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Abstract

We provide a self-contained analysis of a class of continuous-time stochastic mortality models

that have gained popularity in the last few years. We describe some of their advantages and

limitations, examining whether their features survive equivalent changes of measures. This is

important when using the same model for both market-consistent valuation and risk manage-

ment of life insurance liabilities. We provide a numerical example based on the calibration to

the French annuity market of a risk-neutral version of the model proposed by Lee and Carter

(1992).

Key words and phrases: stochastic mortality, Lee-Carter model, mortality risk premium, fair

valuation, mortality-linked securities.



1 Introduction and motivation

In recent years stochastic mortality models have received growing attention for several reasons.

First, the extent of mortality improvements has posed severe challenges to the insurance and

pension industry, making clear the importance of demographic trends forecasting. Second, the

introduction of market-consistent accounting and risk-based solvency requirements has called

for the integration of mortality risk analysis into stochastic valuation models. Third, mortality-

linked securities have attracted the interest of capital market investors, who in turn demand

transparent tools to price demographic and financial risks in an integrated fashion.

Some of the models that try to address simultaneously these different objectives rely on

a continuous time specification of the intensity of mortality or of survival/death probabilities.

The approach provides a natural extension of static mortality models to a dynamic setting,

and offers computational tractability in pricing and reserving applications. For example, the

risk-neutral pricing machinery easily extends to mortality-contingent cashflows, and mortality

risk can be immediately quantified as a spread on mortality-insensitive returns, exactly as in

the case of credit or liquidity risk. In this paper, we review the most relevant assumptions

and implications of this approach. In particular, we show how typical models rely, tacitly or

explicitly, on the doubly stochastic assumption for the insureds’ death times. This means that

deaths are conditionally Poisson, given the evolution of the risk factors driving the instantaneous

death probabilities. While this setup offers undubious computational advantages, it builds on

restrictive assumptions that may be at odds with empirical evidence. Hence, care should be

taken in using this class of models under the real-world measure. Even when the computational

benefits outweigh the shortcomings, the joint use of the doubly stochastic setting under different

probability measures may be problematic. We examine conditions under which this is possible

and study whether they are restrictive for practical applications. All in all, the main drawback is

that the observation of deaths in an insurance portfolio cannot be used to revise the conditional

valuation of the cashflows to which the remaining survivors are entitled. That means some

incomplete market pricing approaches can only be used at the price of computational tractability.
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We examine quadratic hedging as an example.

Understanding the behavior of stochastic mortality models under equivalent probability

measures is often important in practice. For example, an insurer may wish to use a reliable

stochastic mortality model both under the physical measure, for solvency analysis or mortality

projections, and under a pricing measure, for market consistent pricing of, or reserving for,

insurance liabilities. On the other hand, insurers may adopt different approaches to fair valuation

(state-price deflators, best estimates plus risk margins, or risk-neutral valuation), making it hard

for regulators and investors to compare the results. A necessary condition for comparability is

understanding the mortality risk premia supported by the modeling framework. We provide

an analysis of such premia without postulating that the date of death of an individual attracts

a zero risk premium (an assumption usually justified on the grounds of ‘diversification’), and

allow for a richer parametrization of mortality risk premia. There are three main reasons why

this may be useful. First, the extent to which one can benefit from the law of large numbers

is limited in the case of stochastic death rates, even in the case of conditionally i.i.d. death

times (e.g., Schervish, 1995; Milevsky, Promislow and Young, 2006), and a risk premium for

portfolio size may materialize more often than not.1 Second, diversification and risk pooling are

different concepts. While diversification can be achieved by dividing a fixed amount of capital

across a large number of policies (and in this case the risk associated with the timing of death is

indeed diversifiable; see Jarrow, Lando and Yu, 2005), risk pooling involves writing a larger and

larger number of policies. Scaling of the exposure, however, does not yield diversification (e.g.,

Samuelson, 1963). Finally, even if the insurer can benefit from economies of scale, the insured

is faced with her own risk of death only; this may be an aspect to consider when pricing some

insurance contracts and guarantees. We provide several examples to illustrate these different

aspects of mortality risk.

As a reference mortality model, throughout the paper we consider a continuous time version

of the model proposed by Lee and Carter (1992) (LC henceforth), whose description of the

1This may be the case even with deterministic death rates: large portfolios may reduce to classes of very few
policies once contracts are disaggregated by relevant risk characteristics; in secondary markets, portfolios that
are very large in value may contain very few homogeneous contracts (e.g., Life Settlements portfolios).
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secular change of mortality as a function of a time index has proved quite effective in forecasting

mortality trends (Lee, 2000; Girosi and King, 2008). While popular among demographers and

insurance practitioners, the use of the model is typically confined to realistic valuations, without

a suitable translation under a pricing measure. Given the interest of regulators and practitioners

in translating under a common framework the mortality assumptions used in different contexts,

we introduce a class of equivalent probability measures under which the structure of the LC

model, and the tractability of the doubly stochastic setup, are preserved.

The paper is organized as follows. Section 2 provides a constructive description of a stochas-

tic mortality model rooted in the insurance literature (e.g., Norberg, 1987, 1989; Steffensen,

2000) and widely used in credit risk modeling (see Bielecki and Rutkowski, 2001, and references

therein). The link between the two fields has been emphasized, for example, by Artzner and

Delbaen (1995); Milevsky and Promislow (2001); Biffis (2005) (for related literature focusing on

the parallel with term structure models, see Dahl, 2004; Bauer, Benth and Kiesel, 2009, or the

review paper by Cairns, Blake and Dowd, 2006b). We examine the key assumptions leading

to the doubly stochastic setup, and emphasize when modeling of the hazard rate process is

equivalent to modeling of the intensity process. Section 3 introduces the equivalent changes of

measure supported by the model and provides conditions preserving the most appealing fea-

tures of the setup. In particular, we describe a parameterization of the Radon-Nikodym density

ensuring that LC stochastic intensities remain of the LC type under equivalent measures. We

then examine some limitations of the model by looking at an example of partial information

and filtering of the intensity dynamics. Section 4 focuses on pricing applications (see Møller

and Steffensen, 2007, for an overview) and on the structure of mortality risk premia. Section 5

offers a numerical example based on the calibration of the LC model to the French annuity

market. We estimate the different mortality risk premia ensuring consistency of a risk-neutral

LC model (calibrated to an annuity pricing basis) with an LC model for aggregate population

data. Section 6 concludes, while an appendix provides additional proofs and details.
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2 A continuous-time mortality model

We consider the time interval [0, T ∗] and fix a filtered2 probability space (Ω,F , (Ft)t∈[0,T ∗],P).

