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Abstract

This paper uses a recently developed two-factor stochastic mortality model to estimate financial risk measures for four illustrative
types of mortality-dependent financial position: investments in zero-coupon longevity bonds; investments in longevity bonds that
pay annual survivor-dependent coupons; and two examples of an insurer’s annuity book that are each hedged by a longevity bond,
one based on the annuity book and hedge having the same reference cohort, and the other not. The risk measures estimated are the
value-at-risk, the expected shortfall and a spectral risk measure based on an exponential risk-aversion function. Results are reported
on a model calibrated on data provided by the UK Government Actuary’s Department, both with and without underlying parameter
uncertainty.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

There has been considerable interest in recent years
n models of mortality. Much of this interest has arisen
rom the belated recognition – evident, for example, in
he Equitable Life fiasco1 – that actuaries in the past have
ended to pay insufficient attention to aggregate mortality
isk. It is also becoming clear that many insurance com-
anies have considerable exposure to this risk, and that
hey currently lack the tools to price and manage this risk
s effectively as they should. It is therefore not surprising
hat a number of mortality risk models have been pro-

∗ Corresponding author. Tel.: +44 115 846 6682; fax: +44 115 846
667.

E-mail address: Kevin.Dowd@nottingham.ac.uk (K. Dowd).
1 In this case, the firm offered guaranteed annuity options based
n 1950s mortality tables, and its failure to take proper account of
ortality risk was a key factor contributing to its being forced to close

o new business in 2000.

posed in the past few years,2 and that there have also been
proposals for mortality derivatives, most particularly for
longevity bonds (LBs).3 The first publicly offered mor-
tality derivative – the Swiss Re LB – was then issued in
December 2003,4 and this was followed by the European

2 These models include those of Milevsky and Promislow (2001),
Yang (2001), Cairns et al. (2006a), Dahl (2004) and Lin and Cox
(2005b).

3 Longevity bonds were first proposed by Blake and Burrows (2001)
(under the name of survivor bonds), and further developed by Lin and
Cox (2005a) among others. Mortality swaps were suggested by Lin
and Cox (2004) and Dowd et al. (2006).

4 This was an otherwise conventional bond whose principal payment
was linked to adverse mortality risk scenarios. The face value was $400
million and the maturity of the issue was 4 years. Investors received a
floating coupon rate of US LIBOR plus 135 basis points, but the prin-
cipal payment was at risk if the weighted average of general population
mortality across five reference countries (US, UK, France, Italy and
Switzerland) should exceed 130% of the 2002 level. Since mortality is
improving, the chances of such high mortality were judged to be very

167-6687/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2005.11.003
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Investment Bank/Bank National de Paris longevity bond
announced in November 2004.5 Financial institutions
have also started to trade mortality derivatives over-
the-counter, and the indications are that a wholesale
market in aggregate mortality risk is beginning to take
shape.

These developments are encouraging, but insurance
companies still have a problem: how do they assess
the magnitude of the financial risks implied by their
mortality exposures? This paper seeks to provide an
answer to this problem. The answer suggested has
three key ingredients: a stochastic model of aggre-
gate mortality; some financial risk measures; and
a simulation framework that enables us to estimate
these financial risk measures for a mortality-dependent
portfolio based on the underlying mortality model.
In addition, since the parameters of the mortality
model are (inevitably) uncertain, our estimation frame-
work should also take account of the uncertainty
attached to estimates of the parameters (i.e., parameter
risk).

This paper is organized as follows. Section 2 sum-
marizes the mortality model used in the study: it cov-
ers the main features of the model and addresses the
associated issues of calibration and simulation. Sec-
tion 3 looks at applications of this model to esti-
mate the risk measures of four types of mortality-
dependent financial position: zero-coupon LBs that
make a single mortality-dependent payment; coupon-
paying LBs that make annual mortality-dependent

2. A stochastic mortality model

Let S(t, x) be the survivor rate at time t of a cohort aged
x in year 0. For any given x, S(0, x) = 1 and we expect
S(t, x) to diminish as t gets bigger and eventually go to
0 as t gets very large. We also know that if q(t, x) is the
realized mortality rate in year t + 1 (that is, from time t
to time t + 1) of our cohort, then

S(t + 1, x) = (1 − q(t, x))S(t, x) (1)

We assume that q(t, x) is governed by the following two-
factor Perks stochastic process:

q(t, x) = eA1(t+1)+A2(t+1)(t+x)

1 + eA1(t+1)+A2(t+1)(t+x) (2)

where A1(t + 1) and A2(t + 1) are themselves stochastic
processes that are measurable at time t + 1 (see Perks,
1932; Benjamin and Pollard, 1993). Cairns et al. (2006b)
generate empirical results showing that this mortality
model provides a good fit to realized male mortality data
in England and Wales. Their results also indicate that
a two-factor model of UK mortality fits the data better
than a one-factor one.

Now let A(t) = (A1(t), A2(t))′ and assume that A(t) is a
random walk with drift:

A(t + 1) = A(t) + µ + CZ(t + 1) (3)

where µ is a constant 2 × 1 vector of drift parameters,
C the constant 2 × 2 lower triangular matrix reflecting
volatilities and correlations, and Z(t) is a 2 × 1 vec-
payments; an annuity book that is hedged by a t-
year coupon-paying LB predicated on the same ref-
erence population, where t is taken from 1 to 50,
and an annuity book that is hedged by a t-year
coupon-paying LB predicated on a different reference
population. Section 4 explains the risk measures to
be estimated—the VaR, ES and spectral risk mea-
sures. Section 5 presents two alternative sets of esti-
mates of these risk measures, one ignoring parame-
ter risk, and the other taking account of it. Section 6
concludes.

low, so investors obtained a high coupon rate in return for assuming
some degree of exposure to extreme mortality risk.

5 This instrument was issued by the EIB and managed by BNP
Paribas. The face value was £540 million, and involved time t coupon
payments that were tied to an initial annuity payment of £50 million
indexed to the time t survivor rates of English and Welsh males aged
65 years in 2003. The EIB/BNP bond was closer in spirit to a ‘classic’
longevity bond, because it tied coupon payments to a survivor index
and dealt with likely mortality risks rather than extreme ones.
tor of independent standard normal variables. Cairns et
al. (2006b) also show that if we use the UK Govern-
ment Actuary’s Department (GAD) data for English and
Welsh males over 1961–2002, then the least squares esti-
mates of our parameters are:

µ̂ =
[

−0.04340

0.000367

]
(4a)

V̂ = ĈĈ′ =
[

0.01067000, −0.00016170

−0.00016170, 0.00000259

]
(4b)

We can recover Ĉ from V̂ using a Choleski decomposi-
tion, and all that remains is to specify a suitable starting
value A(0). The results of Cairns et al. suggest that we
might take A(0) ≈ (−11.0, 0.107)′ if we take 2003 as our
starting point (i.e., if we set t = 0 for the end of 2003).6

6 To elaborate: Fig. 2 in Cairns et al. (2006b) plots estimated
A(0) values against time for the years 1961–2002, and the values
A(0) ≈ (−11.0, 0.107)′ for the year 2003 are obtained by simple extrap-
olation.
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Having specified the model, we simulate paths for A(t)
over each of t = 1, 2, . . ., 50, using our assumed values of
A(0). Each path of A(t) values gives us a path of realized
mortality rates q(t, x), and each such path gives us a path
for the survivor rates S(t, x).

