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Abstract

Optimal asset allocation strategies of defined-contribution pension plans for members
whose termina utility is a power function of wealth-to-wage ratio is investigated in
this paper. The portfolio problem is to maximize the expected terminal utility in the
presence of three risk sources, interest risk, asset risk and wage risk. A closed form
solution is found for the asset alocation problem and the optimal portfolio
composition is horizon independent when there is no nonhedgeable wage risk or
there is no further contribution from wage incomes. When future contributions from
wage income are hedged by short-selling a wage replicating portfolio, the optimal
composition of financial wealth on hand (i.e. pension portfolio wealth + short-sold
wage replicating portfolio) is horizon-dependent. The optimal asset allocation strategy
is equivaent to invest in two mutual funds, one of which is to hedge wage risk and the
other a speculative fund to satisfy the risk appetite of the plan member.

Keywor ds: Defined-contribution pension plan; Wage risk; Optimal asset allocation;

Power utility; Hamilton-Jacobi-Bellman equation



1. Introduction

The optimal asset allocation problem for defined-contribution (DC) pension
plans can be viewed as a special form of consumption and portfolio problem Most
studies on the consumption and portfolio allocation strategies over multiple periods
are built upon the classical dynamic optimization model by Merton (1969, 1971),
which assumes constant interest rates and constant risk premiums without wage
incomes. Since empirical studies show that stochastic variations in interest rates and
in risk premiums exist, it may not be appropriate to assume a constant instantaneous
interest rate in portfolios with a long horizon such as pension funds Later studies
extend Merton's work with stochastic interest rates (Sorensen, 1999; Liu, 2001;
Campbell and Viceira, 2002) or stochastic risk premiums (Kim and Omberg, 1996).
Studies on DC plan strategies generally assume stochastic interest rates

With stochastic interest rates, the financial market is usually assumed to have
three types of asset: cash, bonds and equities (stocks). Boulier et a (2001), Deelstra et
al (2003) and Battocchio and Menoncin (2004) use these three assets in their studies
on optimal asset allocation strategies for DC pension plans. In those studies, the stock
price follows a geometric Brownian motion which includes volatilities from risk
sources of both the interest rate and the stock market. Although stochastic interest
rates make bonds distinct from cash and equities, in some studies bonds are not
explicitly differentiated from other risky assets. Vigna and Haberman (2001) assume
two assets: one low risk asset and one high risk asset. Haberman and Vigna later
(2002) extended their assumption into a sequence of N assets with increasing returns
and volatilities. Cairns et a (2006) use one risk-free asset and N risky assets, and the
return on each risky asset follows a geometric Brownian motion with volatilities of N
risk sources.

While Merton type consumption and portfolio studies often ignore wage
incomes for computational simplicity (Merton 1969, 1971; Kim and Omberg 1996;
Sorensen 1999; Liu 2001), in pension asset allocation studies wage incomes usually
appear explicitly in the asset allocation problem. Contributions from wage income and
returns from investing pension wealth are both important for the growth of pension
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wealth. Various treatments of wage income have been used in studies on asset

alocation strategies for DC pension plan. Deterministic wage processes are used in

Boulier et a (2001), Deelstra et a (2003), Vigna and Haberman (2001), and
Haberman and Vigna (2002). Cairns et al (2006) and Battocchio and Menoncin (2004)
used stochastic wage incomes, which are governed by geometric Brownian processes.

The wage income process includes volatilities from risk sources of the interest rate
and the stock market, with or without a non-hedgeable risk that is independent of

financial market risk sources. Pension plan members will put a constant fraction of

their wages into the pension fund.

One important difference between pension fund asset allocation problem and
Merton’ s consumption and portfolio problemis that, the objective of pension plans is
to maximize the terminal utility and there is no consumption or consumption-derived
utility before retirement. The optimal allocation strategy for a DC pension plan
depends critically on the specifications of terminal utility function Power utility
(Boulier et a 2001; Deelstra et a 2003; Cairns et a 2006), exponential utility
(Battocchio and Menoncin 2004; Hendersen 2005) and quadratic disutility (Vigna and
Haberman, 2001; Haberman and Vigna, 2002) have been used in solving the optimal
asset dlocation problem for DC pension plans. Since power utility is usualy thought
to be more consistent with empirical data, most DC pension plan studies have
assumed a power function for terminal utility (Boulier et al, 2001; Cairns et a, 2006;
Deelstra et al, 2003). With power utility, people make the same decision regardless of
their wealth levels when the risks and the cost to avoid them are expressed as
fractions of wealth.

Defined benefits (DB) pension plans have often been used as bench mark to
assess the performance of DC pension plans. Pensiors from defined benefits OB)
plans are generally based on fina wages, implicitly assuming that pension income
should be comparable to the existing standard of living. The intention to match DB
plan benefits indicates implicitly the need to have pension income comparable to
existing wages in DC plans and some role of habit formation (Spinnewyn 1981;
Becker and Murphy 1988) in termina utility. To relate termina utility with the
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existing standard of living, Cairns et al (2006) assume that terminal utility is a
function of wealth-to-wage ratio or replacement ratio (pensiontto-final wage ratio).
The use of replacement ratio is more appropriate for an individual who intends to
convert her pension wealth into a life annuity on retirement, which suggests that she is
more risk averse and perceiving life annuities as good value.

Using one risk-free asset and N risky assets, Cairns et al (2006) ind that
optimal asset allocation in risky assets needs three efficient mutua funds if the
termina utility is a function of replacement ratio. One mutua fund (which is heavily
dominated with equities) isto satisfy the risk appetite of the plan member. The second
fund (which is heavily dominated with cash) is to hedge the wage risk. The third fund
(which is heavily dominated with bonds) is to hedge interest rate risk. Cairns et a
(2006) call the three funds “equity”, “cash” and “bond” fund respectively. If the
terminal utility is a function of weathto-wage ratio, the optimal asset allocation
needs only the “equity” fund and the “cash fund”.