We set F = FT ∗ and assume F0 to be trivial. In the following, t, s and T will denote times

in [0, T ∗]; equalities and inequalities between random variables are in the almost sure sense;

superscripts usually refer to coordinates of vector-valued processes rather than powers. Consider

m insureds aged x1, . . . , xm at time 0, and introduce the vector of death indicator processes3

Nt = (N1
t , . . . , N

m
t )′, meaning that each component is defined by N i

t := 1τ i≤t, with τ i the

random time of death of the i-th insured.

For ease of exposition, we consider first the case of a single insured (m = 1). It is convenient

to model the death time of the insured as a stopping time with respect to F = (Ft)t≥0. This

means that F carries enough information to tell whether τ has occurred or not by each time t.

If we wish to distinguish between the world of factors influencing the occurrence of τ and the

occurrence of τ itself, it is natural to assume that F is given by G ∨ H, where G = (Gt)t≥0 is a

strict subfiltration of F providing information on relevant risk factors and H = (Ht)t≥0 makes F

the smallest enlargement of G with respect to which τ is a stopping time.4 We may think of G

as carrying information based on medical/demographical data collected at population/industry

level, and of H as capturing the actual occurrence of death in an insurance portfolio.

We characterize the conditional law of τ in several steps. By the Doob-Meyer decomposition

(e.g., Protter, 2004, p. 111), there is a unique F-predictable increasing process A, called the

compensator of N , such that N − A is a martingale. Since N is constant after jumping to one

at death, its compensator must be constant as well, and thus At = At∧τ for all t. In view of the

assumed information structure, we can always find a G-predictable process Λ coinciding with A

up to τ (Protter, 2004, p. 370), i.e., such that At = At∧τ = Λt∧τ for all t. It turns out that Λ

is continuous (Protter, 2004, Thm. 7, p. 106). If it is absolutely continuous with respect to the

Lebesgue measure, we can write Λt =
∫ t
0 µsds for some nonnegative G-predictable process µ.

We call Λ the martingale hazard process and µ the intensity of τ . To model the time evolution

2All filtrations are assumed to satisfy the usual conditions, i.e. right-continuity and P-completeness.
3In the following, we use the notation y · z = y′z =

∑m

i=1 yizi, for y, z ∈ R
m.

4That is, Ft = ∩s>tGs ∨ σ(τ ∧ s) for all t. We use the notation t ∧ s := min(t, s) throughout the paper.
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of mortality, it is natural to introduce the process5 Ft := P(τ ≤ t|Gt), with F0 = 0. Since τ is

not a G-stopping time, we must have Ft < 1 for all t, and can then apply Bayes rule to obtain

(see Proposition A.1 in the appendix)

P(τ > T |Ft) = 1τ>t
P(τ > T |Gt)

P(τ > t|Gt)
. (2.1)

We can then set Ft = 1−exp(−Γt) for some G-adapted nonnegative process Γ satisfying Γ0 = 0.

We call Γ the hazard process of τ and use it to rewrite expression (2.1) as

P(τ > T |Ft) = 1τ>tE [exp(Γt − ΓT )|Gt] . (2.2)

A natural question to ask is, what is the relationship between the hazard process Γ and the

martingale hazard process Λ? The following proposition gives conditions under which the two

notions coincide:

Proposition 2.1. Assume that the stochastic basis (Ω,F ,F,P) satisfies the structural conditions

described above, and that the following conditions hold:

(A1) F is continuous.

(A2) For all t, the σ-fields Ht and GT ∗ are conditionally independent, given Gt.

Then, the martingale hazard process, Λ, is unique and coincides with the hazard process, Γ. The

compensator of τ is thus given by At = Λτ∧t = Γτ∧t.

Proof. In the appendix.

Given Λ, we can construct τ by introducing a unit-mean exponential random variable, Θ,

independent of GT ∗ , and setting

τ = inf {t : Λt > Θ} . (2.3)

See Blanchet-Scalliet and Jeanblanc (2004) for a proof. We use the convention inf ∅ = ∞, in

which case τ > T ∗. When Λt =
∫ t
0 µsds, construction (2.3) shows that τ coincides with the

5We consider its right-continuous-with-left-limits modification.
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first jump time of a doubly stochastic (equivalently, Cox or conditionally Poisson) process with

intensity µ driven by G (Brémaud, 1981; Duffie, 2001).

Mortality is often modeled by specifiying the hazard process Γ and working with the con-

venient formula (2.2). (The situation when G and H are independent captures the case of

deterministic hazard functions.) While we know that disregarding the notion of martingale haz-

ard process is immaterial under the assumptions of Proposition 2.1, this perspective may not be

inconsequential in more general situations, in particular when considering changes of measure,

as we will argue in the following sections.

The previous analysis can be immediately extended to the case of m > 1 insureds. We

disregard the case of simultaneous deaths, i.e., we assume that τ i 6= τ j almost surely on [0, T ∗]

for i 6= j. We set H = ∨mi=1H
i, where each H

i is the augmented filtration generated the death

indicator process N i
t . For each fixed i, we can use the result described above by assuming that

conditions (A1)-(A2) hold with respect to F
i := G ∨ H

i and F it := P(τ i ≤ t|Gt). To ensure

tractability when the entire information F := G ∨ H is available, however, we need to impose

the additional condition

(A3) for all t, the σ-fields H1
t , . . . ,H

m
t are conditionally independent, given GT ∗ .

When the above holds, conditional survival probabilities can be conveniently computed as

P(τ i > T |Ft) = 1τ i>tE
[
exp

(
Λit − ΛiT

)
|Gt
]

= P(τ i > T |F i
t ).

