,,,(sup),,,( θ
θ

yrxtVyrxtJ =          (15) 

The above specifications have a similar form to those in Cairns et al (2006). The 

stochastic optimal control problem can be written as follows: 

  [ ])),((max TTXUE
θ

, 

subject to 

  dZ
X

dt
XuMX

w
d w









Λ+Γ

Ω
+








++

=







)''(

'
)'[( θπθ

µ
, 

  TtXXww ≤≤∀== 0,)0(,)0( 00 ,         (16) 

where, 

  [ ]' 
12

Yrw ≡
×

,  

  [ ]' )()(
12

rYr Yw +−≡
×

µβαµ ,  









≡Ω

×
YSSYrrY

r

YYvYv σσσ
σ 00

'
32

.         (17) 

The solution to this problem should give us the optimal portfolio composition. 

The Hamiltonian corresponding to the optimization problem (16) is 

.  )'''2''(
2
1

)'''(

'
2
1

])'[(')(

2

2
2

2

2

2

X
J

x
Xw
J

x

w
J

tr
X
J

xuM
w
J

JJH wt

∂
∂

ΛΛ+ΛΓ+ΓΓ+
∂∂

∂
ΩΛ+Γ+










∂
∂

ΩΩ+
∂
∂

+++
∂
∂

+=

θθθθ

πθµ
  (18) 

Differentiating equation (18) with respect to θ gives the first-order condition 

0)''(' 2

2
2

2

=
∂

∂
ΛΓ+ΓΓ+

∂∂
∂

ΩΓ+
∂
∂

=
∂
∂

X

J
x

Xw
J

x
X
J

Mx
H

θ
θ

,    (19) 
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where 
θ∂

∂H
 is a vector. The optimal portfolio composition is 

  
XX

wX

XX

X

xJ
J

xJ
J

M ΩΓΓΓ−ΓΓ−ΛΓΓΓ−= −−− ')'()'(')'(* 111θ .   (20) 

where the subscripts on J indicate partial derivatives. Here 

' ]*)(*)([* tt SB θθθ = , the optimal proportions invested in bonds and stock 

respectively. The three terms on the right hand side of equation (20) can be designated 

as θ1*, θ2* and θ3* respectively, which are themselves vectors with two elements 

corresponding to certain proportions of investment in bonds and stock. We can also 

view θ1*, θ2* and θ3* as three mutual funds constructed with bonds and stock. 

The three terms on the right-hand-side of equation (20) correspond to the 

optimal asset allocation strategy with three mutual funds labeled as “cash”, “bond” 

and “equity” in Cairns et al (2006). Their three funds are linear combinations of the 

three terms in equation (20). The above equation concerns with the optimal 

composition of the mutual fund constructed with risky assets, bonds and stocks. This 

is in contrast with the conclusion of Cairns et al (2006) that the first term represents a 

mutual fund dominated by cash assets. Since the vector θ does not include the 

proportion of pension wealth invested in the risk free asset, the actual optimal 

portfolio consists of two components: one is cash assets with proportion SB θθ −−1 , 

and the other is a mutual fund with proportion SB θθ + . From this analysis, we get 

Proposition 1: The optimal portfolio consists of two components: 1) a risk 

free asset with proportion SB θθ −−1 , and 2) risky assets with proportion SB θθ + . The 

risky component can be further divided into three funds: a) a preference-free hedging 

component, ΛΓΓΓ− − ')'( 1  (fund 1)，b) a speculative component, 
XX

X

xJ
J

M1)'( −ΓΓ−  

(fund 2), and c) a state variable dependent hedging component，
XX

wX

xJ
J

ΩΓΓΓ− − ')'( 1  

(fund3). 
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The preference-free component (fund 1) minimizes the instantaneous variance 

of the wealth-to-wage ratio differential, dX. From equation (12), the variance of dX is 

given by 

dtXdX 2)'''2''()var( ΛΛ+ΛΓ+ΓΓ= θθθ . 

Minimizing )var(dX  over θ gives a minimum-variance portfolio, which is identical 

to fund 1.  