3. Some mortality-dependent positions

We now consider four types of mortality-dependent
position:

• The first and simplest is a long position in a zero-
coupon LB (denoted a zero LB below), where a single
payment is made in period t and we consider zero
LBs for each of t = 1, 2, . . ., 50 in turn. The payment
made on this instrument is assumed to be equal to the
survivor rate itself, S(t, x). The analysis in this case
closely mimics that in Cairns et al. (2006b), except
that we are now using different measures of risk.

• The second position is a long position in a coupon-
paying LB (denoted coupon LB below), which pays
coupons of S(τ, x) at each time τ from 1 to t, where
we again consider each of t = 1, 2, . . ., 50. Thus, the
coupon LB makes t payments which end at time t,
whereas the zero LB pays just the one payment at
time t.

• The third position is an annuity book that is hedged
with a coupon LB predicated on the same reference
population (that is, hedged with the second position

•

For each position, we simulate the profit/loss as equal to
the simulated future values of the position minus the cur-
rent (t = 0) value of the position.7 The former are obtained
by simulating S(t, x) as explained above and then apply-
ing the position payoff function: for example, the payoff
for a t-year zero LB is S(t, x), etc. The latter are obtained
using the risk-neutral pricing approach of Cairns et al.
(2006b).8 This boils down to replacing the real drift µ

with the risk-neutral drift µ − Cλ, where λ = (λ1, λ2)′ are
the market prices of risk associated with the processes
Z1(t) and Z2(t). For illustrative purposes, we set λ to the
empirically plausible values (0.175, 0.175)′.9 The initial
values are then equal to the expected value of the posi-
tion’s future payments discounted at the risk-free rate,
with the expectation taken under the risk-neutral proba-
bility measure.

4. Measures of financial risk

For each position, we consider three different risk
measures. Let qα be the α quantile of the present value
of the loss distribution (where losses are given positive
values and profits are given negative ones). The first risk
measure is the value-at-risk (VaR), and the VaR at the α

confidence level – the αVaR for short – is simply equal
to qα.

The second risk measure is the expected shortfall
(ES), and the αES is the average of the worst 1 − α losses:

1
∫ 1
above). The annuity book itself is a commitment to
pay S(t, x) in each of t = 1, 2, . . ., 50. As such, the
annuity book is equivalent to a short position in a
coupon LB with a maturity of 50 years. We assume
that this book is combined with a t-maturity coupon
LB based on the same reference population, which
pays coupons of S(τ, x) at each time τ from 1 to t,
where we again consider each of t = 0, 1, . . ., 50. Of
course, the effectiveness of the hedge depends on t,
and the hedge should be perfect for t = 50.
The final position is an annuity book hedged by a
coupon LB predicated on a different reference pop-
ulation. The difference between the two reference
populations suggests that we might expect the hedge
to be less effective than before on account of the basis
risk it faces, and therefore sometimes produce larger
risk measures. This final position addresses the impor-
tant practical concern that in real-world situations LB
hedges would often be predicated on different refer-
ence populations, and we would want to know the
impact of such differences on the effectiveness of LB
hedges.
αES =
1 − α α

qp dp. (5)

Our third risk measure is a spectral risk measure (SRM).
An SRM is a weighted average of the whole loss distri-
bution:

Mφ =
∫ 1

0
φ(p)qp dp (6)

where the weighting function, φ(p), is given by the user’s
risk-aversion function. Provided this function satisfies
the conditions of non-negativity (i.e., φ(p) ≥ 0 for all
p belonging to the range [0, 1]), normalization (i.e.,

7 All values are in discounted terms, and we assume that all discount-
ing is done at a single constant risk-free rate.

8 Strictly speaking, their approach is a risk-neutral one in the sense
that under Q all assets have expected growth rates equal to the risk-free
rate. However, we do not assume that markets are complete.

9 These values are empirically plausible in that they lead to ‘sensible’
values for the EIB/BNP bond (Cairns et al., 2006b). They are also as
reasonable as any others considered in that article. However, the same
article also shows that changes in the λ values have relatively little
impact on the value of the EIB/BNP bond, i.e., so any ‘reasonable’ λ

values should produce much the same results.
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∫ 1
0 φ(p) dp = 1) and increasingness (i.e.,φ(p) never falls

as p increases), then (6) provides a risk measure that
is known to be coherent (see Acerbi, 2004, Proposition
3.4). We now specify a suitable risk-aversion function,
and a plausible choice is an exponential risk-aversion
function:

φk(p) = k e−(1−p)k

1 − e−k
(7)

where k ∈ (0, ∞) is the user’s degree of absolute risk
aversion (ARA). This function satisfies the conditions
required of a coherent spectral risk measure, but is also
attractive because it is a simple function that depends
on a single parameter, the coefficient of absolute risk
aversion. To obtain our spectral measure Mφ using the
exponential weighting function, we choose a value of k
and substitute (7) into (6) to get:

Mφ =
∫ 1

0

k e−(1−p)k

1 − e−k
qp dp (8)

The exponential spectral measure is thus a weighted
average of quantiles, with the weights given by the expo-
nential risk-aversion function (7).10

The weighting functions of the two coherent risk mea-
sures are shown in Fig. 1. The ES has a step function that
takes a zero value for cumulative probabilities that are
less than the confidence level, and a fixed value of 10 for
probabilities greater than or equal to the confidence level.

Fig. 1. Weighting functions for coherent risk measures. Notes: The ES
has the weighting function implied by Eq. (5) with α = 0.90, and the
exponential spectral risk measure has the weighting function (7) with
ARA = 25.