Assumption (A3) means that once the information carried by G is taken into account, the

residual randomness in death times is independent across individuals. A vector of random

death times (τ1, . . . , τm) can be constructed by generating m independent draws from a unit-

mean exponential distribution, and using construction (2.3) for each component τ i. If each

death time admits the intensity µi, then each τ i can be shown to coincide with the first jump

in the i-th component of an m-variate doubly stochastic process.

Remark 2.2. In the insurance literature it is common to model the deaths in an insurance

portfolio as the jump times of a point process N∗ ∧ m, where m represents the portfolio size
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(e.g., Dahl and Møller, 2006). N∗∧m is typically assumed to have intensity (m− (N∗
t−∧m))µt,

for some G-predictable process µ. Consider now an m-variate doubly stochastic process N̂ =

(N̂1, . . . , N̂m), whose components have all intensity µ. The process
∑m

i=1 N̂
i is then a univariate

doubly stochastic process with intensitymµ. If we look at the first jump times of the components

of N̂ , we see equivalence of our setup with using N∗∧m, at least in the case of conditionally i.i.d.

death times admitting an intensity µ. For the more general case of death times with intensities

µ1, . . . , µm, we see that the process
∑m

i=1 N̂
i is doubly stochastic with intensity

∑m
i=1 µ

i, and

the instantaneous conditional jump probability of each N̂ j is µj(
∑m

i=1 µ
i)−1. If we focus again

on the first jump times of the components of N̂ , the intensity of
∑m

i=1 N̂
i is now

∑m
i=1 µ

i only

before occurrence of the first death. As soon as the first death is recorded, say N̂ j = 1, the

intensity of
∑

i N̂
i jumps to

∑
i6=j µ

i. The setup outlined in the previous section easily allows

for heterogeneous lives, while avoiding the cumbersome procedure of updating the intensity of

the remaining survivors every time a death is recorded. Moreover, the setup can be used beyond

the conditionally Poisson setting, for example by working directly with the hazard process as in

(2.2).

Example 2.3 (Generalized LC model). For an example of stochastic intensity, we con-

sider the LC model (Lee and Carter, 1992). Let us introduce the set of ordered dates T =

{t0, . . . , th} ⊂ [0, T ∗] and m representative individuals with ages in I = {x1, . . . , xm} at the

reference time t0 = 0. We further let mx(t) denote the central death rate relative to age x ∈ I

and date t ∈ T . This means that, for each i and j, mxi
(tj) gives the average number of deaths

between ages xi and xi+1 to the exposed to risk between tj and tj+1. Under the assumption of

a piecewise constant intensity between each age pair (xi + t, xi + t+ 1), we can approximate µit

with mxi+t(t). The LC approach is based on a relational model of the form

ln m̂x(t) = αx + βxκt + ǫx(t) (2.4)

where m̂x(t) is the unconstrained maximum likelihood estimator of mx(t), the ǫx(t)’s are ho-

moskedastic centered error terms and the parameters {αx}, {βx} are subject to the identification

7



constraints
∑

t∈T

κt = 0 and
∑

x∈I

βx = 1. (2.5)

The model (2.4) is fitted to a matrix of age-specific observed death rates using singular value

decomposition (SVD), and the resulting estimate of the time-varying parameter κ is then fore-

casted as a stochastic time series using standard Box-Jenkins methods. For example, Lee and

Carter (1992) model κ as a random walk with drift. The interpretation of the parameters is as

follows: the exp(αx)’s describe the general shape across age of the mortality schedule, while the

mortality intensities change according to an index κ modulated by the age responses (βx). In

light of what was observed in the previous section, we may view the LC model as a discretized

version of the stochastic intensity

µit = exp(α(xi + t) + β(xi + t) · κt), (2.6)

where α, β are continuous functions and κ is an R
d-valued G-predictable process. (Care must

be taken in reconciling (2.4) with (2.6): α and β depend on time because each µit represents

the intensity of an individual aged xi + t at time t. Thus, the parameters αx’s and βx’s in

(2.4) correspond to the values of the functions α(·), β(·) computed at each age in I.) We refer

to the intensity (2.6) as to a generalized LC intensity. If κ is a Brownian motion with drift

(i.e., dκt = δdt + σdWt for some real coefficients δ and σ), after discretization along the time

dimension we are back to the model originally proposed by Lee and Carter (1992). If k is a one-

dimensional Ornstein-Uhlenbeck process, we recover the model used for example by Milevsky

and Promislow (2001). We note that some authors (e.g., Brouhns, Denuit and Vermunt, 2002)

have paired the exponential affine form (2.4) with a Poisson regression model for death counts:

since the estimates of κ are treated as realizations of a random walk with drift, and (2.6) is

seen as the intensity of a Poisson inhomogeneous process, we see agreement with the doubly

stochastic setup. ◦
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3 Stochastic Mortality under Measure Changes

For simplicity from now on we assume that G is the augmented filtration generated by a d-

dimensional Brownian motion W . (In general, G could be generated by discontinuous risk

factors, for example evolving as jump diffusions. The main features outlined in Section 2 would

be unaltered as long as jump times are not death times; see Example 4.2.) We are now interested

in changes from the reference measure P (e.g., physical/objective probability) to an arbitrary

equivalent measure P̃ defined on (Ω,F). Two probability measures are said to be equivalent

when they assign null probability to the same events. Depending on the context, additional

constraints may be imposed: see Section 4 for no-arbitrage restrictions. We introduce the

Radon-Nikodym density process ξ by setting

ξt :=
dP̃

dP

∣∣∣
Ft

= E [ξT ∗ |Ft] , (3.1)

where ξT ∗ is a strictly positive F-measurable random variable such that E[ξT ∗ ] = 1. In the

following we write E[·] and Ẽ[·] for expectations under P and P̃. A martingale representation

theorem given in Appendix A.2 ensures that ξ can be expressed as6

ξt = 1 −

∫ t

0
ξs−ηs · dWs +

m∑

i=1

∫ t

0
ξs−φ

i
sdM

i
s, (3.2)

with η and (φ1, . . . , φm) F-predictable processes satisfying suitable integrability conditions, and

with each φi valued in (−1,∞) to ensure the strict positivity of ξ. The processes M1, . . . ,Mm

are purely discontinuous F-martingales defined by M i := N i−Λi
·∧τ i . Appendix A.2 shows that

the explicit factorization ξ = ξ′ξ′′ holds, with ξ′ and ξ′′ given by

ξ′t = exp

(
−

∫ t

0
ηs · dWs −

1

2

∫ t

0
||ηs||

2ds

)
(3.3)

ξ′′t =
m∏

i=1

ξ
′′(i)
t =

m∏

i=1

(
1 + φiτ i1τ i≤t

)
exp

(
−

∫ t∧τ i

0
φisdΛis

)
. (3.4)

6We use the convention that
∫ t

0
stands for integration over (0, t].
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Define the processes W̃t := Wt +
∫ t
0 ηsds, M̃

i
t := M i

t −
∫ t∧τ i

0 φisdΛis and Λ̃it =
∫ t
0 (1 + φis)dΛis.