The speculative component (fund 2) increases when the “returns” on 

wealth-to-wage ratio X(t) (i.e. M) increase, and decreases when the relative risk 

aversion (-XJXX/JX) or the wealth-to-wage ratio variance ( ΓΓ' ) increases. Here the 

“returns” on wealth-to-wage ratio X(t) (i.e. M) means wage adjusted returns on the 

assets, not the original returns from the assets. The speculative component is to satisfy 

the risk appetite of the plan members. 

The state variable dependent component (fund 3) depends explicitly on the 

diffusion terms of the state variables (Ω), suggesting that this component covers the 

plan member from financial market risk. In fact, the present formulation uses the 

member’s wage as a numeraire to assess the fund manager’s performance. 

4. Optimal asset allocation strategy for power terminal utility 

Non-linear partial differential equations such as those derived in the preceding 

section generally do not have closed-form solutions, although closed-form solutions 

may be found for some particular form of utility functions. To compute the optimal 

portfolio composition θ for power utility, it is necessary to find the maximum 

expected utility function J(t,x,w), which should satisfy the boundary condition 

γ

γ
−

−
= 1

1
1

xwxTJ ),,( , where γ is the relative risk aversion coefficient. Based on 

whether there are pension contributions from wage incomes and whether there is a 

non-hedgeable wage risk, the optimal allocation strategy for power utility can be 

considered in three scenarios: 1) there is no contribution from future wage incomes 

( 0=π ) (with or without non-hedgeable risk; the two cases have the same solution in 
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the present model); 2) there are pension contributions from wage incomes ( 0>π ), 

but there is no non-hedgeable wage risk ( 0=Yσ ); 3) there are pension contributions 

from wage incomes ( 0>π ), and there is a non-hedgeable wage risk ( 0≠Yσ ). Since 

there is no analytical solution for the third scenario ( 0>π , 0≠Yσ ), in the present 

study I will only work on the first two scenarios.  

4.1. Optimal asset allocation without wage income contribution, π =0 

 Since 0=π , equation (18) (the Hamilton-Jacobi-Bellman equation) becomes 

.  )'''2''(
2
1

)'''(

'
2
1

)'(')(

2

2
2

2

2

2

X
J

x
Xw
J

x

w
J

tr
X
J

xuM
w
J

JJH wt

∂
∂

ΛΛ+ΛΓ+ΓΓ+
∂∂

∂
ΩΛ+Γ+









∂
∂

ΩΩ+
∂
∂

++
∂
∂

+=

θθθθ

θµ
  (21) 

I start with a trial solution by assuming that the maximized expected terminal utility 

of plan members has the functional form 

   γγ

γ
−

−
= 1),(

1
1

),,( xwtgwxtJ ,         (22) 

   wwTg ∀=        1),( . 

Then, we have 

   γγ

γ
γ −−

−
= 11

1
xggJ tt , 

   γγ −= xgJ x , 

   1−−−= γγγ xgJ xx , 

   γγ

γ
γ −−

−
= 11

1
xggJ ww , 

   γγγγ

γ
γ

γ −−−−

−
+−= 11122

1
xggxggJ wwwww , 

γγγ −−= xggJ wxw
1 .           (23) 
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In the above equations Jw, Jxw and gw are vectors, and Jww and gww are matrices. 

Substituting the partial derivatives of the expected terminal power utility function in 

(23) into the above HJB equation (21) gives 

( ) . 0)]('''2''[
2
1

'''

1
)('

2
1

1
')'(

1

111

11122

11111

=−ΛΛ+ΛΓ+ΓΓ+ΩΛ+Γ+

















−

+−ΩΩ+

−
+++

−

−−−

−−−−

−−−−−

γγγγ

γγγγ

γγγγγγ

γθθθγθ

γ
γ

γ

γ
γ

µθ
γ

γ

xgxgg

xggxggtr

xggxguMxgg

w

www

wwt

(24) 

Substituting the optimal proportion composition of pension fund investment θ*, 

equation (20), and simplifying,  

. 0
1

')'('
1

)'('
)(2

1

)'(
2
1

')'('
1

'

11
2

1

=






 −
−ΛΓΓΓ

−
+ΓΓ

−
−

−

ΩΩ+







ΩΓΓΓ

−
++

−−

−

guMMM

gtrgMg wwwwt

γ
γ

γ
γ

γ
γ

γ
γ

µ

  (25) 