Although Cairns et a (2006) indicated that the “equity”, “cash” and “bond”
funds are heavily dominated by equities, cash and bonds respectively, they did not
provide a measure on how to gauge the dominance. Is it possible that the “equity”
fund is dominated by bonds in some scenarios? The present paper extends the study of
Cairns et a (2006) by investigating the composition of those mutual funds. For
simplicity, | assume that the pension plan can invest in three assets, cash, bond and
stock (Boulier et a 2001; Deelstra et a 2003; Battocchio and Menoncin 2004) and
that the terminal utility is a function of wealth-to-wage ratio. The assumption of
wealth-to-wage ratio as the argument of terminal utility function is more appropriate
for individuals who are reluctant to annuitize heir pension wealth on retirement,
which has been shown to be the case for most people (Brown and Warshawsky 2001).

In the present study | find that the optimal asset allocation in risky assets
consists of three components: (i) a preference free component to hedge wage risk, (ii)
a speculative component, proportional to both the portfolio Sharpe ratio and the
inverse of the relative risk aversion index, and (iii) a hedging component depending
on the state variable parameters. With the same assumptions on the wage process and
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risky assets as those in Battocchio and Menoncin (2004) and Cairns et a (2006), the
third component (which corresponds to the “bond” fund of Cairns et al) disappears.
The other two components all contain both bonds and equities, and the preference free
hedging component (corresponding to the “cash” fund of Cairns et al) does not

contain cash assets (because this is an investment in risky assets) if the proportion of

investment in the riskless asset ( ppo =1- &Y, p, in Cairns et al 2006) is not

included.

This paper is organized as follows. Section 2 formulates the financial market,
wage and pension wealth growth models. Section 3 presents the optimization problem
and the Hamilton-Jacobi-Bellman equation. Section 4 solves the optimal asset
alocation problem for power utility. Since optimization for power utility with
non-hedgeable wage income risk cannot be solved in closed-form, | only solve the
cases Where pension contribution has stopped or wage risk is fully hedgeable. Section

5 discusses and summarizes the results in this paper.

2. Themodel

In this section | introduce the financial market structure, wage process and

pension wealth process using wage as a numeraire.

2.1. Market structure

The specifications of the financial market are similar to those in Boulier et a
(2001), Deelstra et a (2003) and Battocchio and Menoncin (2004). The financia
market is frictionless and continuously open, with no arbitrage. There are three types
of asset in the financial market: cash, bonds ard equities. For simplicity, | assume
only one equity asset, a stock, available, which can be considered as the index of a

stock market. The uncertainty in the financial market is described by two standard and

independent Brownian motions Z,(t) and Zs(t) with t1 [0,T], defined on a complete

probability space (W, F, P) where P is the real world probability. The filtration F =F (t)



"t1 [0,T] generated by the Brownian motions can be interpreted as the information

set available to the investor at timet.
The instantaneous risk-free rate of interest r(t) follows an Ornstein-Uhlenbeck

process (Vasicek model)
dr(t) =a(b - r(t))dt+s . dzZ (1),

r@)=r,. 1)
In equation (1), a and b are strictly positive constants, and s; is the volatility of
interest rate. The instantaneous drift a (b - r(t)) has an effect to pull the process
towards its long term mean b with magnitude proportional to the deviation of the
process from the mean (meanreverting). The stochastic element Z,(t) causes the
process to fluctuate in an erratic, but continuous fashion (Vasicek, 1977).
When the interest rate process is described by equation (1), the price of

zero-coupon bonds for any date of maturity t at time t, B(t, t, r), is governed by the
diffusion equation (Vasicek 1977; Boulier et a 2001; Deelstra 2003)

dB(t,t,r)

————==(r(t) +b(t,t )s x)dt - b(t,t)s dzZ, (1),

B(L.r) (r(t) +b(t,t)s x) (t,t) (t)
Bt.t)=1,

where x is the market price of interest rate risk assumed to be constant, and

_ a-at-
b(”):le—_

The riskless asset has a price process governed by

dR(t) = R(O)r(t)dt,
R(0) = Ry. )

The riskless asset can be considered as a cash fund paying the instantaneous interest

rate r (t) without any default risk. The value of the cash fund at t is then

R(t) = R(0)exp gé)r (s) dsg. ©)



There are zero-coupon bonds for any date of maturity, and a bond rolling over
zero coupon bonds with constant maturity K. The price of the zero coupon bond with

constant maturity K is denoted by Bk(t, r) with

dBy (t,r)

B () L0+ bes X]dt- bes 4z, 1), (4
where

1_ e akK
a

b, =

The relationship between B(t, t, r) and Bk(t,r) through the riskless cash asset
R(t) (Boulier et a, 2001) is

dB(t.t,r) _& b(tt)OdR(E) , b(tt) dB (t.1)
B(tt,r) b zRt) b, B(tr)’

The above equation shows that the “rolling bond” can be obtained by a portfolio of
one zero coupon bond and the cash asset, and that other bonds can also be obtained
through a portfolio of the riskless asset and the “rolling bond”.

The stock has a process of he total return (that is, the value of a single
premium investment in the stock with reinvestment of dividend income) governed by

stochastic differential equation (SDE)

ds(t) = Sty (r, Yt +v,es ,dZ, (1) +s (0Z, )],

S0) =S, (5)
where

my(r,t) =r(t) +sxs (6)
is the instantaneous percentage change in stock price per unit time. The total stock

instantaneous volatilitys =+v.s’s .*+s .’ is assumed to be constant, and the
volatility scale factor v,s measures how the interest rate volatility affects the stock

volatility. The risk premium on the stock is mg =sXg, where the market price of

stock risk, Xs, is assumed to be constant.

The market as assumed above has a diffusion matrix given by
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é b.s Ou
sog X7 T, (7)
eVisS, Ssu
and s; and ss are assumed to be different from zero and the diffusion matrix is

invertible.

2.2. Wages
The plan member’s wage, Y(t), evolves according to the SDE

dY() = Y®O[(m () + r©)dt +v,,s,dZ, (1) +Vg,s sZ4(1) +s,dZ, (1)],
Y(0)=Y,, €)

where my(t) is a deterministic function of time, age and other individual characteristics
such as education and occupations. These assumptions on wage processes are similar
to those by Battochio and Menoncin (2004) and Cairns et a (2006). Here sy is a
constant and Zy(t) a standard Brownian motion, independent of Z(t) and Zs(t). The
volatility scaling factors, vyy and vsy measure how interest rate volatility and stock
volatility affect wage volatility, respectively. The parameter sy is a non-hedgeable
volatility whose risk source does not belong to the set of the financial market risk

sources. When sy = 0, the market is complete. Otherwise the market is incomplete.