An application of the Girsanov-Meyer theorem (e.g. Protter, 2004, p. 132) yields the following

result:

Proposition 3.1. Consider the probability measure P̃ on (Ω,F) equivalent to P and with density

ξ = ξ′ξ′′ given by (3.3)-(3.4). Then

(i) W̃ is an F-Brownian motion under P̃.

(ii) For each i, M̃ i is an F-martingale under P̃, orthogonal to W̃ and to M j for each j 6= i.

Moreover, the martingale hazard process of τ i is given by Λ̃i.

An immediate consequence of Proposition 3.1 is that the martingale hazard process of each

death time τ i may not remain the same process when moving to the new measure P̃. Moreover,

each Λ̃i may not coincide with the hazard process anymore, as assumptions (A1)-(A2)-(A3) are

in general not preserved under equivalent changes of measure.7 The following proposition gives

conditions ensuring that this is the case:

Proposition 3.2. Consider the density ξ = ξ′ξ′′ given by (3.3)-(3.4) and assume that the

following condition is satisfied:

(A4) η and φ1, . . . , φm are G-predictable.

Then assumptions (A1)-(A2)-(A3) hold under P̃.

Proof. See Appendix A.2.

Condition (A4) ensures that ξ′T ∗ is GT ∗-measurable and each ξ
′′(i)
T ∗ is Gτ i-measurable. (Since

for each F
i-predictable process ρ we can always find a G-predictable process ρ̄ coinciding with

ρ up to time τ i, we could state condition (A4) in terms of F
i-predictable processes up to each

death time.) If for all i we have Λ̃i =
∫ ·

0 µ̃
i
sds, then each death time τ i coincides with the first

jump of a conditionally Poisson process with intensity µ̃i = (1 + φi)µi under P̃. To understand

to what extent assumption (A4) may be restrictive for practical applications, we examine two

7With regard to (A1), we mean that F̃t := P̃(τ ≤ t|Gt) may not be continuous.
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examples. In the first one, we consider an insurer faced with intensity dynamics that are only

partially observable. In the second example, we look at LC intensities preserving their structure

under equivalent changes of measure.

Example 3.3 (Incomplete information). We slightly modify the setup of Section 2 by

considering F = G ∨ H ∨ σ(ψ), with ψ a random variable defined on (Ω,F) and independent

of the Brownian motion W , which for simplicity is assumed to be one-dimensional. It can be

verified that the properties described in Section 2 still hold in the present setting, although

F0 is clearly nontrivial. We think of ψ as an unobservable source of randomness affecting the

intensities µ1, . . . , µm. As a simple example, assume that the random times of death τ1, . . . , τm

have common intensity µ such that Y := logµ evolves according to

dYt = (a(t) + b(t)Yt + c(t)ψ) dt+ σ(t, Yt)dWt, (3.5)

where the functions a, b, c, σ satisfy the conditions given in Appendix A.3. We assume that

the insurer observes Y , recovers σ from the quadratic variation of Y , and draws inferences

about the drift in a Bayesian fashion, backing out from observations of Y the true value of ψ.

For tractability, we let the insurer have a Gaussian prior on ψ (i.e., under P the conditional

distribution of ψ, given F0, is Normal with mean zero and standard deviation σψ) and update

her conditional estimate of ψ by computing Ψt := E
[
ψ|FY

t

]
, where F

Y is the filtration generated

by Y . We define the innovation process W̃ induced by the updating procedure in the classical

filtering sense (e.g., Lipster and Shiryaev, 2001),

dW̃t =
dYt − (a(t) + b(t)Yt + c(t)Ψt)

σ(t, Yt)
, (3.6)

so that Y is perceived to evolve as

dYt = (a(t) + b(t)Yt + c(t)Ψt) dt+ σ(t, Yt)dW̃t. (3.7)

The above is ‘observationally equivalent’ to (3.5), since F
Y = σ(Y0) ∨ F

W̃ .
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Assume now that τ is doubly stochastic with intensity µ under P, driven by G
ψ := G∨σ(ψ)

(our reference subfiltration). Under the filtering procedure described above, we can think of

the insurer as being endowed with the filtered probability space (Ω,F ,FY , P̃). The process

W̃ = W +
∫ ·

0 ηsdWs is a Brownian motion under a subjective probability measure P̃ reflecting

the insurer’s prior beliefs on ψ and belonging to the class introduced in Section 3, with

ηt =
c(t) (ψ − Ψt)

σ(t, Yt)
, φit = 0.

Since η is G
ψ predictable, by Proposition 3.2 we see that τ is still doubly stochastic with intensity

µ under P̃, although the insurer believes the intensity to have log-dynamics (3.7). Things change,

however, as soon as we extend the information available to the insurer. For example, it would

be natural for the insurer to back out the true value of ψ from observation of the death times

in the insurance portfolio, i.e., by using F
Y ∨ H rather than just F

Y . If this were the case,

however, the perceived dynamics of Y would have discontinuities induced by death occurrences.