For the 0=π scenario, obviously the function g(t,w) has to satisfy equation 

(25) for the assumption γγ

γ
−

−
= 1),(

1
1

),,( xwtgwxtJ to be a correct solution. By the 

Feynman-Kac formula (Øksendal 2000; Duffie 2001), there exists a probability 

measure Q(γ) such that 

  ]|),())(~,([))(,( )( tQ FTtDTwTgEtwtg γ= ,       (26) 

where )(~ sw is governed by the SDE 

  dZsswdsswswd w )'),(~())(~(~)(~ Ω+= µ , 

  ΩΓΓΓ
−

+= − ')'('
1

))(~(~ 1Msw ww γ
γ

µµ , 

  )()(~ twtw = , 

and 

  [ ]∫= T
t dssTtD  

  )(exp),( ϕ , 

where 
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In equation (26), Ft is the filtration, which can be interpreted as the information 

available to the investor at time t. The s in )(sϕ stands for time, and the function is 

written as )(sϕ  to indicate that ϕ might be a function of time (if one or more of the 

parameters in M, Γ, Λ and u are time dependent). In the present study, all parameters 

in M, Γ, Λ and u are assumed to be constant, and therefore )(sϕ are constant. 

Using the results from the Feynman-Kac formula, i.e. (26), the optimal 

portfolio composition (equation (20)) is 

  dssE
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M t
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t
t
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1
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θ ∫ ∂
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Since all the terms in the function ϕ(s) do not depend on the state variables r and Y, its 

derivatives with respect to wt are zero and the above equation becomes 

  
γ

θ
1
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In equation (28), only the second term, i.e. the speculative component, 

depends on the relative risk aversion γ. The first term in the above equation is 
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The second term is 
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The optimal proportions of pension wealth invested in bonds and equities are 
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The optimal proportion of pension wealth invested in risk-free assets can be 

calculated by using 

 **1* SBR θθθ −−= .             (30) 

Since there is no time or horizon dependent variable in those equations, we get 

 

Theorem 1: Under the market formulation and optimization objective specified in 

this paper, when there is no further contribution from wage incomes, the optimal 

portfolio composition for power utility is horizon and time independent. 

 

It is clear that the optimal proportions of pension wealth invested in the three asset 

categories are not time-dependent. Although I have used pension wealth-to-wage ratio 

rather than wealth as the argument of power utility and there is no 

consumption-derived utility in my formulation, I get the same conclusion as those by 

Samuelson (1969) and Merton (1969, 1971). The optimal asset allocation is time 

independent.  

Theorem 1 is based on results from the π=0 scenario and in the next 

subsection I will show that it is also true for the 0≠π  and 0=Yσ scenario. 

Because there is no analytical solution for the 0≠π  and 0≠Yσ scenario, it is not 

clear for the time being whether Theorem 1 applies to the 0≠π  and 

0≠Yσ scenario. The optimal asset allocation for the 0≠π  and 0≠Yσ scenario can 

be solved numerically, but the numerical solution would be very complicated with the 

present model formulation. Cairns et al (2006) in their paper solving for the π=0 

scenario and 0=Yσ scenarios commented, the 0≠π  and 0≠Yσ scenarios “involve 

a type of computational analysis that is sufficiently different and sufficiently extended 

to justify a separate paper”.  

The present results demonstrate that when the terminal utility is a power 

function of wealth-to-wage ratio, the state variables dependent hedging component 

(the third term of equation (20)) disappears. This result is consistent with those in 
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Cairns et al (2006). The state variables dependent hedging component corresponds to 

the “bond” fund in Cairns et al (2006) and they conclude that “bond” fund becomes 

zero when the pension plan is funding for a cash lump sum (more precisely it should 

be when funding for wealth-to-wage ratio, because “bond” fund does not become zero 

when funding for a cash lump sum).  

The preference free hedging component (the first term of equation (20)) is to 

hedge wage risk, corresponding to the “cash” fund in Cairns et al (2006). In the sense 

that it contains bonds and stocks but not cash assets, the present result is different 

from that of Cairns et al. The difference between the present study and Cairns et al 

(2006) in terms of “cash” fund may be more in appearance than in substance. When 

they concluded that “The optimal weight in risky assets is equivalent to investing in 

three mutual funds denoted A, B and C. Fund A …… will be dominated by cash”, 

they did not indicate whether )',...,( 1 ANAA ppp =  or )',...,( 0 ANAA ppp = is 

dominated by cash asset, where ∑−= =
N
i AiA pp 10 1 is the proportion invested in the 

riskless asset. Since )',...,( 1 ANAA ppp = is investment in risky assets, it cannot be 

dominated by cash assets. The correct interpretation of their results is that 

)',...,( 0 ANAA ppp = is dominated by cash asset. 