5. Results

For the purposes of producing some illustrative
results, we now assume that the discount rate is 4%, that
our cohort is aged 65 in year 0, that the VaR and ES are
predicated on an arbitrary confidence level of 90%, and
that the spectral risk measure is predicated on a coeffi-
cient of absolute risk aversion arbitrarily set to 25. For
our fourth mortality position, we also assume that the
hedge is an LB predicated on a 60-year-old male refer-
ence population, instead of the 65-year-old population
assumed elsewhere: this ensures that the hedge is pred-
icated on a different reference population to the annuity
book.

We should also recall that the risk measures are all
denominated in terms of losses, and the amount at risk
on a position should be bounded above by the value of
the position itself.

5.1. Results without parameter uncertainty

5.1.1. Zero-coupon longevity bonds
As noted earlier, this case is very similar to that of

Cairns et al. (2006b), and the only substantive difference
is in the risk measures used. Estimated risk measures for
a zero LB are given in Table 1 and plotted in Fig. 2. (All
positions are considered on a stand-alone basis, without
reference to any existing positions.) These give estimates
of our three chosen risk measures – the VaR, the ES
and the SRM – for zero LBs over maturities ranging
The spectral risk measure has a weighting function that
is an exponential function of the cumulative probabil-
ity, and therefore gives loss observations a continuously
rising weight as the cumulative probability gets bigger.

We can also say that each of the three risk measures is
predicated on a key conditioning parameter. This param-
eter is the confidence level in the case of the VaR and
ES, and the ARA in the case of the spectral measure,
and the risk measure will (typically) rise as its condi-
tioning parameter increases. We also know that for any
given confidence level, the ES will be above the VaR,
but the size of the SRM relative to the VaR and ES will
depend on the relative values of the confidence level and
the ARA coefficient.

10 The class of spectral risk measures includes the ES as a special case,
obtained by giving tail losses the same weight and other observations a
zero weight. It is also very closely related to the class of distortion risk
measures introduced by Shaun Wang that have become widely used
in the actuarial risk literature (see, e.g., Wang, 1996, 2000). The rela-
tionship between these measures is discussed further in Dowd (2005,
Chapter 3).
 from 1 to 50 years. The ES and SRM measures are a
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Table 1
Estimated risk measures for zero-coupon longevity bond, with no parameter uncertainty

Coupon year (t) Initial value 90% VaR 90% ES SRM (ARA = 25)

1 0.9446 0.0006 0.0008 0.0008
2 0.8910 0.0013 0.0018 0.0020
3 0.8391 0.0023 0.0030 0.0033
4 0.7888 0.0033 0.0045 0.0050
5 0.7400 0.0045 0.0062 0.0068
6 0.6927 0.0060 0.0081 0.0089
7 0.6469 0.0075 0.0101 0.0112
8 0.6025 0.0093 0.0123 0.0136
9 0.5594 0.0111 0.0146 0.0161

10 0.5177 0.0130 0.0170 0.0187
11 0.4774 0.0148 0.0195 0.0214
12 0.4385 0.0165 0.0220 0.0242
13 0.4009 0.0184 0.0244 0.0268
14 0.3647 0.0202 0.0267 0.0294
15 0.3300 0.0218 0.0289 0.0319
16 0.2967 0.0234 0.0310 0.0341
17 0.2650 0.0245 0.0327 0.0359
18 0.2350 0.0258 0.0341 0.0374
19 0.2066 0.0266 0.0351 0.0384
20 0.1799 0.0268 0.0355 0.0389
21 0.1552 0.0266 0.0353 0.0387
22 0.1323 0.0262 0.0346 0.0379
23 0.1115 0.0253 0.0333 0.0364
24 0.0926 0.0240 0.0314 0.0343
25 0.0759 0.0224 0.0290 0.0316
26 0.0612 0.0204 0.0263 0.0284
27 0.0485 0.0184 0.0232 0.0250
28 0.0378 0.0162 0.0201 0.0215
29 0.0288 0.0138 0.0169 0.0180
30 0.0215 0.0114 0.0138 0.0146
31 0.0157 0.0091 0.0109 0.0115
32 0.0112 0.0072 0.0084 0.0087
33 0.0078 0.0054 0.0062 0.0064
34 0.0053 0.0040 0.0045 0.0046
35 0.0035 0.0028 0.0031 0.0032
36 0.0023 0.0019 0.0021 0.0021
37 0.0014 0.0013 0.0013 0.0014
38 0.0009 0.0008 0.0008 0.0009
39 0.0005 0.0005 0.0005 0.0005
40 0.0003 0.0003 0.0003 0.0003
41 0.0002 0.0002 0.0002 0.0002
42 0.0001 0.0001 0.0001 0.0001
43 0.0001 0.0001 0.0001 0.0001
44 0 0 0 0
45 0 0 0 0
46 0 0 0 0
47 0 0 0 0
48 0 0 0 0
49 0 0 0 0
50 0 0 0 0

Notes: Estimated using 5000 Monte Carlo simulation trials. The model is calibrated using male mortality data for England and Wales over period
1961–2002 using the parameter values in (4a) and (4b), with initial values of A1(0) = −11.0 and A2(0) = 0.107 for t = 0 taken as 2003. The age at
time 0 is 65 years, the discount rate is 4%, and the values of λ1 and λ2 are both set to 0.175. The third and fourth columns give the estimated VaR
and ES at the 90% confidence level, and the fifth gives estimates of the spectral risk measure (8) with an absolute risk aversion coefficient of 25.
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Fig. 2. Estimated absolute risk measures for a zero-coupon longevity
bond, no parameter uncertainty. Notes: As per Table 1.

little higher than the VaRs, but estimates of all three risk
measures paint a similar picture: the zeros have relatively
low risk over short horizons, have relatively high risk
over medium-term horizons, and have relatively low risk
over long horizons. In this case, the peak risk occurs
over a horizon of about 20 years, and it is interesting
to note that there is a considerable amount of long-term
risk: for example, the risk measures of a 30-year zero are
comparable to those of a 10-year zero.

The explanation for this behavior is that the risk mea-
sures reflect two offsetting random effects. The first of
these is a diffusion effect, which arises because longer
term survivor rates are more uncertain than shorter term
survivor rates; this stems from the fact that longer term
survivor rates are subject to more mortality shocks. This
diffusion effect grows with the horizon. The second
effect is an amortization effect arising from the facts
that payments are linked to survivor rates, and survivor
rates decrease over time towards zero. This amortiza-
tion effect serves to reduce risk measures, and becomes
stronger as the horizon gets longer. Initially, the diffusion
effect is dominant and the estimated risk measures grow
with t. But as t rises, the amortization effect comes into
play and serves to curtail the increase in risk. Eventually,
the amortization effect becomes dominant, and the risk
measures fall back again. In the limit, the survivor rate
goes to zero and the estimated risk measures go to zero
as well.