2.3. The fund wealth and wealth-to-wageratio

The value of the plan member’s pension fund is denoted by W(t), and the
proportions of fund wealth invested in the riskless asset, bonds and stock are denoted
as gr(t), gs(t) and qgs(t) respectively. Since al pension wealth is invested in those
three types of asset,

ar(t) +ag (1) +qs(t) =1, 9)

The change in the pension wealth dW) at time t comes from two sources. returns
from investment of pension wealth and contributiors from the wage income (Y) at

timet. Usingq,(t) +q;(t) +qs(t) =1, the SDE governing the pension wealth process

is



: dR dB dSu
AW (1) =W da - ds) = *+da 5 +as g+ PYOck

={W()I[(1- gg - gs)r +qg(r +bxs X) +gsms]+pY(t)}dt (10)
+W(t)(-agbk +0sVis)s dZ, +W(t)qss sdZs.

where p isthe proportion of wage contributed to the pension plan and Y(t) is the wage

income at period t.

Asin Cairns et a (2006), the termina utility is assumed to be a function of
terminal pension wealthto-final wage ratio, X(T) =W(T)/Y(T) and independent of
the interest rate at time T, r(T),

U (X(T),r(T)) ° U(X(T)).
Applying 1t6 ’s lemma, the SDE governing the wealth-to-wage ratio is
dX(t) = %dw - :/(V—ZdY +¥(dY)2 - Y—lz(deY) : (11)

By substituting the value of W, Y, dW and dY, the SDE governing this pension

weal th-to-wage ratio processis:

dX(@)=[@'M +u)X +p]dt +(q'G+L")XdZ, (12
where,

9 [gs as],

M 0 g bKS rX +bKVrYS r2 g’

. 2 2 ~
@Ms- Viy\WiS, - VS (I

,&ebs, 0 04

G )
gvrssr SS OH
L' [‘ VivSt - VgSs 'SY]’
ze [z, zs z,]. (13)

The new diffusion matrix for the financial market is given by G. | assume that

(GG)isinvertible in al following sections.



3. The optimization problem and Hamilton-Jacobi-Bellman equation
| assume that the expected terminal utility has the functional form
V(t,x,1,y,d) = EJU (X, (T),r (M), YM) [ X (M) =xr®) =r,Y(1) =y] (14)
where Xq(t) is the path of X(t) given the strategy g. The optimal asset allocation
problemis to find the strategy g that maximize the expected terminal utility of a plan

member,

J(t, xr,y) =supV(t,x,r,y;q) (15)

The above specifications have a similar form to those in Cairns et a (2006). The
stochastic optimal control problem can be written as follows:

mex E[u(x(m),T)].

subject to

ewu é m, u, é W u

da Z,

&4 Gam +uyx +pf S(qG+L)><“d

wW(0) =w,,X(0) =X,,"0EtET, (16)
where,

wel v,

m,°fa(-r) Y(m +n],

21

r 0 00
g- a7
S WeSs YSy(

S

D

(0]

=

N

3

(‘gw

The solution to this problem should give us the optimal portfolio composition.

The Hamiltonian corresponding to the optimization problem (16) is

ﬂ ﬂJ
H(J)=J, +m,
() ! ﬂ \NZQ

1-[2
+-(Q'GQ& +29'GL +L'L)x?
(q &+ )X X2

—+[Q'M +u)x+p]—+ trgWW

127
'G+L "YWk
+(q'G+L") WX

Differentiating equation (18) with respect to g gives the first-order condition

™ 1 127 » 123
= Mx— + GWK +(G +GL ——O, 19
a9 X quax T (CGATCLIX oo (19)

10



TH

where ‘ﬂ_ Is a vector. The optimal portfolio composition is
q
qg*=-(GG'GL- (GO 'M Ix (GG)‘lG'WJLX. (20)
XJ g XJ e

where the subscripts on J indicate partial  derivatives.  Here

g*=[gg(t)* qg(t)*]',the optimal proportions invested in bonds and stock

respectively. The three terms on the right hand side of equation (20) can be designated
as qi*, gp* and qgz* respectively, which are themselves vectors with two elements
corresponding to certain proportions of investment in bonds and stock. We can aso
view gi*, g2* and gs* asthree mutual funds constructed with bonds and stock.

The three terms on the right-hand-side of equation (20) correspond to the
optimal asset allocation strategy with three mutual funds labeled as “cash”, “bond”
and “equity” in Cairns et a (2006). Their three funds are linear combinations of the
three terms in equation (20). The above equation concerns with the optimal
composition of the mutual fund constructed with risky assets bonds and stocks. This
isin contrast with the conclusion of Cairns et al (2006) that the first term represents a
mutual fund dominated by cash assets. Since the vector q does not include the
proportion of pension weath invested in the risk free asset, the actual optimal

portfolio consists of two components. one is cash assets with proportionl- q; - qg,

and the other is a mutua fund with proportionq, +q. From this analysis, we get
Proposition 1. The optimal portfolio consists of two components: 1) a risk

free asset with proportion1- q; - g5, and 2) risky assets with proportionq; +qs. The

risky component can be further divided into three funds: a) a preference-free hedging

component, - (GG 'GL (fund 1) b) a speculative component, - (GG *M x:]]X

XX

(fund 2), and c) a state variable dependent hedging component - (G G)‘lGWJLX

XX

(fund3).
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The preference-free component (fund 1) minimizes the instantaneous variance
of the wealth-to-wage ratio differential, dX. From equation (12), the variance of dX is
given by

var(dX)=(q'GGq +2q'GL +L'L)X?dt.
Minimizing var(dX) over q gives a minimum variance portfolio, which is identical

to fund 1.