Cairns et al (2006) denote the “cash” fund asset proportion vector as pA with 

∑−= =
N
i AiA pp 10 1 , and similarly for “bond” fund pB and “equity” fund pC, effectively 

splitting the investment in the riskless asset to the three mutual funds. In this way, the 

dominance by cash assets in “cash” fund is dominance by pA0 in pA, with pA0 the 

proportion in cash assets. There is no dominance by cash assets in the wage risk 

hedging )',...,( 1 ANAA ppp = ， which is used in the derivation of optimal composition,  

because there is no cash asset. 

Expressing the optimal portfolio composition in the same way as that of 

Cairns et al (2006), we have 

 CCDDAA ppp θθθθ ++=* , 
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where  
XX

X

XX

wX
A xJ

J
xJ
J

+−= 1θ , 
XX

wX
D xJ

J
=θ , and  

XX

X
BAC xJ

J
−=−−= θθθ 1 with 

ΛΓΓΓ−= − ')'( 1
Ap , )(')'( 1 Ω−ΛΓΓΓ−= −

Dp , and )(')'( 1 MpC −ΛΓΓΓ−= − . From 

those expressions it can be seen that the products of three mutual funds and their 

proportions with respect to pension wealth are linear combinations of the three 

components in equation (20). The proportions of cash assets in the three mutual funds 

are ]')'(['11 1
0 ΛΓΓΓ−−= −

Ap , )](')'(['11 1
0 Ω−ΛΓΓΓ−−= −

Dp , and  

)](')'(['11 1
0 MpC −ΛΓΓΓ−−= − , with ]11['1 = . Because 0=

XX

wX

xJ
J

, the optimal 

asset allocation strategy is to invest in two mutual funds A with asset proportion 

vector pA ( ]')'(['11 1
0 ΛΓΓΓ−−= −

Ap ) and C with asset proportion vector pC 

( ]')'(['11 1
0 ΛΓΓΓ−−= −

Cp ). The weights in the two mutual funds are 
XX

X
A xJ

J
+= 1θ  

and 
XX

X
AC xJ

J
−=−= θθ 1 , respectively. 

Since the preference free hedging component is to hedge wage risk, it 

becomes zero when the correlations between interest rate and wage growth and 

between stock return and wage growth are zero. This result is consistent with the 

finding of Cairns et al (2006) that the “cash” fund contains 100% cash assets when 

wage growth and asset returns are uncorrelated.  

The speculative component (the second term of equation (20)), however, 

seems not so consistent with the conclusion of Cairns et al (2006) that the “equity” 

fund is dominated by equities. In the present study using wealth-to-wage ratio, the 

second term of equation (20) contains a substantial investment in bonds, suggesting 

that the “equity” fund include substantial amount of bonds. In my numerical results 

later, the speculative component or “equity” fund is actually dominated by bonds. If 

the present result applies to the scenario of one riskless and N risky assets, the 

“equity” fund in Cairns et al (2006) cannot be literally understood as consisting of 

only or even mainly equities. 
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Table 2-1 Parameters used in numerical simulation 

_____________________________________________________________________ 

Interest rate        Value  

 Mean reversion, α,     0.2 

 Mean rate, β        0.05 

 Volatility, σr       0.02 

 Initial rate, r0       0.05    

 

Fixed maturity bond 

 Maturity, K       20 years 

 Market price of risk, ξ    0.15 

 

Stock 

 Risk Premium, mS     0.06 

 Stock own volatility, σS    0.19 

 Interest volatility scale factor, vrS  1 or -1    

 

Wage 

 Wage premium,  µY     0.01 

 Non-hedgeable volatility, σY    0.01 

 Interest volatility scale factor, vrY  0.7   

 Stock volatility scale factor, vSY  0.9 

 Initial wage, Y0      10k 

 

Contribution rate, π       10% 

 

Length of pension plan, T     45 
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To illustrate the above solution for the asset allocation problem, I have 

calculated the proportions of different assets for different values of relative risk 

aversion with the parameters in Table 1. The values of parameters are those 

commonly used in other pension studies to facilitate comparison (Boulier et al 2001; 

Deelstra et al 2003; Cairns et al 2006; Battocchio and Menoncin 2004). The results 

are shown in Fig.1. It is easy to see from Fig.1 that with the parameters commonly 

used, stock is a very safe asset and an individual will stop short-selling cash for 

buying stock only when her relative risk aversion is high ( 15.5>γ  if 1−=rSv  and 

45.45>γ  if 1=rSv  in my calculation). 