However, Fig. 2 only gives the risk measures in abso-
lute (i.e., monetary) terms, and these can give a mislead-

Fig. 3. Estimated relative risk measures for a zero-coupon longevity
bond, no parameter uncertainty. Notes: As per Table 1.

these bonds. In effect, these relative risk measures strip
out the amortization effect, and reflect only the impact of
diffusion. It is therefore not surprising that Fig. 3 shows
that relative risks rise with t. For example, an investment
in 15-year zero LBs has a VaR that is about 5% of the
amount invested, whereas an investment in 35-year zero
LBs has a VaR that is over 70% of the value of the amount
invested. (For their part, the ES and SRM estimates are
a little higher than the VaR ones.) Thus, an investment
in longer term zero LBs is more risky (and, potentially,
a lot more risky) than an investment in short-term zero
LBs.

5.1.2. Coupon-paying longevity bonds
Comparable results for coupon LBs are given in

Figs. 4 and 5 and Table 2. The curves for these risk mea-
ing impression of relative risks because the issue values
of these bonds are very different. To take account of these
differences, Fig. 3 shows the relative risk measures—the
risk measures expressed as percentages of investments in
Fig. 4. Estimated absolute risk measures for a coupon-paying
longevity bond, no parameter uncertainty. Notes: As per Table 2.
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Table 2
Estimated absolute risk measures for a coupon-paying longevity bond,
no parameter uncertainty

Coupon
year (t)

Initial value 90% VaR 90% ES SRM
(ARA = 25)

1 0.9446 0.0006 0.0008 0.0008
2 1.8357 0.0019 0.0025 0.0027
3 2.6747 0.0040 0.0054 0.0060
4 3.4635 0.0073 0.0097 0.0108
5 4.2035 0.0117 0.0156 0.0174
6 4.8962 0.0173 0.0234 0.0260
7 5.5431 0.0244 0.0331 0.0368
8 6.1455 0.0334 0.0449 0.0499
9 6.7049 0.0442 0.0589 0.0654

10 7.2227 0.0568 0.0752 0.0834
11 7.7001 0.0709 0.0938 0.1038
12 8.1385 0.0873 0.1148 0.1268
13 8.5394 0.1044 0.1381 0.1522
14 8.9041 0.1231 0.1636 0.1801
15 9.2341 0.1436 0.1911 0.2102
16 9.5309 0.1659 0.2204 0.2423
17 9.7959 0.1892 0.2514 0.2761
18 10.0308 0.2141 0.2835 0.3112
19 10.2374 0.2372 0.3163 0.3471
20 10.4173 0.2626 0.3494 0.3834
21 10.5725 0.2899 0.3821 0.4193
22 10.7048 0.3153 0.4144 0.4543
23 10.8162 0.3399 0.4453 0.4878
24 10.9089 0.3642 0.4742 0.5192
25 10.9848 0.3841 0.5008 0.5480
26 11.0460 0.4032 0.5247 0.5739
27 11.0946 0.4216 0.5458 0.5966
28 11.1323 0.4369 0.5638 0.6160
29 11.1611 0.4481 0.5789 0.6321
30 11.1826 0.4586 0.5912 0.6452
31 11.1984 0.4676 0.6009 0.6554
32 11.2096 0.4732 0.6084 0.6632
33 11.2174 0.4774 0.6139 0.669
34 11.2227 0.4818 0.6179 0.6731
35 11.2262 0.4844 0.6206 0.6759
36 11.2285 0.4862 0.6225 0.6778
37 11.2300 0.4874 0.6237 0.6791
38 11.2308 0.4882 0.6245 0.6799
39 11.2314 0.4887 0.6249 0.6803
40 11.2317 0.4890 0.6252 0.6806
41 11.2319 0.4891 0.6254 0.6808
42 11.2320 0.4892 0.6255 0.6809
43 11.2320 0.4892 0.6256 0.6810
44 11.2321 0.4893 0.6256 0.6810
45 11.2321 0.4893 0.6256 0.6810
46 11.2321 0.4893 0.6256 0.6810
47 11.2321 0.4893 0.6256 0.6810
48 11.2321 0.4893 0.6256 0.6810
49 11.2321 0.4893 0.6256 0.6810
50 11.2321 0.4893 0.6256 0.6810

Notes: Estimated using 5000 Monte Carlo simulation trials. The
longevity bond pays a coupon each year (i) equal to the survivor rate
of the original reference population still alive at i, for all i up to t. Other
details are as given in the notes to Table 1.

Fig. 5. Estimated relative risk measures for a coupon-paying longevity
bond, no parameter uncertainty. Notes: As per Table 2.

sures have a similar shape and again reflect the impact
of diffusion and amortization effects. In all cases, the
risk curve has a starting value of zero and then rises in a
logistic fashion to plateau when t reaches a value of about
40. The plateaus in Fig. 4 are about 0.5 for the VaR and
between 0.6 and 0.7 for the ES and SRM, and the plateaus
in Fig. 5 are just over 4% for the VaR and around 6%
for the other two risk measures. The fact that the esti-
mated risk measures peak at long horizons indicates that
there is a lot of risk exposure arising specifically from
the longer end of the mortality term structure: for exam-
ple, a 30-year LB is considerably more risky than, say, a
15-year one.

A comparison of Figs. 3 and 5 also shows that for
any given t and position value, a coupon LB has consid-
erably lower risk than a zero LB. The reason for this is
that the coupon LB involves a more diversified mortal-
ity exposure than a zero LB. In quantitative terms, this
comparison also indicates that the coupon LB can have a
much lower estimated risk than the zero LB, and that this
difference is especially pronounced for higher maturity
instruments.

5.1.3. Annuity book with an LB hedge based on the
same reference population

Fig. 6 and Table 3 give results for our third posi-
tion, the annuity book hedged by a LB predicated on
the same reference population. Given the nature of the
hedge instrument, the hedge eliminates all exposure up

to maturity t + 1. This leads us to expect that, as t gets
bigger, more and more risk is being hedged so estimated
risk measures should get smaller. Furthermore, when t
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Table 3
Estimated risk measures for an annuity book hedged with a coupon-
paying longevity bond based on the same population cohort, no param-
eter uncertainty

Maturity of
hedge
instrument

Initial value
of hedged
position

90% VaR 90% ES SRM
(ARA = 25)

1 −10.2875 0.3794 0.5644 0.6449
2 −9.3964 0.3800 0.5641 0.6445
3 −8.5573 0.3795 0.5633 0.6437
4 −7.7686 0.3776 0.5621 0.6422
5 −7.0286 0.3793 0.5601 0.6400
6 −6.3359 0.3779 0.5573 0.6368
7 −5.6890 0.3770 0.5535 0.6325
8 −5.0865 0.3736 0.5485 0.6268
9 −4.5271 0.3676 0.5421 0.6197