The speculative component (fund 2) increases when the “returns’ on
wealth-to-wage ratio X(t) (i.e. M) increase, and decreases when the relative risk
aversion (XJxx/Jx) or the weathto-wage ratio variance (C'G) increases. Here the
“returns’ on wealth-to-wage ratio X(t) (i.e. M) means wage adjusted returns on the
assets, not the original returns from the assets. The speculative component is to satisfy
the risk appetite of the plan members.

The state variable dependent component (fund 3) depends explicitly on the
diffusion terms of the state variables (W), suggesting that this component covers the
plan member from financial market risk. In fact, the present formulation uses the

member’s wage as a numeraire to assess the fund manager’s performance.

4. Optimal asset allocation strategy for power terminal utility

Non-linear partial differential equations such as those derived in the preceding
section generally do not have closed-form solutions, although closed-form solutions
may be found for some particular form of utility functions. To compute the optimal
portfolio composition q for power utility, it is necessary to find the maximum

expected utility function J(t,x,w), which should satisfy the boundary condition

J(T,x,w) = ﬁ x"'?, where g is the relative risk aversion coefficient. Based on

whether there are pension contributions from wage incomes and whether there is a
non-hedgeable wage risk, the optimal allocation strategy for power utility can be
considered in three scenarios: 1) there is no contribution from future wage incomes

(p =0) (with or without nonhedgeable risk; the two cases have the same solution in



the present model); 2) there are pension contributions from wage incomes (p >0),

but there is no non-hedgeable wage risk (s y =0); 3) there are pension contributions
from wage incomes (p >0), and there is a non-hedgeable wage risk (s * 0). Since

there is no analytical solution for the third scenario (p >0, s * 0), in the present

study | will only work on the first two scenarios.

4.1. Optimal asset allocation without wage income contribution, p=0

Since p =0, egquation (18) (the HamiltonJacobi-Bellman equation) becomes

2
HJ)=J, +m, E+(qM+u)x—+ trai'\/\lw‘"‘]O
" w 28 W, (21)
1% . 1P

'G+L")VK G GL+L'L
+(q'G+LY) <13 2('GCq +29'GL + L'L)x X

| start with a trial solution by assuming that the maximized expected terminal utility

of plan members has the functional form

J(t,x,w):lig(t,ngl'g, (22)

g(T,w)=1 "w.

Then, we have

1-9
J,=9g%?,
J —_nggl,

Jow =997, X°°. (23)
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In the above equations J,, Juw and gy are vectors, and Jy and guy are matrices.
Substituting the partial derivatives of the expected terminal power utility function in
(23) into the above HIB equation (21) gives

g g-1 1—g+ :M + g 1—g+ ] g g-1 1-g

—1_ g g° "g.X @ u)g’x m, —1_ gg g, X
—tr.W\AF( 0)g*?g,2x% +—_goig, oty (24)
2 1-g %

+(a'G+L W g, x*° +§[q'GGq +29'GL +L'L](-g)g°x*® =0.
Substituting the optimal proportion composition of pension fund investment g*,
equation (20), and simplifying,
+2mN+ gM (]e) 1G\A/ng+ Str(Ww,,)
(25

el-g 1- 1-
GWM (GG*M +TM (GG )GL'TULJQ =0.

For the p =0scenario, obvioudy the function g(t,w) has to satisfy equation

(25) for the assumption  J(t, x,w) = % g(t,w)? x*9to be a correct solution. By the

Feynman-Kac formula (@dksendal 2000; Duffie 2001), there exists a probability

measure Q(g) such that
9(t,w(t)) = Equ [9(T,W(T)) D, T) | R, (26)

where W(<) is governed by the SDE

dw(s) = m, (W(s))ds +WW(s),s)'dZ ,
= — 1- g ! -1
m, (W(s)) = mN+TM (GOGW,

W(t) =w(t),

D(t,T) = exp|olj (5)ds],

where
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. e 1- 1y, 1 : 1-g U
i (9= 6——2M (GO M +—2M (GO GL - —ug.
e2(-9) g g G

In equation (26), F; is the filtration, which can be interpreted as the information

available to the investor at time t. The sin j (<) stands for time, and the function is
written as j (<) to indicate that | might be a function of time (if one or more of the

parametersin M, G, L and u are time dependent). In the present study, all parameters

inM, G, L and u are assumed to be constant, and therefore | (s) are constant.

Using the results from the FeynmanKac formula, i.e. (26), the optimal
portfolio composition (equation (20)) is
-1 -1 1 -1 J T .
=-(GG 'GL- (GG M—+(GQG G'WQ—Et[j (s)ds. (27)
-0 ﬂWt

Since al the terms in the function j (s) do not depend on the state variablesr and Y, its
derivatives with respect to w are zero ard the above equation becomes

—4G®4GLNG®4M%. (28)

In equation (28), only the second term, i.e. the speculative component,
depends on therelative risk aversion g. The first term in the above equation is

o, =-(G9'GL
-1 ébKVrYS r2S 52 - BeViVsS S ’

— 1 eIrSVSY VrYl;I;
2. 2. 2°© 2 2. 2
bKSrSSe 'bK VoyS S

Y

u_
u--—¢
a bKebVSY u

The second term is

IR

A, 2e 2 2 2
—_ 1 9/rS S r X+s S X +VrYS rS S +VrSmSS VrSVSYS S U
2 € b 2y 4 U
g)KS Ss @ K(VrSSr X+MS - VgS S ) u
The optimal proportions of pension wealth invested in bonds and equities are
E,QB u_ 1 éVrSVSY - Vr\(liJ
g] *u——e b u
S K e kVsy U
2. 2 2 2 25 (29)
+ 1 glrssr X+SgX+VS Sg" +V,gMS, - VigVgS S U
o 2 € b 2, 4 2 u-
goS,Ss é K(Vrérx mSSr_VSYSrSS) u
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The optimal proportion of pension wealth invested in risk- free assets can be
calculated by using

qR* =1- qB*'qs*- (30)

Since there is no time or horizon dependent variable in those equations, we get

Theorem 1: Under the market formulation and optimization objective specified in
this paper, when there is no further contribution from wage incomes, the optimal

portfolio composition for power utility is horizon and time independent.