The subjective probability measure P̃ would then be characterized by a density dependent on

the death times, thus violating assumtpion (A4) (e.g., Snyder, 1972; Segall, Davis and Kailath,

1975). ◦

Example 3.4 (LC measure changes). Assume that under P the death times τ1, . . . , τm have

stochastic intensities µ1, . . . , µm of the generalized LC type (2.6). Define a class of measure

changes by setting

φit = exp
(
ai(xi + t) + bi(xi + t) · κt

)
− 1 (3.8)

in (3.4), for some continuous functions ai, bi such that the density (3.1) is well defined. Assume

further that η in (3.3) is G-predictable. Then, under P̃ each stopping time τ i has stochastic

intensity µ̃i still of the LC type, in the sense that

µ̃it = µit(1 + φit) = exp
(
α̃i(xi + t) + β̃i(xi + t) · κt

)
, (3.9)

with α̃i := α+ ai, β̃i := β+ bi. This class of measure changes is quite flexible: P̃ can only affect
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the dynamics of the time-trend κ (each φi is the null process), only the age responses to κ (η is

the null process), or both of them. ◦

To appreciate the extra flexibility delivered by the term ξ′′ in (3.1), it is instructive to look

at the dynamics of the new intensity under an equivalent probability measure. Consider a single

death time τ and for simplicity set φi = φ for all i in (3.4). Assume that the P-dynamics of µ is

dµt = µt(δ
µ
t dt+ σ

µ
t · dWt),

where the drift δµ and the volatility σµ can be recovered by applying Itô’s formula to (2.6). The

dynamics of µ under P̃ is then

dµt = µt(δ̃
µdt+ σ

µ
t · dW̃t),

with δ̃µ = δµ − η · σµ. When the adjustment η is positive, P̃ gives greater weight to mortality

improvements. This is only part of the story, since we know that µ needs not be the intensity

process of τ under P̃, unless φ is the null process. Setting ϕ := 1 + φ > 0, under (A4) we can

write the dynamics of ϕ under P̃ as

dϕt = ϕt(δ̃
ϕ
t dt+ σ

ϕ
t · dW̃t),

with obvious meaning of the notation. Integration by parts then yields:

dµ̃t = ϕt−dµt + µt−dϕt + d[ϕ, µ]t (3.10)

= µ̃t

(
(δ̃µt + δ̃

ϕ
t + σ

µ
t · σϕt )dt+ (σµt + σ

ϕ
t ) · dW̃t

)
.

Expression (3.11) shows that the drift adjustment δ̃µ − δµ = −ηt · σ
µ
t is replaced by the more

structured spread

δ̃
µ̃
t − δ

µ
t = −ηt · σ

µ
t + δ̃

ϕ
t + σ

µ
t · σϕt ,

which allows for a richer parameterization of the new intensity drift. Moreover, the volatility

13



of the new intensity is in general different from that of the process µ under P̃. In particular,

there are non-trivial specifications of δ̃ϕ and σϕ that allow some Brownian sources of risk to

disappear from the dynamics of the intensity when moving from P to P̃. (An extreme example

is given by a death time with intensity that is deterministic under one measure and stochastic

under the other.) This is useful when G is generated by both financial and mortality risk sources

and one wishes to calibrate separately the corresponding risk premia to different security prices.

Expression (3.11) shows that there are cases when we can assume independence of financial and

demographic risk factors under P̃, without requiring it to hold under P.

4 Pricing applications

In financial markets the absence of arbitrage is essentially equivalent to the existence of an

equivalent martingale measure under which the discounted gain from holding a security is a

martingale. The setup described in Section 2 allows one to easily extend a financial market

to include securities providing mortality-contingent payouts (e.g., Artzner and Delbaen, 1995;

Duffie, Schroder and Skiadas, 1996; Lando, 1998; Jamshidian, 2004). Take T ∗ to be a final

trading date, and consider a financial market with security prices adapted to G. In particular,

assume that there is a money market account with market value Bt = exp(
∫ t
0 rsds), where the

G-predictable process r represents the risk-free rate. In addition to financial securities, consider

insurance contracts providing payoffs contingent on death. In this context, it is useful to rewrite

assumption (A2) in the equivalent form (e.g, Brémaud and Jacod, 1978)

(A2∗) every G-martingale is an F-martingale.

The above makes clear that if (A2) still holds when moving to a pricing measure, then the

dynamics of financial security prices are unaffected by the introduction of information on the

death times τ1, . . . , τm. (When the financial market is incomplete, this may actually be more

than what we need: under a pricing measure we could simply require (A2∗) to hold for the

discounted gains from holding the traded securities.)
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For simplicity, consider the case of a single death time. Let V denote the market value of an

insurance contract issued to an individual aged x at time 0 and with random residual lifetime τ

admitting an intensity µ under P. Denoting by C the cumulated dividends paid by the security,

we refer to V as to an ex-dividend price, i.e., excluding the payment of ∆Ct = Ct−Ct− at each

time t. We assume that C is of bounded variation and follows

dCt = Dt−dNt + (1 −Nt)dSt, (4.1)

where D and S are a G-adapted processes representing the death benefit and the cumulated

survival benefits respectively. In the absence of arbitrage, there exists a probability measure P̃

equivalent to P under which the discounted gain from holding V , (B−1V +
∫ ·

0 B
−1
s dCs), is an

F-martingale. We can thus write

Vt = Bt Ẽ

[∫ T

t

B−1
s dCs +B−1

T 1τ>TV T

∣∣∣Ft
]
, (4.2)

for all T ≥ t, where we have assumed that the price of any security is zero at any given time if

no dividends are paid thereafter. In the above, V denotes the pre-death price of the security,

in the sense that Vt = 1τ>tV t. An application of Proposition A.1 in the appendix yields the

pricing formula

Vt = 1τ>tBt e
Λ̃tẼ

[∫ T

t

B−1
s DsdΛ̃s +

∫ T

t

B−1
s e−Λ̃sdSs +B−1

T e−Λ̃T V T

∣∣∣∣∣Gt
]

= 1τ>tB̂t Ẽ

[∫ T

t

B̂−1
s Dsµ̃sds+

∫ T

t

B̂−1
s dSs + B̂−1

T V T

∣∣∣∣∣Gt
]
, (4.3)

where B̂· = exp(
∫ ·

0(rs + µ̃s)ds) represents a ‘mortality risk-adjusted money market account’.