10 −4.0094 0.3626 0.5343 0.6109
11 −3.5320 0.3552 0.5248 0.6002
12 −3.0935 0.3485 0.5135 0.5876
13 −2.6927 0.3376 0.5002 0.5730
14 −2.3280 0.3272 0.4850 0.5561
15 −1.9980 0.3157 0.4676 0.5370
16 −1.7012 0.3032 0.4482 0.5155
17 −1.4362 0.2874 0.4269 0.4918
18 −1.2012 0.2692 0.4036 0.4659
19 −0.9947 0.2524 0.3786 0.4381
20 −0.8148 0.2353 0.3522 0.4086
21 −0.6596 0.2162 0.3246 0.3776
22 −0.5273 0.1954 0.2963 0.3457
23 −0.4158 0.1759 0.2676 0.3130
24 −0.3232 0.1558 0.2387 0.2803
25 −0.2473 0.1350 0.2102 0.2479
26 −0.1861 0.1158 0.1826 0.2164
27 −0.1375 0.0975 0.1563 0.1862
28 −0.0998 0.0796 0.1317 0.1579
29 −0.0710 0.0644 0.1091 0.1318
30 −0.0494 0.0509 0.0887 0.1083
31 −0.0337 0.0390 0.0708 0.0874
32 −0.0225 0.0300 0.0554 0.0693
33 −0.0147 0.0219 0.0424 0.0540
34 −0.0094 0.0157 0.0319 0.0413
35 −0.0059 0.0108 0.0234 0.0310
36 −0.0036 0.0072 0.0169 0.0228
37 −0.0021 0.0046 0.0119 0.0164
38 −0.0013 0.0029 0.0082 0.0116
39 −0.0007 0.0017 0.0055 0.0081
40 −0.0004 0.0010 0.0036 0.0055
41 −0.0002 0.0005 0.0024 0.0037
42 −0.0001 0.0003 0.0015 0.0024
43 −0.0001 0.0001 0.0009 0.0015
44 0 0.0001 0.0005 0.0010
45 0 0 0.0003 0.0006
46 0 0 0.0002 0.0003
47 0 0 0.0001 0.0002
48 0 0 0 0.0001
49 0 0 0 0
50 0 0 0 0

Notes: Estimated using 5000 Monte Carlo simulation trials. The results
in the table refer to a position in an annuity book hedged by a coupon
longevity bond of maturity t, where both the annuity book and the
bond make payments equal to the survivor rate of the original reference
population. Other details are as given in Table 1.

Fig. 6. Estimated absolute risk measures for an annuity book hedged
with a coupon-paying longevity bond based on the same population
cohort, no parameter uncertainty. Notes: As per Table 3.

gets very large, there should be little risk exposure left,
and the estimated risk measures should approach 0.

When we look at our results, we see that these expec-
tations are broadly met for all three risk measures. In
addition, the fact that the curves continue to fall after
t = 25 confirms our earlier conclusion that there is con-
siderable mortality exposure arising from the longer end
of the mortality term structure.

These findings also tells us that even if the hedge
is predicated on the same reference population as the
insurer’s annuity portfolio, a 25-year longevity bond
still leaves a considerable net exposure. Thus, it is clear
not only that longer maturity LBs would provide better
hedges for annuity books than shorter maturity LBs, but
Fig. 7. Estimated absolute risk measures for an annuity book hedged
with a coupon-paying longevity bond based on a different population
cohort, no parameter uncertainty. Notes: As per Table 4.



K. Dowd et al. / Insurance: Mathematics and Economics 38 (2006) 427–440 435

Table 4
Estimated risk measures for an annuity book hedged with a coupon-
paying longevity bond based on a different population cohort, no
parameter uncertainty

Maturity of
hedge
instrument

Initial value
of hedged
position

90% VaR 90% ES SRM
(ARA = 25)

1 −10.2808 0.3796 0.5645 0.6450
2 −9.3766 0.3798 0.5644 0.6449
3 −8.518 0.3805 0.5642 0.6447
4 −7.7034 0.3802 0.5639 0.6442
5 −6.9315 0.3785 0.5633 0.6435
6 −6.2010 0.3803 0.5624 0.6424
7 −5.5105 0.3790 0.5611 0.6408
8 −4.8589 0.3787 0.5593 0.6387
9 −4.2450 0.3781 0.5569 0.6359

10 −3.6677 0.3754 0.5538 0.6323
11 −3.1259 0.3740 0.5498 0.6277
12 −2.6186 0.3697 0.5449 0.6221
13 −2.1448 0.3647 0.5389 0.6153
14 −1.7035 0.3602 0.5317 0.6071
15 −1.2937 0.3550 0.5232 0.5975
16 −0.9145 0.3474 0.5132 0.5862
17 −0.5650 0.3407 0.5017 0.5733
18 −0.2441 0.3341 0.4886 0.5586
19 0.0490 0.3241 0.4738 0.5420
20 0.3154 0.3110 0.4574 0.5235
21 0.5560 0.2987 0.4393 0.5032
22 0.7721 0.2853 0.4196 0.4810
23 0.9646 0.2712 0.3984 0.4570
24 1.1348 0.2555 0.3759 0.4315
25 1.2840 0.2393 0.3522 0.4046
26 1.4135 0.2231 0.3277 0.3768
27 1.5247 0.2059 0.3028 0.3483
28 1.6191 0.1881 0.2776 0.3196
29 1.6981 0.1721 0.2529 0.2911
30 1.7634 0.1582 0.2291 0.2636
31 1.8164 0.1443 0.2069 0.2376
32 1.8589 0.1306 0.1868 0.2138
33 1.8922 0.1211 0.1695 0.1930
34 1.9178 0.1146 0.1556 0.1758
35 1.9372 0.1095 0.1457 0.1629
36 1.9516 0.1076 0.1393 0.1540
37 1.9619 0.1051 0.1355 0.1487
38 1.9692 0.1048 0.1335 0.1461
39 1.9743 0.1041 0.1328 0.1450
40 1.9777 0.1031 0.1327 0.1448
41 1.9799 0.1031 0.1328 0.1448
42 1.9813 0.1032 0.1330 0.1449
43 1.9822 0.1034 0.1332 0.1451
44 1.9828 0.1033 0.1333 0.1452
45 1.9831 0.1035 0.1334 0.1452
46 1.9833 0.1037 0.1334 0.1453
47 1.9834 0.1037 0.1334 0.1453
48 1.9835 0.1036 0.1335 0.1453
49 1.9836 0.1036 0.1335 0.1453
50 1.9836 0.1036 0.1335 0.1453

Notes: Estimated using 5000 Monte Carlo simulation trials. The results
in the table refer to a position in an annuity book hedged by a coupon
longevity bond of maturity t, where the annuity book makes a payment
equal to the survivor rate of the original reference population, and the
bond makes a payment equal to the survivor rate of a 60-year original
reference population. Other details are as given in Table 1.