 

 

 

Fig. 1 The relationship between relative risk aversion coefficient γ and the 

optimal proportions of cash, bond and stock invested for pension wealth. The 

asset ratio range is cut off at -2 and 2 in order to show details of asset 

proportion when 1>γ . A. Interest volatility scale factor for stock, 1−=rSv . 

B. 1=rSv . 

The preference-free component (the first term in equation (20)) is dominated 

by the stock, and the speculative component (the second term in equation (20)) is 

γ (relative risk aversion) 
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dominated by the bonds, which does not support the conclusion on “equity” fund by 

Cairns et al (2006). An increase in the relative risk aversion coefficient γ reduces the 

short-sale of cash assets and consequently the (absolute) proportions invested in both 

bonds and stocks. Because γ only affects the speculative component which is 

dominated by bonds with commonly assumed market parameters, the overall effect of 

an increase in γ reduces the proportion invested in bonds relative to that invested in 

stocks. At about 7.0=γ  if 1−=rSv  and 2.1=γ  if 1=rSv , the investment in 

stock overtakes that in bonds. The relative risk aversion has often been estimated in 

the range between 2 and 4. In this range, there is a short-sale of cash assets between 

12.7% and 68% if 1−=rSv  and between 60% and 130% if 1=rSv . As shown in 

Fig.2, when the relative risk aversion gets smaller, the short-sale of cash asset can be 

many times the value of pension fund. 

 

Cash, Bond and Stock Proportions in Pension 
Wealth for Power Utility
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Fig.2 The relationship between γ and the optimal proportions of cash, 

bond and stock invested for 1=rSv . The γ range is cut off at 2 in order to 

show the full extent of cash short-sale and purchase of bond and stock. 
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As can be seen in Fig. 1, if 1−=rSv  and 7.4<γ , it is optimal to short-sell 

bonds in order to hold more stocks. The economic intuition here is that with 0<rSv  

the changes in bond and stock prices caused by innovations in the spontaneous 

interest rate are in the same direction, whereas the changes in the risk free asset and 

the stock are in the opposite directions. Therefore, long in cash and short in bonds can 

hedge against changes in stock. The reason why this only happens with relatively high 

γ is the higher return of bonds compared with cash assets. The more risk tolerant 

investors prefer the higher return of bonds to the safety of risk free assets. The 

estimates of vrS are quite variable in different pension strategy studies, ranging from -5 

(Cairns et al 2006) to 3 (Battocchio and Menoncin 2004). Deelstra et al (2003) use a 

value of 0.02 and Boulier et al (2001) use -3. In the present thesis I use middle range 

values of 1−=rSv  and 1=rSv . 

The present numerical results indicate that for individuals with 2>γ , 

substantial more pension wealth should be invested in stocks than in bonds. These 

results are qualitatively consistent with the asset distributions of pension funds in UK. 

As at 31 March 2006, the average asset distribution is 35.8% in UK equities, 28.9% in 

overseas equities, 23.1% in bonds, 7.6% in index- linked gilts, 2.4% in property, 1.8% 

in cash, and 0.4% in other assets, demonstrating the dominance of equities (Mellon 

Analytical Solutions: UK Pension Fund Analysis to 31 March 2006). Quantitatively, 

the average asset distribution in terms of the ratio between bonds and equities 

corresponds to a γ of around 2 if 1−=rSv  and around 6 if 1=rSv , roughly within 

the range of usual γ estimates. Two points should be noted in such comparisons. One 

is that the pension funds are generally not allowed to short-sell cash assets, and we do 

not place a short-sale constraint on the optimal asset allocation. The other is the 

“tension in economics between the attempt to describe the optimal choices of fully 

rational individuals (‘positive economics’) and the desire to use our models to 

improve people’s imperfect choices (‘normative economics’)” as commented by 

Campbell and Viceira (2002). My present results, like most portfolio strategy studies, 
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show that optimal asset allocation strategies for power utility are usually horizon 

independent, but financial advisors often recommend a horizon dependent lifestyle 

strategy.  