Expression (4.3) shows that the standard risk-neutral machinery passes over quite simply to

the mortality-contingent setting, provided we consider fictitious securities paying a dividend

Dsµ̃sds+ dSs under a fictitious short rate r + µ̃. By (4.3) the discounted pre-death gain from

holding the security, Lt = B̂−1
t V t +

∫ t
0 B̂

−1
s (Dsµ̃sds + dSs), is a G-martingale under P̃. As an
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example, assume that Dt = dtV t and dSt = stV tdt for suitable continuous processes d and s.

We can then apply integration by parts to L and recover the dynamics

dV t = V t(rt + µ̃t − dtµ̃t − st)dt+ dZt, (4.4)

where Zt =
∫ t
0 B̂sdLs is a G-martingale. The drift term in (4.4) shows how mortality uncertainty

affects the dividend yield of pre-death prices under the pricing measure P̃. We elaborate on this

in Example 4.1 below.

4.1 Market Price of Mortality risk

So far we have not required P̃ to be unique, which amounts to saying that both the financial

and insurance markets may be incomplete. If the assets available for trade do not span the

sources of randomness in the economy, there are infinitely many equivalent martingale measures

making (4.2)-(4.3) hold. The latter determine an interval of no-arbitrage prices associated with

different pairs (η, φ) accounting for investors’ risk preferences. A way to narrow down the price

range is to use market information to calibrate (4.3) and recover the risk-neutral dynamics

of (η, φ). In the case of insurance contracts, useful information is provided by financial and

reinsurance markets, or by suitably adjusted Embedded Value computations (see Biffis, 2005).

The calibration approach is adopted, for example, by Cairns, Blake and Dowd (2006a), who

restrict their attention to the case φ = 0. An example based on the LC model is provided in

Section 5. An alternative approach relies on making sensible assumptions on the preferences of

market participants to pin down the equivalent martingale measure embedding their attitude

toward risk. We elaborate on this approach in Example 4.2 below, where we discuss some of

the examples given in Dahl and Møller (2006), who assume φ to be deterministic. We note that

both approaches are consistent with the guidance on fair valuation provided by the International

Accounting Standards Board (IASB, 2004).

The valuation framework described above allows us to identify different types of mortal-

ity risk affecting insurance contracts. First, there is systematic risk affecting the conditional
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probability of death of each individual in the insurance portfolio. This risk is channeled by

randomness in the intensities of mortality. We call it longevity risk when we are concerned with

systematic declines in the intensity. As an extreme example, consider the case of individuals

with the same intensity µ: the evolution of µ affects the instantaneous death probability of all

the insureds in the portfolio, at the same time and in the same direction, preventing the insurer

from benefiting from pooling effects, as the impact of systematic risk is magnified by the size of

the portfolio (see Schervish, 1995, for a version of the Strong Law of Large Numbers applying to

this case). In our framework, the process η may include compensation for taking on mortality

risk arising from systematic factors changing the intensity.

Second, there is the unsystematic risk of fluctuations in death occurrences, once the realiza-

tions of conditional death probabilities are given. If we use construction (2.3) in Section 2, we

see that this risk is associated with the draws from a unit-mean exponential distribution. The

extent to which fluctuations can be reduced depends on the size of the insurance portfolio at

each point in time, i.e., on the trajectory of the process
∑m

i=1N
i. In our framework, compensa-

tion for this risk is jointly captured by the processes φ1(1 −N1), . . . , φm(1 −Nm). From (3.2)

we see that the pricing measure adjusts the intensity as soon as new deaths are recorded, to

reflect an increase in unsystematic risk.

Finally, the third source of risk resides in the timing of each individual death, irrespective

of portfolio size. This risk is relevant when the pricing framework captures the point of view

of the policyholder, who is concerned with the death time of the insured life only, no matter

how large the insurer’s portfolio. As Example 4.1 shows, this risk may be present even when

the product passes back to the policyholder any mortality profit generated by the insurance

portfolio. Compensation for this risk is captured by each individual process φi(1 − N i) in

isolation.

Summing up, while the first type of mortality risk premium materializes in a change of

intensity dynamics, the latter two risk premia require a change in the intensity process.8 Hence

in the second case agents behave as if they were valuing cashflows contingent on some death

8A situation when a non-zero mortality risk premium must rely on a change of intensity is when G is inde-
pendent of H, and hence the hazard process is deterministic.
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times (τ̃1, . . . , τ̃m) different from (τ1, . . . , τm), and with intensities (µ̃1, . . . , µ̃m) under both P

and P̃. This suggests a practical use of changes of measure as a way to capture basis risk in

actuarial valuations. To illustrate, suppose that an insurer has limited experience data on an

insurance portfolio, for example because it has entered a relatively new market. The mortality

dynamics of an insured τ̃ could then be specified by adjusting the intensity of a representative τ

in some reference population with more reliable data, for example by defining µ̃ = (1 + φ)µ. In

the context of mortality derivatives written on a public index, we could use a similar approach

to capture the risk that the price of the derivative instrument does not move in line with the

exposure the insurer wishes to hedge. The change in intensity corresponding to the use of τ̃

(instead of τ) under a pricing measure P̃ may be interpreted as a premium for basis risk.

Example 4.1 (Mortality-indexed insurance contract). Consider an insurance contract

paying a continuous dividend yield, contingent on survival, equal to the risk-free rate plus the

physical intensity of mortality of a reference population. We assume that the insured’s time of

death has the same law as the individuals in the reference population, and think of a variable

annuity paying out the risk-free rate and passing back to the policyholder the demographic profit

realized by the insurer on the pool of annuitants. Formally, set Dt = 0 and dSt = (rt + µt)V tdt

in (4.1). Then, for any fixed T > 0, by (4.3) the initial price of the security is given by

V0 = Ẽ

[∫ T

0
exp

(
−

∫ s

0
(ru + µ̃u)du

)
V s(rs + µs)ds+ exp

(
−

∫ T

0
(rs + µ̃s)ds

)
V T

]
.