Table 5
Estimated risk measures for a zero-coupon longevity bond, with param-
eter uncertainty

Coupon
year (t)

Initial
value

90% VaR 90% ES SRM (ARA = 25)

1 0.9446 0.0006 0.0008 0.0009
2 0.8910 0.0014 0.0019 0.0021
3 0.8391 0.0024 0.0033 0.0037
4 0.7888 0.0036 0.0049 0.0055
5 0.7401 0.0051 0.0068 0.0076
6 0.6929 0.0066 0.0090 0.0100
7 0.6472 0.0084 0.0113 0.0127
8 0.6029 0.0102 0.0138 0.0155
9 0.5600 0.0123 0.0165 0.0185

10 0.5186 0.0143 0.0193 0.0216
11 0.4785 0.0163 0.0222 0.0248
12 0.4399 0.0183 0.0251 0.0281
13 0.4027 0.0204 0.0280 0.0314
14 0.3669 0.0226 0.0308 0.0345
15 0.3326 0.0245 0.0335 0.0375
16 0.2999 0.0264 0.0360 0.0402
17 0.2687 0.0280 0.0382 0.0425
18 0.2391 0.0291 0.0400 0.0445
19 0.2113 0.0301 0.0414 0.0460
20 0.1852 0.0309 0.0422 0.0468
21 0.1608 0.0313 0.0424 0.0470
22 0.1384 0.0314 0.0420 0.0463
23 0.1179 0.0307 0.0408 0.0448
24 0.0993 0.0298 0.0389 0.0426
25 0.0827 0.0281 0.0364 0.0396
26 0.0680 0.0261 0.0334 0.0362
27 0.0552 0.0239 0.0301 0.0323
28 0.0442 0.0215 0.0265 0.0283
29 0.0348 0.0188 0.0228 0.0242
30 0.0271 0.0161 0.0192 0.0202
31 0.0207 0.0135 0.0157 0.0164
32 0.0156 0.0111 0.0126 0.0131
33 0.0116 0.0089 0.0099 0.0101
34 0.0085 0.0069 0.0076 0.0077
35 0.0061 0.0053 0.0056 0.0057
36 0.0044 0.0039 0.0041 0.0042
37 0.0031 0.0029 0.0030 0.0030
38 0.0022 0.0021 0.0021 0.0021
39 0.0015 0.0014 0.0015 0.0015
40 0.0010 0.0010 0.0010 0.0010
41 0.0007 0.0007 0.0007 0.0007
42 0.0005 0.0005 0.0005 0.0005
43 0.0003 0.0003 0.0003 0.0003
44 0.0002 0.0002 0.0002 0.0002
45 0.0002 0.0002 0.0002 0.0002
46 0.0001 0.0001 0.0001 0.0001
47 0.0001 0.0001 0.0001 0.0001
48 0.0001 0.0001 0.0001 0.0001
49 0 0 0 0
50 0 0 0 0

Notes: As per Table 1, except for V being simulated from the inverse of
a normal Wishart(n − 1, n−1 V̂−1) distribution and µ being simulated
from a MVN(µ̂, n−1 V ) along the lines explained in Appendix A.
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Table 6
Estimated risk measures for a coupon-paying longevity bond, with
parameter uncertainty

Coupon
year (t)

Initial
value

90% VaR 90% ES SRM (ARA = 25)

1 0.9446 0.0006 0.0008 0.0009
2 1.8357 0.0019 0.0027 0.0030
3 2.6748 0.0043 0.0058 0.0066
4 3.4636 0.0078 0.0106 0.0119
5 4.2037 0.0127 0.0172 0.0193
6 4.8966 0.0190 0.0259 0.0290
7 5.5437 0.0270 0.0368 0.0412
8 6.1466 0.0369 0.0503 0.0562
9 6.7066 0.0490 0.0662 0.0741

10 7.2252 0.0626 0.0848 0.0949
11 7.7037 0.0789 0.1061 0.1188
12 8.1436 0.0970 0.1303 0.1458
13 8.5462 0.1164 0.1572 0.1758
14 8.9132 0.1375 0.1866 0.2088
15 9.2458 0.1606 0.2187 0.2446
16 9.5457 0.1850 0.2532 0.2830
17 9.8144 0.2125 0.2896 0.3235
18 10.0536 0.2420 0.3277 0.3658
19 10.2648 0.2719 0.3671 0.4094
20 10.4500 0.3014 0.4071 0.4537
21 10.6108 0.3305 0.4472 0.4980
22 10.7492 0.3612 0.4867 0.5415
23 10.8671 0.3865 0.5251 0.5836
24 10.9664 0.4155 0.5616 0.6236
25 11.0491 0.4408 0.5956 0.6607
26 11.1171 0.4651 0.6269 0.6946
27 11.1723 0.4870 0.6551 0.7248
28 11.2164 0.5077 0.6798 0.7512
29 11.2513 0.5251 0.7010 0.7737
30 11.2783 0.5403 0.7188 0.7925
31 11.2990 0.5524 0.7335 0.8078
32 11.3147 0.5622 0.7452 0.8200
33 11.3262 0.5713 0.7544 0.8294
34 11.3347 0.5775 0.7614 0.8367
35 11.3409 0.5823 0.7667 0.8421
36 11.3452 0.5864 0.7706 0.8460
37 11.3483 0.5893 0.7734 0.8489
38 11.3505 0.5913 0.7754 0.8509
39 11.3520 0.5927 0.7768 0.8523
40 11.3530 0.5937 0.7778 0.8533
41 11.3537 0.5944 0.7785 0.8540
42 11.3542 0.5949 0.7790 0.8545
43 11.3545 0.5952 0.7793 0.8548
44 11.3547 0.5954 0.7795 0.8550
45 11.3549 0.5956 0.7797 0.8552
46 11.3550 0.5957 0.7798 0.8553
47 11.3551 0.5958 0.7799 0.8554
48 11.3551 0.5958 0.7799 0.8554
49 11.3552 0.5959 0.7800 0.8555
50 11.3552 0.5959 0.7800 0.8555

Notes: As per Table 2, except for V being simulated from the inverse of
a normal Wishart(n − 1, n−1 V̂−1) distribution and µ being simulated
from a MVN(µ̂, n−1 V ) along the lines explained in Appendix A.