My calculations also showed that volatilities, σr and σS, have a profound 

influence on the optimal proportions of the three assets. A reduction in the stock 

volatility increases the proportion of wealth invested in the stock and decreases the 

proportion invested in the cash asset, while the proportion invested in the bond has a 

smaller increase. A reduction in interest rate volatility increases the proportion 

invested in the bond and decreases the proportion invested in the cash asset, whereas 

the proportion invested in the stock also decreases. An increase in the stock risk 

premium mS increases the proportion invested in the stock and decreases the 

proportion invested in the cash assets, whereas there is only a marginal increase in the 

proportion invested in the bond. 

4.2. Optimal asset allocation with hedgeable wage income contribution 

When wage income is fully hedgeable ( 0=Yσ ), u, Γ, Λ and Z in equation 

(12), the SDE governing the wealth-to-wage ratio process, become: 

 )( 2222
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The diffusing term of the state variables is 
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While in the scenario without further contribution from wage incomes the 

initial wealth has to be assumed, in the scenario of fully hedgeable wages the initial 

wealth can be calculated from wages and market parameters. To borrow against future 
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wage income it is necessary to calculate the market value at time t for future 

premiums payable between t and T. The wage, Y(t), evolves according to the SDE 

 [ ])()())()(()()( tdZvtdZvdttrttYtdY SSSYrrrYY σσµ +++= , 

 0)0( YY = ,               (33) 

Let Q be the risk-neutral pricing measure and )(~ tZ r  and )(
~

tZS  independent 

standard Q-Brownian motions (Cairns et al 2006), the wage process under Q is 

 [ ])(
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which implies that  
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Here ξr is a measure of how interest/bond volatility will affect wage, and ξS is a scale 

factor measuring how stock price volatility affects wages. They are essentially prices 

of risks. The market value at time t for future premiums payable between t and T is 

then 
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The pension plan can have an additional wealth of )()( tftYπ by short-selling a 

replicating portfolio of value )()( tftYπ− , which will be paid off exactly by future 

contributions from wage incomes. The total pension wealth enhanced with the present 

market value of future contributions is )()()( tftYtW π+ , and the current enhanced 
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pension wealth-to-wage ratio is )()( tftX π+ . The optimal composition of pension 

fund will be the same as in the case of no wage income contribution, but the optimal 

terminal utility function will have the form 

  γγ π
γ

−+
−

= 1))((),(
1

1
),,( tfxwtgwxtJ .        (37) 

The optimal strategy is to hold )()( tftYπ−  in the replicating portfolio and invest 

the )()()( tftYtW π+  in the optimal composition of pension fund wealth. Such a 

treatment of hedgeable wage income risk is often applied in portfolio and pension 

studies (Deestra et al 2003; Cairns et al 2006). The composition of the replicating 

portfolio can be written in vector form 
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In the above equation, the superscript R indicates replicating portfolio. 

The sum )()()()(~ tftYtWtW π+= can be denoted as the augmented pension 

wealth and )()()(~ tftXtX π+= augmented wealth-to-wage ratio. The total pension 

financial wealth is the sum of the invested augmented pension wealth )(~ tW and the 

short-sold replicating portfolio )()( tftYπ− . The matrix representation of the 

wealth-to-wage ratio SDE and the HJB equation for the augmented wealth-to-wage 

ratio is the same as that when there is no further income contribution, although the 

parameters u, Γ, Λ, Z and Ω in equations (12) and (16) are replaced by those defined 

in equations (31) and (32). The optimal portfolio composition when expressed in 

matrix form is the same as that without further contributions from wage incomes in 

the preceding subsection. 
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 When u, Γ, Λ, Z and Ω in equations (31) and (32) are substituted into the 

optimal solution, equation (27) or (28), the optimal proportions of pension wealth 

invested in bonds and equities are 
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These expressions for optimal proportions in bonds and stocks are the same as those 

for the no further contribution ( 0=π ) case. The optimal proportion of pension wealth 

invested in risk-free assets can be calculated by using 

  *)(*)(1)*( ttt SBR θθθ −−= .       