It is clear that the optimal proportions of pension wealth invested in the three asset
categories are not time-dependent. Although | have used pension wealth-to-wage ratio
raher than wedth as the argument of power utility and there is no
consumption-derived utility in my formulation, | get the same conclusion as those by
Samuelson (1969) and Merton (1969, 1971). The optimal asset alocation is time
independent.

Theorem 1 is based on results from the p=0 scenario and in the next

subsection | will show that it is also true for the p* 0 and s =0scenario.

Because there is no anaytical solution for the p * 0 and s ' Oscenario, it is not

cler for the time being whether Theorem 1 applies to the p* 0 and

Sy ! Oscenario. The optimal asset allocation forthe p * 0 and s * Oscenario can

be solved numerically, but the numerical solution would be very complicated with the

present model formulation. Cairns et a (2006) in their paper solving for the p=0

scenario and s = Oscenarios commented, the p * 0 ands ! Oscenarios “involve

atype of computational analysis that is sufficiently different and sufficiently extended
to justify a separate paper”.

The present results demonstrate that when the terminal utility is a power
function of wealth-to-wage ratio, the state variables dependent hedging component
(the third term of equation (20)) disappears. This result is consistent with those in
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Cairns et a (2006). The state variables dependent hedging component corresponds to
the “bond” fund in Cairns et a (2006) and they conclude that “bond” fund becomes
zero when the pension plan is funding for a cash lump sum (more precisely it should
be when funding for weal th-to-wage ratio, because “bond” fund does not become zero
when funding for a cash lump sum).

The preference free hedging component (the first term of equation (20)) is to
hedge wage risk, corresponding to the “cash” fund in Cairns et a (2006). In the sense
that it contains bonds and stocks but not cash assets, the present result is different
from that of Cairns et a. The difference between the present study and Cairns et d
(2006) in terms of “cash” fund may be more in appearance than in substance. When
they concluded that “The optimal weight in risky assets is equivalent to investing in
three mutual funds denoted A, B and C. Fund A ..... will be dominated by cash”,

they did not indicate whether pa =(Pas Pan) OF Pa =(Pagso Pan)' 1S
dominated by cash asset, where p,, =1- &1, p, is the proportion invested in the

riskless asset. Since po = (Pag»--» Payn)' IS iNVestment in risky assets, it cannot be
dominated by cash assets. The correct interpretation of their results is that
Pa =(Pags Pan)' IS dominated by cash asset.

Cairns et a (2006) denote the “cash” fund asset proportion vector as pa with
Pao =1- &N, p, » and similarly for “bond” fund ps and “equity” fund pc, effectively
gplitting the investment in the riskless asset to the three mutual funds. In this way, the

dominance by cash assets in “cash” fund is dominance by pao in pa, With pao the
proportion in cash assets. There is no dominance by cash assets in the wage risk

hedging pa =(Pags-- Pan) Which isused in the derivation of optimal composition,

because there is no cash asset.
Expressing the optimal portfolio composition in the same way as that of

Cairns et a (2006), we have

g* =qaPa *dp Pp tqc Pc»
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J N| J J
where g =1- -+ qp =—2,and qc =1-g,- Qg =- —>— Wwith
Xy Xy X yx XX

p,=-(GO'GL, pp =-(GG 'G(L-W,ad p. =-(GG 'G(L - M). From

those expressions it can be seen that the products of three mutua funds and their
proportions with respect to pension wealth are linear combinations of the three

components in equation (20). The proportions of cash assets in the three mutual funds
ae  py=1-1[-(GO'GL] , ppo=1-1[-(GE'GL-W] , ad

_ J .
Peo =1- I[- (GO 'G(L - M)], with I=[1 1]. Because—*_ =0, the optimal
XX

asset allocation strategy is to invest in two mutual funds A with asset proportion

vector pa ( Py =1-L[- (GG *GL]) and C with asset proportion vector pc

. . J
(Peo =1- 1[- (GG 'GL]). The weights in the two mutual fundsare ¢, =1+ xJX
XX

J
and g =1-q, =

, respectively.

XX

Since the preference free hedging component is to hedge wage risk, it
becomes zero when the correlations between interest rate and wage growth and
between stock return and wage growth are zero. This result is consistent with the
finding of Cairns et a (2006) that the “cash” fund contains 100% cash assets when
wage growth and asset returns are uncorrel ated.

The speculative component (the second term of equation (20)), however,
seems not so consistent with the conclusion of Cairns et a (2006) that the “equity”
fund is dominated by equities. In the present study using wealth-to-wage ratio, the
second term of equation (20) contains a substantial investment in bonds, suggesting
that the “equity” fund include substantial amount of bonds. In my numerica results
later, the speculative component or “equity” fund is actually dominated by bonds. If
the present result applies to the scenario of one riskless and N risky assets, he
“equity” fund in Cairns et a (2006) cannot be literally understood as consisting of
only or even mainly equities.
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Table 2-1 Parameters used in numerical smulation

Interest rate Vaue
Mean reversion, a, 0.2
Mean rate, b 0.05
Voldtility, s 0.02
Initia rate, ro 0.05

Fixed maturity bond

Maturity, K 20 years

Market price of risk, x 0.15
Stock

Risk Premium, mg 0.06

Stock own volatility, ss 0.19

Interest volatility scale factor, vs lor-1
Wage

Wage premium, ny 0.01

Non-hedgeable volatility, sy 0.01

Interest volatility scale factor, vy 0.7

Stock volatility scale factor, vsy 0.9

Initial wage, Yo 10k
Contribution rate, p 10%
Length of pension plan, T 45
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To illustrate the above solution for the asset allocation problem, | have
calculated the proportions of different assets for different values of relative risk
averson with the parameters in Table 1. The values of parameters are those
commonly used in other pension studies to facilitate comparison (Boulier et a 2001;
Dedlstra et a 2003; Cairns et a 2006; Battocchio and Menoncin 2004). The results
are shown in Fig.1. It is easy to see from Fig.1 that with the parameters commonly

used, stock & a very safe asset and an individual will stop short-selling cash for

buying stock only when her relative risk aversion is high (g >5.15 if v,g=-1 and

g>4545 if v,g =1 in my caculation).