Table 7
Estimated risk measures for an annuity book hedged with a coupon-
paying longevity bond based on same population cohort, with param-
eter uncertainty

Maturity
of hedge
instrument

Initial value
of hedged
position

90% VaR 90% ES SRM
(ARA = 25)

1 −10.4106 0.5254 0.7822 0.9039
2 −9.5195 0.5253 0.7818 0.9034
3 −8.6804 0.5250 0.7810 0.9024
4 −7.8916 0.5252 0.7794 0.9007
5 −7.1515 0.5230 0.7771 0.8981
6 −6.4586 0.5215 0.7737 0.8943
7 −5.8115 0.5180 0.7691 0.8892
8 −5.2086 0.5139 0.7631 0.8825
9 −4.6486 0.5083 0.7555 0.8740

10 −4.1300 0.5011 0.7462 0.8635
11 −3.6515 0.4935 0.7348 0.8508
12 −3.2116 0.4866 0.7213 0.8356
13 −2.8090 0.4744 0.7055 0.8179
14 −2.4420 0.4624 0.6873 0.7976
15 −2.1094 0.4471 0.6666 0.7744
16 −1.8095 0.4285 0.6434 0.7484
17 −1.5408 0.4087 0.6176 0.7197
18 −1.3016 0.3860 0.5895 0.6883
19 −1.0904 0.3621 0.5591 0.6544
20 −0.9052 0.3385 0.5267 0.6183
21 −0.7444 0.3149 0.4925 0.5802
22 −0.6060 0.2883 0.4569 0.5406
23 −0.4881 0.2622 0.4203 0.4998
24 −0.3888 0.2356 0.3833 0.4583
25 −0.3061 0.2090 0.3464 0.4167
26 −0.2381 0.1835 0.3100 0.3756
27 −0.1829 0.1598 0.2747 0.3354
28 −0.1388 0.1349 0.2408 0.2968
29 −0.1039 0.1132 0.2089 0.2601
30 −0.0769 0.0936 0.1792 0.2257
31 −0.0562 0.0760 0.1520 0.1940
32 −0.0406 0.0604 0.1274 0.1651
33 −0.0290 0.0475 0.1057 0.1392
34 −0.0205 0.0371 0.0867 0.1162
35 −0.0143 0.0283 0.0703 0.0962
36 −0.0100 0.0213 0.0564 0.0789
37 −0.0069 0.0156 0.0448 0.0641
38 −0.0047 0.0109 0.0352 0.0517
39 −0.0032 0.0075 0.0274 0.0413
40 −0.0022 0.0052 0.0211 0.0327
41 −0.0015 0.0034 0.0160 0.0256
42 −0.0010 0.0022 0.0121 0.0198
43 −0.0007 0.0013 0.0089 0.0151
44 −0.0005 0.0008 0.0065 0.0113
45 −0.0003 0.0004 0.0046 0.0083
46 −0.0002 0.0002 0.0032 0.0058
47 −0.0001 0.0001 0.0021 0.0039
48 −0.0001 0 0.0012 0.0023
49 0 0 0.0005 0.0010
50 0 0 0 0

Notes: As per Table 3, except for V being simulated from the inverse of
a normal Wishart(n − 1, n−1 V̂−1) distribution and µ being simulated
from a MVN(µ̂, n−1 V ) along the lines explained in Appendix A.
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Table 8
Estimated risk measures for annuity book hedged with a coupon
longevity bond based on different cohort, with parameter uncertainty

Maturity
of hedge
instrument

Initial value of
hedged
position

90% VaR 90% ES SRM
(ARA = 25)

1 −10.4039 0.5253 0.7823 0.9040
2 −9.4997 0.5256 0.7822 0.9038
3 −8.6411 0.5253 0.7820 0.9035
4 −7.8266 0.5250 0.7815 0.9030
5 −7.0548 0.5254 0.7807 0.9020
6 −6.3243 0.5248 0.7795 0.9007
7 −5.6339 0.5237 0.7778 0.8987
8 −4.9824 0.5228 0.7755 0.8961
9 −4.3685 0.5192 0.7724 0.8925

10 −3.7911 0.5175 0.7684 0.8880
11 −3.2492 0.5139 0.7634 0.8822
12 −2.7416 0.5091 0.7573 0.8752
13 −2.2673 0.5031 0.7498 0.8666
14 −1.8253 0.4985 0.7409 0.8564
15 −1.4146 0.4907 0.7303 0.8443
16 −1.0342 0.4843 0.7180 0.8303
17 −0.6831 0.4750 0.7038 0.8142
18 −0.3604 0.4635 0.6876 0.7958
19 −0.0649 0.4502 0.6692 0.7751
20 0.2042 0.4355 0.6487 0.7521
21 0.4481 0.4191 0.6261 0.7267
22 0.6678 0.4017 0.6013 0.6989
23 0.8646 0.3838 0.5745 0.6689
24 1.0396 0.3608 0.5457 0.6366
25 1.1941 0.3398 0.5152 0.6025
26 1.3293 0.3174 0.4833 0.5667
27 1.4466 0.2920 0.4504 0.5296
28 1.5475 0.2683 0.4166 0.4917
29 1.6332 0.2454 0.3826 0.4532
30 1.7054 0.2216 0.3489 0.4149
31 1.7653 0.1999 0.3159 0.3772
32 1.8145 0.1793 0.2844 0.3407
33 1.8545 0.1607 0.2550 0.3062
34 1.8864 0.1458 0.2285 0.2745
35 1.9116 0.1345 0.2056 0.2464
36 1.9312 0.1271 0.1876 0.2227
37 1.9462 0.1223 0.1744 0.2040
38 1.9576 0.1194 0.1651 0.1903
39 1.9662 0.1179 0.1592 0.1812
40 1.9725 0.1169 0.1558 0.1754
41 1.9771 0.1172 0.1541 0.1719
42 1.9804 0.1180 0.1533 0.1696
43 1.9829 0.1184 0.1529 0.1681
44 1.9846 0.1188 0.1526 0.1671
45 1.9858 0.1190 0.1524 0.1665
46 1.9867 0.1190 0.1523 0.1663
47 1.9873 0.1190 0.1523 0.1662
48 1.9877 0.1193 0.1524 0.1661
49 1.9880 0.1192 0.1524 0.1662
50 1.9882 0.1193 0.1525 0.1663

Notes: As per Table 4, except for V being simulated from the inverse of
a normal Wishart(n − 1, n−1 V̂−1) distribution and µ being simulated
from a MVN(µ̂, n−1 V ) along the lines explained in Appendix A.