From the above analysis, we get 

 

Proposition 2: When there is no nonhedgeable wage risk, the optimal pension 

portfolio composition is the same as that when there is no further contribution from 

wage incomes. 
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which can be simplified as  
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 (40) 

In the above equation, F
Bθ and F

Sθ are the optimal proportions of financial wealth 

invested in bonds and stocks respectively, and R
Bθ and R

Sθ are proportions of the 

replicating portfolio short-sold in bonds and stocks respectively. The optimal 

proportion of the financial wealth invested in risk-free assets can be calculated by 

using 

 F
S

F
B

F
R ttt )()(1)( θθθ −−= . 

The value of replicating portfolio decreases as t increase (i.e. the retirement 

date approaches), whereas W(t) is generally increasing in t. Because the optimal 

composition of the augmented pension wealth is different from the composition of the 

replicating portfolio, the change in their relative sizes will affect the optimal 

composition of their sum, the financial wealth. Therefore, although neither the 

optimal composition of augmented pension wealth nor the composition of the 

replicating portfolio is time or horizon dependent, the optimal composition of the 

pension plan financial wealth is horizon-dependent. Equation (40) shows that the 

composition of pension plan financial wealth is horizon dependent. 

From the above analysis, we get 

 

Proposition 3: When there is no nonhedgeable wage risk, while the optimal portfolio 

composition of the augmented pension wealth is the same as that of pension wealth 

when there is no further contribution from wage incomes, the optimal composition of 
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the pension plan financial wealth (the augmented pension wealth + short-sold 

replicating portfolio) is horizon dependent. 

 

The scenario with contributions from hedgeable wage incomes differs from 

that with no further contributions in that initial wealth can be calculated and borrowed 

against future wage incomes (by short-selling the replicating portfolio) and in that the 

composition of financial wealth is horizon-dependent. The scenario of no further 

contribution can be considered as a special case of hedgeable wage incomes where 

0)()( =tftYπ . As illustrated in Fig. 3 where parameters in Table 1 and γ=2 are used 

in the numerical simulation, the optimal proportions of the three assets are horizon 

dependent. The values of cash, bond and stock in the financial wealth and the total 

value of financial wealth (in terms of wealth-to-wage ratio) over the life of the 

pension plan are shown in Fig.4.  

 

Optimal Proportions of Cash, Bond and Stock in
Financial Wealth for Power Utility
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Fig.3 The horizon-dependent profile of optimal proportions of cash, bond 

and stock in financial wealth for power utility. Parameters in Table 1 are used 

in the simulation and the relative risk aversion coefficient γ=2. The results are 

from 100 simulations. 

 

Since the net value of the financial wealth (augmented wealth+short position 

in the replicating portfolio) is small at early stage (it is zero at t=0), the composition 
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of the financial wealth has a large short position in cash assets to finance the long 

position in bonds and stocks. As the short position in the replicating portfolio is paid 

off gradually by future contributions, the net value of the financial wealth increases 

and the asset ratio (the ratio between the wealth invested in one class of assets and the 

financial wealth) of all the three assets decrease. At later stage of the pension plan, 

since the short-sold replicating portfolio becomes very small compared with the 

augmented pension wealth or the net value of the financial wealth, the optimal 

composition of the financial wealth is very similar to that of the augmented wealth. At 

the end of the pension plan, the optimal composition and the net value of the financial 

wealth are identical to those of the augmented pension wealth.  

Cash, Bond,Stock and Financial Wealth for Power
Utility, γ=2
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Fig.4 The values of cash, bond and stock in the financial wealth and the 

total value of financial wealth (in terms of wealth-to-wage ratio) over the life 

of the pension plan. Parameters in Table 1 are used in the simulation and the 

relative risk aversion coefficient γ=2. The results are from 100 simulations. 