Cash, bonds and stock proportions in pension wealth

2 2 .
151 \ A 1.5 B
\ \
1 N 1 .
o AN - -
2 051 . 0.5 ~—— — .
3 e [ ——— Cash Ratio
5 0] e e e ] 0 — - Bond Ratio
n e I IR )
2 05 1 ¢ 0.5 — Stock Ratio
1 -1 1
151 & -1.5 1
2T T T T T T T T T T T T T T T T T T 717 -2 T
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

g (relative risk aversion)

Fig.1 The relationship between relative risk aversion coefficient g and the
optimal proportions of cash, bond and stock invested for pension wealth. The

asset ratio range is cut off at -2 and 2 in order to show details of asset
proportionwhen g >1. A. Interest volatility scale factor for stock, v,g =-1.
B. v =1

The preference-free component (the first term in equation (20)) is dominated

by the stock, and the speculative component (the second term in equation (20)) is



dominated by the bonds, which does not support the conclusion on “equity” fund by
Cairns et a (2006). An increase in the relative risk aversion coefficient g reduces the
short-sale of cash assets and consequently the (absolute) proportions invested in both
bonds and stocks. Because g only affects the speculative component which is
dominated by bonds with commonly assumed market parameters, the overall effect of

an increase in g reduces the proportion invested in bonds relative to that invested in

stocks. At about g=0.7 if vg=-1and g=12 if v, =1, the investment in

stock overtakes that in bonds. The relative risk aversion has often been estimated in

the range between 2 and 4. In this range, there is a short-sale of cash assets between

12.7% and 68% if v, =-1 and between 60% and 130% if v,5 =1. As shown in

Fig.2, when the relative risk aversion gets smaller, the short-sale of cash asset can be

many times the value of pension fund.

Cash, Bond and Stock Proportions in Pension
Wealth for Power Utility

40

20 -
S
§ 0 - R Rt X R LA ~+- Cash Ratio

ot .

o o —— Bond Ratio
@ 201 o ~+~ Stock Ratio
< ;

40

2 S ——

g (relative risk aversion)

Fig.2 The relationship between g and the optimal proportions of cash,

bond and stock invested for v, =1. The g range is cut off a 2 in order to

show the full extent of cash short-sale and purchase of bond and stock.
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Ascanbeseenin Fig. 1,if v,g=-1and g<4.7, itisoptima to short-sell

bonds in order to hold more stocks. The economic intuition here is that with v, <0

the changes in bond and stock prices caused by innovations in the spontaneous
interest rate are in the same direction, whereas the changes in the risk free asset and
the stock are in the opposite directions. Therefore, long in cash and short in bonds can
hedge against changes in stock. The reason why this only happens with relatively high
g is the higher return of bonds compared with cash assets. The more risk tolerant
investors prefer the higher return of bonds to the safety of risk free assets. The
estimates of v;s are quite variable in different pension strategy studies, ranging from -5
(Cairns et a 2006) to 3 (Battocchio and Menoncin 2004). Deelstra et al (2003) use a
value of 0.02 and Boulier et a (2001) use -3. In the present thesis | use middle range

vauesof v,g=-1and v, =1.

The present numerical results indicate that for individuals with g>2,

substantial more pension wealth should be invested in stocks than in bonds. These
results are qualitatively consistent with the asset distributions of pension fundsin UK.
Asat 31 March 2006, the average asset distribution is 35.8% in UK equities, 28.9% in
overseas equities, 23.1% in bonds, 7.6% in index-linked gilts, 2.4% in property, 1.8%
in cash, and 0.4% in other assets, demonstrating the dominance of equities (Mellon
Analytical Solutions: UK Pension Fund Analysis to 31 March 2006). Quantitatively,

the average asset distribution in terms of the ratio between bonds and equities

corresponds to a g of around 2 if v, =-1 and around 6 if v, =1, roughly within

the range of usua g estimates. Two points should be noted in such comparisons. One
is that the pension funds are generally not allowed to short-sell cash assets, and we do
not place a short-sale constraint on the optimal asset allocation. The other is the
“tension in economics between the attempt to describe the optimal choices of fully
rational individuals (‘positive economics') and the desire to use our models to
improve people’s imperfect choices (‘normative economics)” as commented by

Campbell and Viceira (2002). My present results, like most portfolio strategy studies,

2



show that optimal asset allocation strategies for power utility are usually horizon
independent, but financial advisors often recommend a horizon dependent lifestyle
strategy.

My calculations also showed that volatilities, s, and ss, have a profound
influence on the optimal proportions of the three assets. A reduction in the stock
volatility increases the proportion of wealth invested in the stock and decreases the
proportion invested in the cash asset, while the proportion invested in the bond has a
smaller increase. A reduction in interest rate volatility increases the proportion
invested in the bond and decreases the proportion invested in the cash asset, whereas
the proportion invested in the stock also decreases. An increase in the stock risk
premium ms increases the proportion invested in the stock and decreases the
proportion invested in the cash assets, whereas there is only a margina increase in the

proportion invested in the bond.

4.2. Optimal asset allocation with hedgeable wage income contribution
When wage income is fully hedgesble (s =0), u, G L and Z in equation

(12), the SDE governing the wealth-to-wage ratio process, become:

2

2 2 2
u® '(m_VrYSr - Vgy S )7

Go é bKSf Ol;l
€ Us
eVisS, Ssu

L ° -[VrYSr VSYS S]I’

zeolz, z4], (31)

The diffusing term of the state variablesis

M-

wo g >’ °
vS WSYSSU
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CgD)

While in the scenario without further contribution from wage incomes the
initial wealth has to be assumed, in the scenario of fully hedgeable wages the initial

wealth can be calculated from wages and market parameters. To borrow against future

23



wage income it is necessary to calculate the market value at time t for future
premiums payable between t and T. The wage, Y(t), evolves according to the SDE

dY(t) = Y[, (©) + r())dt +V,ys . dZ, (t) +Vvgs (dZs(1)],
Y(0)=Y,, (33)