If φ = 0 (i.e., µ̃ and µ are the same process) V0 is equal to its pre-death price V T at each

fixed future date T . Since T is chosen arbitrarily, we have that V0 is constant and the buyer

of the contract has no way to express her aversion to mortality risk. In other words, the buyer

must find the payment of the intensity µ enough to compensate her for her own risk of dying

and ceasing to receive benefits, irrespective of how averse she is to changes in conditional death

probabilities. Things are different if we allow for a change of intensity through a positive φ,

because the pre-death price V has then higher drift. For example, if φ is deterministic, V0 is

decreasing in φ, capturing the fact that the insured is averse to her own risk of death and is
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willing to pay a lower price to enter the contract. ◦

Example 4.2 (Quadratic hedging). Throughout this example we assume that G is generated

by a two-dimensional Brownian motion (d = 2). We consider a financial market with a money

market account, B, and a risky security, P 1, with dynamics





dP 1
t = P 1

t

(
δ1t dt+ σ1

t dW
1
t

)

P 1
0 = p1 > 0,

where r, δ1 and σ2 are strictly positive, G-predictable, and uniformly bounded processes. Con-

sider an insurer facing a time-T liability arising from a portfolio of equity-linked pure endow-

ments issued to m individuals with common G-predictable intensity of mortality µ. Denote the

liability by HT ∈ FT , and set HT =
∑m

i=1 1τ i>T f(P 1
T ), with f(·) a bounded positive function.

Suppose now that a reinsurer or investment bank offers a security providing payments linked

to the number of survivors in the insurer’s portfolio at time T . We may think of a reinsurance

arrangement, or of a structured product embedding a longevity swap. Let the price process of

this security, P 2, admit the representation





dP 2
t = P 2

t

(
δ2t dt+ σ2

t dW
2
t + ϑt · dNt

)

P 2
0 = p2 > 0,

where the coefficients δ2, σ2 and ϑ are G-predictable and uniformly bounded, with δ2, σ2 > 0 and

ϑ valued in (−1,∞)m. Suppose that the insurer wishes to set up a dynamic hedging strategy by

investing in (B,P 1, P 2), with the objective of minimizing the mean-square error of the mismatch

between the terminal value of the strategy and the liabilities at maturity. The minimal cost to

implement such strategy identifies a no-arbitrage price consistent with the quadratic hedging

criterion (see Cerny and Kallsen, 2007, and references therein). In particular, we look for a

self-financing strategy π = (π1, π2)′ (where πjt denotes the amount of wealth invested in asset

P j at time t) in the class of square-integrable, F-predictable processes solving the optimization
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problem

min
π
E
[(
HT −X

x,π
T

)2]
, (4.5)

where Xx,π is the wealth process associated with the investment strategy π starting from a given

initial wealth level x > 0 (see Appendix A.4 for details). For simplicity, assume ϑit = θt for all

i, where θ is a process valued in (−1,∞). It can be shown that in our setup the solution to

problem (4.5) leads to an initial price given by

V0 = Ẽ

[
exp

(
−

∫ T

0
rsds

)
HT

]
, (4.6)

where P̃ is a measure equivalent to P, with Radon-Nykodim density given by (3.3)-(3.4) (e.g.,

Lim, 2005). Denoting by nt = m −
∑m

i=1N
i
t− the number of survivors in the portfolio at each

point in time, we can express the pair (η, φ) as

ηt =




δ1t −rt
σ1

t

σ2
t (Kt(δ2t −rt+ntθtµt)+σ2

tR
2
t )

Kt((σ2
t )2+nt(θt)2µt)

−
R2

t

Kt


 ; φit = −

Ktθt
(
δ2t − rt + ntθtµt

)
+ θtσ

2
tR

2
t

Kt

(
(σ2
t )

2 + nt(θt)2µt
) , (4.7)

where the F-predictable processes K and R = (R1, R2)′ are defined in Appendix A.3. Expression

(4.7) shows that the quadratic hedging criterion commands a mortality risk premium involving a

change of intensities, in the sense that φi is non zero in general. However, the doubly stochastic

setup is not preserved under P̃, as (A4) is not satisfied because η and φi depend on the number

of survivors at each point in time.

Things change if we assume that the liability does not depend directly on the death times

affecting the traded security P 2. For example, P 2 may represent a security indexed on a mor-

tality index broadly matching the demographic characteristics of the insureds. One way of

formalizing this situation is to consider a liability H
(k)
T =

∑k
i=1 1τ i>T f(P 1

T ) and assume θi = 0

for i = 1, . . . , k (with k < m). This means that the liability depends on the first k components

of N (i.e., on N (k) := (N1, . . . , Nk)′), while the dynamics of P 2 depends only on the remaining

m− k death indicators, (i.e., on N (m−k) := (Nk+1, . . . , Nm)′). In this case the pair (η, φ) takes
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the form

ηt =




δ1t −rt
σ1

t

σ2
t

(
Kt

(
δ2t −rt+n

(m−k)
t θtµt

)
+σ2

tR
2
t

)

Kt

(
(σ2

t )2+n
(m−k)
t (θt)2µt

) −
R2

t

Kt


 , φit = 0 for all i, (4.8)

where n
(m−k)
t = (m − k) −

∑m−k
j=1 N

j
t−. Taking G

(m−k) := ∨m−k
j=1 (G ∨ H

k+j) as our reference

subfiltration, we see that assumption (A4) clearly holds with respect to G
(m−k): under P̃, the

death times τ1, . . . , τk are doubly stochastic with the same intensity process µ driven by G
(m−k);

on the other hand, the P̃ dynamics of µ are clearly affected by η, and hence by N (m−k) through

availability of security P 2. Expression (4.9) now takes the convenient form

V0 = Ẽ

[
exp

(
−

∫ T

0
rsds

)
H

(k)
T

]
=

k∑

i=1

Ẽ

[
exp

(
−

∫ T

0
(rs + µ̃s)ds

)
f(P 1

T )

]

= kẼ

[
exp

(
−

∫ T

0
(rs + µs)ds

)
f(P 1

T )

]
.

(4.9)

The above examples can be compared with the analysis offered by Dahl and Møller (2006),

who restrict their attention to the case of deterministic φ and affine intensities of mortality. They

first examine risk-minimizing strategies under a given P̃ (i.e., strategies that are self-financing

only on average), and then determine the equivalent martingale measure supporting mean-

variance indifference prices and quadratic hedging prices, always obtaining a null adjustment φ.