 

The above results indicate that when there is stochastic wage income and the 

wage income risk is hedgeable, the optimal composition of the pension plan financial 

wealth is horizon-dependent, although the optimal asset allocation of the augmented 

pension wealth is horizon or time- independent. Short-selling of risk-free asset is 
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considered as reduction in the holding of risk free asset, and the proportion of risky 

assets in the financial wealth (sum of the augmented pension wealth and the 

replicating portfolio) is higher than that when there is no contribution from wage 

incomes. The short-sold replicating portfolio is being paid off over time, so that the 

proportion of riskless asset in the financial wealth increases and the proportions of 

risky assets decrease. The optimal portfolio composition in terms of financial wealth 

is therefore stochastic lifestyling (Cairns et al 2006). This is consistent with the results 

of Bodie et al (1992) and Campbell and Viceira (2002) that the presence of (risky) 

labor incomes tilts the portfolios towards risky financial assets. 

Concerning the horizon-dependence of optimal portfolio composition, there is 

a subtle difference between the present results and those from Boulier et al (2001), 

Deelstra et al (2003) Battocchio and Menoncin (2004) and Cairns et al (2006). In the 

studies of Boulier et al (2001), Deelstra et al (2003) Battocchio and Menoncin (2004) 

and Cairns et al (2006), the optimal composition of pension wealth portfolio per se is 

horizon dependent when interest rates are stochastic, while in the present study the 

optimal composition of pension wealth portfolio per se is horizon independent and it 

is the optimal composition of financial wealth that is horizon dependent. The 

assumption that the expected terminal utility is a function of wealth-to-wage ratio may 

underlie the difference. Boulier et al (2001) and Deelstra et al (2000, 2003) have 

considered pension plans with a guaranteed minimum benefit at retirement and the 

terminal utility measured as a power function of surplus cash over the guaranteed 

benefit. Using wealth-to-wage ratio, as the argument of the expected terminal utility, 

in the present study removes the dependence of instantaneous conditional expected 

change per unit time (the expression multiplying with dt in the SDE) on the state 

variables, so that the need to hedge against the fluctuations in the state variables 

disappears. The assumption by Cairns et al (2006) that terminal utility is a function of 

replacement ratio re- introduces the dependence of instantaneous conditional expected 

change per unit time on the state variables, because replacement ratio is the quotient 

between wealth-to-wage ratio and annuity price and annuity price is interest rate 

dependent.  
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5. Conclusion 

In this paper I have solved the optimal portfolio problem under stochastic 

interest rate and wage income for power utility, using three assets cash, bonds and 

stock. I assume that the terminal utility of a pension plan member is a function of 

terminal pension wealth-to-wage ratio. Under the present model assumptions, the 

optimal portfolio (for an unspecified utility function) invests in both riskless and risky 

assets. The investment in risky assets contains three components: a preference free 

hedging component to hedge wage risk, a speculative component proportional to both 

portfolio Sharpe ratio and the inverse of the Arrow-Pratt relative risk aversion index, 

and a state variable dependent hedging component to hedge financial market risks. 

This result is consistent with that of Cairns et al (2006). The three components are 

roughly corresponding to the “cash”, “equity” and “bond” funds in Cairns et al 

(2006).  

Closed form solution is derived for power terminal utility when there is no 

further contribution from wage incomes or when there is no non-hedgeable wage risk. 

The state-variable dependent hedging component disappears with the assumption that 

the expected terminal utility is a power function of wealth-to-wage ratio. The 

preference free hedging component and the speculative component contain both 

bonds and stocks, which is different from the conclusion of Cairns et al (2006) that 

the “cash fund” is dominated by cash assets and the “equity” fund is dominated by 

stocks. I find that even the speculative component (“equity” fund) can have a larger 

proportion of bonds with commonly assumed market parameters. Since both the  

preference free hedging component and the speculative component are horizon 

independent, the optimal pension asset allocation strategy of pension wealth per se is 

horizon independent. When the future contributions from wage incomes are hedged 

by short-selling a replicating portfolio, the optimal portfolio composition of pension 

plan financial wealth (augmented pension wealth + short-sold wage replicating 

portfolio) is horizon dependent. 
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To summarize, the optimal asset allocation of pension wealth portfolio for DC 

pension plan members with terminal utility as a power function of pension 

wealth-towage ratio, which invests in both riskless and risky assets, is horizon 

independent. The optimal portfolio composition of pension plan financial wealth is 

horizon dependent. The investment in risky assets contains a preference free 

component to hedge wage risk and a speculative component to satisfy the risk appetite 

of the plan members. The two components consist of both bonds and stocks.  
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