Fig. 8. Estimated absolute risk measures for a zero-coupon longevity
bond, with parameter uncertainty. Notes: As per Table 1, except for V
being simulated from the inverse of a normal Wishart(n − 1, n−1 V̂−1)
distribution and µ being simulated from a MVN(µ̂, n−1 V ) along the
lines explained in Appendix A.

also that LBs with ultra-long maturities would provide
even better hedges. In other words, an LB with a 25 years
maturity (like the EIB/BNP bond) can provide very sig-
nificant hedging benefits to an insurer, but a bond with a
longer maturity would provide even more.

5.1.4. Annuity book with an LB hedge based on a
different reference population

Table 4 and Fig. 7 give the corresponding results for
our hedged annuity book where the hedge is based on
a different reference population. We find that the dif-
ference between the two reference populations does not
have much effect for low t-values, but certainly does have
Fig. 9. Estimated relative risk measures for zero-coupon longevity
bond, with parameter uncertainty. Notes: As per Table 5.
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Fig. 10. Estimated absolute risk measures for a coupon-paying
longevity bond, with parameter uncertainty. Notes: As per Table 6.

an effect at medium and long-term horizons. This tells us
that in this case – unlike the last – even a very long-term
hedge instrument can still leave a significant degree of
basis risk.

5.2. Results with parameter uncertainty

Now suppose that we treat the parameters µ and V as
uncertain. We can model this uncertainty using Bayesian
methods, and one plausible method involves the use of
a non-informative prior such as the Jeffreys prior, which
postulates that the distribution of the parameters is pro-
portional to the determinant of V. The Jeffreys prior also
implies that the posterior distribution for V follows a
normal-inverse Wishart distribution based on an estimate

Fig. 12. Estimated absolute risk measures for an annuity book hedged
with a coupon-paying longevity bond based on same population cohort,
with parameter uncertainty. Notes: As per Table 6.

of V, V̂ , and that µ is multivariate normal with mean µ̂

and variance n−1V, where n is the sample size equal here
to 41. This allows us to simulate both µ and V on the basis
of initial estimates of µ̂ and V̂ . Details of the simulation
algorithm are available in Appendix A.

We are interested here in how taking account of
parameter uncertainty affects our earlier results. Our
earlier analyses were therefore repeated using simu-
lated parameters instead of our fixed parameters, and
the results are presented in Tables 5–8 and Figs. 8–13,
which are the analogues of Tables 1–4 and Figs. 2–7.
These results indicate that estimated risk measures that
take account of parameter uncertainty can be somewhat
higher than those that ignore it. However, the increase
Fig. 11. Estimated relative risk measures for a coupon-paying
longevity bond, with parameter uncertainty. Notes: As per Table 6.
Fig. 13. Estimated absolute risk measures for annuity book hedged
with a coupon longevity bond based on different cohort, with parameter
uncertainty. Notes: As per Table 8.



K. Dowd et al. / Insurance: Mathematics and Economics 38 (2006) 427–440 439

in estimated risk measures depends on both the type of
position and the horizon period:

• For the zero LB, estimated risk measures can be up to
about 15% higher.

• For the coupon-paying LB, the plateaus to which the
risk measures tend are about 25% higher with param-
eter uncertainty.

• For the hedged annuity books, we find that for low
horizons, the estimated risk measures are about 25%
higher with parameter uncertainty, but as the horizon
increases the impact of parameter uncertainty on esti-
mated risk measures tends to fall.

6. Conclusions

This paper has applied the recently developed two-
factor mortality model of Cairns et al. to estimate finan-
cial risk measures for an illustrative set of mortality-
dependent positions. The model is calibrated on UK data,
and we estimate VaRs, ESs and spectral risk measures
for positions in zero-coupon longevity bonds, coupon-
paying longevity bonds, and an annuity book hedged by
each of two alternative longevity bonds. In each case, we
consider maturities of up to 50 years.

Our results suggest that all three risk measures
give broadly similar indications of the risks involved.
They also suggest that mortality-dependent positions can
sometimes be very risky: in absolute (i.e., $) terms, most
of the risk relates to the medium term of around 10–30
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risks they are likely to encounter. And, secondly, we
would suggest that our results are useful in that they pro-
vide insights into the nature and magnitudes of the risks
associated with different types of mortality position. In
doing so, they also give a sense of the prospective basis
risks associated with mortality hedge positions, and a
good appreciation of the size of the basis risks is impor-
tant if risk managers are to make the best possible use of
mortality derivatives for hedging purposes. In short, the
framework presented here gives life offices a means of
measuring their mortality risks and this, in turn, should
help them manage those risks more effectively than they
have hitherto been able to do.
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Appendix A. Simulating the parameters of the
model

This appendix shows how to simulate values of the
µ and V parameters of the mortality risk model. Our
original data consist of sample values of µ̂, V̂ and the
ears; however, in relative terms (i.e., measuring risk
elative to the value of the position) there is often a con-
iderable amount of risk emanating from the long end
f the maturity spectrum (i.e., related to the risk of very
igh longevity). We also present alternative sets of results
hat do and do not take account of parameter uncertainty,
nd find that the latter can be somewhat larger than the
ormer, which indicates that taking account of parameter
ncertainty often leads to increased estimates of finan-
ial risk measures.

Finally, we address the issue of the usefulness of our
nalysis and of the results they produce. We would sug-
est that these have the potential to be useful to the insur-
nce industry in two main ways. First, the analysis itself
s useful in that it shows how the two-factor mortality

odel can be used to estimate quantile-based risk mea-
ures for a number of mortality-dependent positions. Of
ourse, the positions selected were only illustrative, but
t is obvious that the basic approach can be applied to any

ortality-dependent positions. In other words, the paper
rovides a blueprint that enables risk managers to esti-
ate risk measures for any of the mortality-dependent
sample size n. For our data spanning 1961–2002, µ̂ and
V̂ are as given in (4a) and (4b) and n = 41.

Our first task is to simulate V from its posterior distri-
bution, the Wishart(n − 1, n−1 V̂−1) distribution. To do
so, we carry out the following steps:

• We simulate (n − 1) 2 × 1 i.i.d. vectors α1, . . ., �n−1
from a multivariate normal distribution with mean
vector 0 and covariance matrix n−1V̂−1.

• We construct the 2 × 2 matrix X = ∑n−1
i=1 αiα

T
i .

• We then invert X to obtain our simulated positive-
definite covariance matrix V(=X−1).

Having obtained our simulated V matrix, we simulate µ

from a MVN(µ̂, n−1 V ).
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