Let Q be the risk-neutral pricing measure and Z~r (t) and ZS (t) independent
standard Q-Brownian motions (Cairns et a 2006), the wage process under Q is
AY (1) =YOUM @) +1 (1) - X,VS | - XsVe,S §) At +V,.8 , 07, (1) + Vs sdZ5 (1)),
(34)
which implies that
YE) =Y eR{ [ (9 +r(9lds- (X vy, +xeVeS s + 3V S P+ 25" ) - )
V8, 0Z, ) Z, (0] +Ves o[ Z5 (1) - Zo(Ol}.
(35
Here X, is a measure of how interest/bond volatility will affect wage, and Xsis a scale
factor measuring how stock price volatility affects wages. They are essentialy prices

of risks. The market value at time t for future premiums payable betweent and T is

then

EQgée(p{- Or(e)dspY ¢ )t |th

=PE, QY] G (968 (Vs +xs¥eS s 39,8 T 435S I - )
V8 [Z, () - Z, 0] Ve o[ Z5 ) - ZoO)fct | F,]

=pY(H)QPIOM (U5 X,V , +XsVeyS )t - el

=pY(®)f(©).
(36)

The pension plan can have an additional wealth of pY (1) f (t) by short-selling a
replicating portfolio of value- pY(t)f (t), which will be paid off exactly by future

contributions from wage incomes. The total pension wealth enhanced with the present

market value of future contributions isW(t) + pY(t) f (t), and the current enhanced
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pension wealth-to-wage ratio is X(t) + pf (t). The optima composition of pension

fund will be the same as in the case of no wage income contribution, but the optimal

termina utility function will have the form

J(t, X, w) :ﬁg(t,w)g (x +pf (t)*°. (37)

The optimal strategy is to hold - pY(t)f (t) in the replicating portfolio and invest

the W(t) +pY()f(t) in the optima composition of pension fund wealth. Such a

treatment of hedgeable wage income risk is often applied in portfolio and pension
studies (Deestra et a 2003; Cairns et a 2006). The composition of the replicating

portfolio can be written in vector form

. me € VisVsy - Viy u
qu u e b u
e "rU_&é K U
R_€ RrU_
q —@s u=e Vsy a- (38)
QJRRLJ & _ VisVsy - Viv U
e K u

In the above equation, the superscript R indicates replicating portfolio.

Thesum W(t) =W(t) +pY(t) f (t)can be denoted as the augmented pension
wealth and X(t) = X(t) +pf (t) augmented wealth-to-wage ratio. The total pension
financia wedlth is the sum of the invested augmented pension wealth VV(t) and the
short-sold replicating portfolio - pY(t)f (t) . The matrix representation of the

wealth-to-wage ratio SDE and the HIB equation for the augmented wealth-to-wage
ratio is the same as that when there is no further income contribution, although the
parameters u, G, L, Z and W in equations (12) and (16) are replaced by those defined
in equations (31) and (32). The optimal portfolio composition when expressed in
matrix form is the same as that without further contributions from wage incomes in

the preceding subsection
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When u, G, L, Z and W in equations (31) and (32) are substituted into the
optimal solution, equation (27) or (28), the optimal proportions of pension wealth

invested in bonds and equities are

@ u_ 1 eVrsst - Viy U
é u U
dls * bK e b kVsy 0

2 2 20
1 9/rSSr X +SS X +erS rSS +VrSmSSr - VrSVSYS rSS ,

u

+
2 € 2 2 u-
s s e b (VS X +MS | - Vg S S¢7) 0]

These expressions for optimal proportions in bonds and stocks are the same as those
for the no further contribution (p =0) case. The optimal proportion of pension wealth

invested in risk-free assets can be calculated by using
dr()* =1-qgg () *-qs®) *.

From the above analysis, we get

Proposition 2: When there is no nonhedgeable wage risk, the optimal pension
portfolio composition is the same as that when there is no further contribution from
wage incomes.

Since the net value of the pension plan financial wealth is W(t), the optimal

composition of financial wedlth is

Eq;g: LY () 0 *u pY(t)f(t)GqBRu

: u
81s" g WO St WO @ty
NONOL e
W) P by a
® Qg Vsy (
2’ S X +S X +ViyS S 5* +VigMsS | - VigVyS S & ﬂ '
= A(ORIO] gocs S §° G
W) & VisS X + Mg - VS ° ﬂ
8 o5 8
&VrsVsy - Viv U
Y () g
wp e <
e Sy u
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which can be smplified as

Qg lil_e U
€ FU~a by G
Bs g % v -
e SY u
A 2 2 2 20
gvrs S, X +S SZX +VrYS Ss +VrSmSSr - VisVsyS (S g H (40)
..A 2 ph
+§[+ pY () f(t) % PSSs” G
WO VS X + Mg - VoS ;
~ 2 "
e OSs ¢

In the above equation, qBF and qsF are the optimal proportions of financial wealth

invested in bonds and stocks respectively, and qBRand qSRare proportions of the

replicating portfolio short-sold in bonds and stocks respectively. The optimal
proportion of the financial wealth invested in risk-free assets can be calculated by
using

dr®" =1-9s ()" - as(t)" -

The value of replicating portfolio decreases as t increase (i.e. the retirement
date approaches), whereas W(t) is generaly increasing in t. Because the optimal
composition of the augmented pension wealth is different from the composition of the
replicating portfolio, the change in their relative sizes will affect the optimal
composition of their sum, the financia wealth. Therefore, although neither the
optimal composition of augmented pension wealth nor the composition of the
replicating portfolio is time or horizon dependent, the optimal composition of the
pension plan financial wealth is horizon-dependent. Equation @0) shows that the
composition of pension plan financial wealth is horizon dependent.

From the above anaysis, we get
Proposition 3: When there is no nonhedgeable wage risk, while the optimal portfolio
composition of the augmented pension wealth is the same as that of pension wealth

when there is no further contribution from wage incomes, the optimal composition of
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the pension plan financial wealth (the augmented pension wealth + short-sold

replicating portfolio) is horizon dependent.

The scenario with contributions from hedgeable wage incomes differs from
that with no further contributions in that initial wealth can be calculated and borrowed
against future wage incomes (by short-selling the replicating portfolio) and in that the
composition of financial wealth is horizon-dependent. The scenario of no further

contribution can be considered as a specia case of hedgeable wage incomes where
pY(t)f (t) =0. Asillustrated in Fig. 3 where parameters in Table 1 and g=2 are used
in the numerical simulation, the optimal proportions of the three assets are horizon
dependent. The values of cash, bond and stock in the financial wealth and the total

value of financial wedth (in terms of wealth-to-wage ratio) over the life of the

pension plan are shown in Fig.4.

Optimal Proportions of Cash, Bond and Stock in
Financial Wealth for Power Utility
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Fig.3 The horizon-dependent profile of optimal proportions of cash, bond
and stock in financial wealth for power utility. Parameters in Table 1 are used
in the simulation and the relative risk aversion coefficient g=2. The results are

from 100 simulations.

Since the net value of the financial wealth (augmented wealth+short position
in the replicating portfolio) is small at early stage (it is zero at t=0), the composition
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of the financia wealth has a large short position in cash assets to finance the long
position in bonds and stocks. As the short position in the replicating portfolio is paid
off gradually by future contributions, the net value of the financia wealth increases
and the asset ratio (the ratio betweenthe wealth invested in one class of assets and the
financial wealth) of all the three assets decrease. At later stage of the pension plan,
since the short-sold replicating portfolio becomes very smal compared with the
augmented pension weath or the net value of the financia wedlth, the optimal
composition of the financial wealth is very similar to that of the augmented wealth. At
the end of the pension plan, the optimal composition and the net value of the financial

wealth are identical to those of the augmented pension wealth.

Cash, Bond,Stock and Financial Wealth for Power

Utility, g=2
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Fig.4 The values of cash, bond and stock in the financial wealth and the
total value of financial wealth (in terms of wealth-to-wage ratio) over the life
of the pension plan Parametersin Table 1 are used in the simulation and the

relative risk aversion coefficient g=2. The results are from 100 simulations.

The above results indicate that when there is stochastic wage income and the
wage income risk is hedgeable, the optimal composition of the pension plan financia
wealth is horizon-dependent, although the optimal asset allocation of the augmented

pension wealth is horizon or time-independent. Short-selling of risk-free asset is
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considered as reduction in the holding of risk free asset, and the proportion of risky
assets in the financia wedlth (sum of the augmented pension wealth and the
replicating portfolio) is higher than that when there is no contribution from wage
incomes. The short-sold replicating portfolio is being paid off over time, so that the
proportion of riskless asset in the financial wealth increases and the proportions of
risky assets decrease. The optimal portfolio composition in terms of financial wealth
istherefore stochastic lifestyling (Cairns et al 2006). This is consistent with the results
of Bodie et d (1992) and Campbell and Viceira (2002) that the presence of (risky)
labor incomes tilts the portfolios towards risky financial assets.

Concerning the horizon-dependence of optimal portfolio composition, there is
a subtle difference between the present results and those from Boulier et a (2001),
Dedlstra et al (2003) Battocchio and Menoncin (2004) and Cairns et a (2006). In the
studies of Boulier et a (2001), Deelstra et al (2003) Battocchio and Menoncin (2004)
and Cairns et a (2006), the optimal composition of pension wealth portfolio per seis
horizon dependent when interest rates are stochastic, while in the present study the
optimal composition of pension wealth portfolio per seis horizon independent and it
is the optimal composition of financial wedlth that is horizon dependent. The
assumption that the expected terminal utility is a function of wealth-to-wage raio may
underlie the difference. Boulier et a (2001) and Deelstra et a (2000, 2003) have
considered pension plans with a guaranteed minimum benefit at retirement and the
termina utility measured as a power function of surplus cash over the guaranteed
benefit. Using wealth-to-wage ratio, as the argument of the expected terminal utility,
in the present study removes the dependence of instantaneous conditional expected
change per unit time (the expression multiplying with dt in the SDE) on the state
variables, so that the need to hedge against the fluctuations in the state variables
disappears. The assumption by Cairns et al (2006) that terminal utility is a function of
replacement ratio re-introduces the dependence of instantaneous conditional expected
change per unit time on the state variables, because replacement ratio is the quotient
between wealth-to-wage ratio and annuity price and annuity price is interest rate

dependent.



5. Conclusion

In this paper | have solved the optimal portfolio problem under stochastic
interest rate and wage income for power utility, using three assets cash, bonds and
stock. | assume that the terminal utility of a pension plan member is a function of
terminal pension wealth-to-wage ratio. Under the present model assumptions, the
optimal portfolio (for an unspecified utility function) invests in both riskless and risky
assets. The investment in risky assets contains three components. a preference free
hedging component to hedge wage risk, a specul ative component proportional to both
portfolio Sharpe ratio and the inverse of the Arrow-Pratt relative risk aversion index,
and a state variable dependent hedging componert to hedge financial market risks.
This result is consistent with that of Cairns et a (2006). The three components are
roughly corresponding to the “cash”, “equity” and “bond” funds in Cairns et al
(2006).

Closed form solution is derived for power terminal utility when there is no
further contribution from wage incomes or when there is no non hedgeable wage risk.
The state-variable dependent hedging component disappears with the assumption that
the expected terminal utility is a power function of wealth-to-wage ratio. The
preference free hedging component and the speculative component contain both
bonds and stocks, which is different from the conclusion of Cairns et a (2006) that
the “cash fund” is dominated by cash assets and the “equity” fund is dominated by
stocks. | find that even the speculative component (“equity” fund) can have a larger
proportion of bonds with commonly assumed market parameters. Since both the
preference free hedging component and the speculative component are horizon
independent, the optimal pension asset allocation strategy of pension wealth per seis
horizon independent. When the future contributions from wage incomes are hedged
by short-selling a replicating portfolio, the optimal portfolio composition of pension
plan financial wealth (augmented pension wealth + short-sold wage replicating

portfolio) is horizon dependent.
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To summarize, the optimal asset alocation of pension wealth portfolio for DC
penson plan members with termina utility as a power function of pension
wealth-towage ratio, which invests in both riskless and risky assets, is horizon
independent. The optimal portfolio composition of pension plan financial wealth is
horizon dependent. The investment in risky assets contains a preference free
component to hedge wage risk and a speculative component to satisfy the risk appetite

of the plan members. The two components consist of both bonds and stocks.
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