The above examples show that the intensity µ needs not be the same process under P̃ when a

more general setting is examined.

5 Calibration example

In this section, we provide an example of calibration of a risk-neutral LC model to the survival

probabilities implied by a mortality table employed in the French annuity market (referred to

as the TPRV life table). We estimate the margins to be added to a classical LC model fitted

to French population data and find evidence that the underlying change of measure involves

a change in the intensity process and not just a drift adjustment in the dynamics of the time

trend.
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As a simple example, consider an annuity issued to an individual aged x at time 0 and paying

unitary amounts at dates in T = {t1, . . . , tm}. From the results of Section 4, we can exploit the

independence assumption (under P̃) to write the time-0 price of such security as

Ẽ

[
∑

t∈T

B−1
t 1τ>t

]
=
∑

t∈T

Ẽ
[
B−1
t

]
Ẽ

[
exp

(
−

∫ t

0
µ̃sds

)]
=
∑

t∈T

Ẽ
[
B−1
t

]
P̃(τ > t).

The last expression shows that we can separately calibrate, the financial component to zero-

coupon bond prices, the mortality component to risk-neutral survival probabilities. We provide

an example of the latter below.

5.1 Lee-Carter modeling for the population mortality rates

We use data concerning French males, general population. They have been downloaded from

the Human Mortality Database.9 The period considered is 1960-2001 and the age range is 50-

100. Figure B.1 depicts the shape of the mortality surface. More specifically, the ln m̂x(t) are

displayed in function of age x and time t, where m̂x(t) is the death rate at age x in calendar year

t (obtained by dividing the observed number of deaths by the corresponding central exposure-

to-risk). The fit of the LC model (2.4) to the French population data gives the results displayed

in Figure B.3. The estimated parameters of the discretized Brownian motion with drift dκt =

δdt+ σdWt are given by δ̂ = −0.666778 and σ̂2 = 1.660415.

< Figure B.1 about here >

5.2 Presentation of the TPRV life table

The life tables currently in use by the insurers operating in France were established by the French

National Institute for Statistics and Economic Studies (Institut national de la statistique et des

études économiques - INSEE). Since 1993, the insurers are allowed to use tables based on their

own experience to establish premium rates for annuity contracts. These experience life tables

have to be certified by an independent actuary and submitted to a commission for approval. In

9See http://www.mortality.org.
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any case, the result cannnot go below a minimum given by the INSEE projected life table (that

incorporates mortality trends for generations from 1887 to 1993). In practice, the projected life

table for annuities (known as the TPRV 93 life table) is used as a single threshold. It includes

a comprehensive table of the 1950 cohort and, applying an age shift in order to establish the

policyholder’s technical age, leads to premium amounts very similar to those obtained through

a direct application of generation tables. Figure B.2 depicts the shape of the mortality surface

given by the TPRV life table. More specifically, the lnmTPRV
x (t) are displayed in function of

age x and time t, where mTPRV
x (t) is the intensity of mortality prevailing at age x in year t

implied by the TPRV. Note that the mTPRV
x (t)’s do not fill a rectangular array of data.

The vast majority of annuity providers operating in France have adopted the TPRV life table

for pricing and reserving. This table is conservative because it is derived from female mortality

experience, at the general population level, but applied to both male and female annuitants. The

wide adoption of this life table by the French insurance companies suggests that the industry

considers that the basis risk is appropriately mitigated in this way. Expenses are not taken into

account in the present study.

< Figure B.2 about here >

5.3 Estimation of the κt’s keeping the population αx’s and βx’s

We first carry out the LC estimation on the basis of the TPRV life table by keeping the αx’s

and βx’s fixed at their population values. The estimated κt’s are then obtained by the linear

regressing of the ln m̂x(t) − α̂x on the β̂x’s, without intercept and separately for each value of

t. The resulting κt’s are displayed in the third plot of Figure B.3. We see that the resulting

time index is driven by a totally different process, with an estimated variance of 0.1192059.

It is thus impossible to get a standard LC model consistent with the TPRV lifetable if the

underlying change of measure only involves the Brownian motion driving the time index. The

finding is consistent with what has been observed elsewhere (see Biffis and Denuit, 2006, for

the case of the Italian annuity market) and is not surprising. Indeed, what we have actually

done was testing whether the use of the TPRV table implies that annuitants’ random death
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times are conditionally independent, given the population time-trend dynamics. The answer

is likely to be negative, because there are well-documented discrepancies between population

and annuitants risk characteristics and because insurers’ annuity portfolios may not be large

enough to diversify away the idiosyncratic risk associated with the individual death times (see

Section 4.1). In the next section, we show how to identify the different risk premiums emerging

in the standard LC model when moving to the risk-neutral world.

< Figure B.3 about here >

5.4 Estimation of the αx’s and κt’s by keeping the population βx’s

We consider the change of measure (3.3)-(3.4) with η ∈ R and φxt = a(x+ t) + b(x+ t)κt for all

x, where the dynamics of κ under P̃ is assumed to follow

dκt = (δ − ησ)dt+ σdW̃t, (5.1)

with W̃ a one-dimensional Brownian motion and where the coefficients δ, σ have been estimated

in Section 5.1. Our aim is to estimate the functions a and b, and the parameter η entering the

drift of κ under P̃. We start by keeping the population βx’s and by estimating the αx’s and

the time-index implied by the TPRV life table. We denote the implied time-index by κ̃. The

new estimates for the drift and volatility of κ̃ will then enable us to recover the adjustment b

underlying the change of measure, as we now show.

The fit of the LC model to the TPRV implied intensities gives the results displayed in

Figure B.4. Note that the αx’s have been modified in order to satisfy the constraints (2.5).

The parameters of the random walk with drift modeling the time trend are given next: δ̃κ̃ =

−0.3075042 and (σκ̃)2 = 0.02767568. Now, using a superscript ‘FM’ to indicate that the

quantity relates to French males, and ‘TPRV’ to the TPRV table, the intensity of mortality can

be written as

µ̃xt = exp
(
αTPRV(x+ t) + βFM(x+ t)κ̃t

)
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where αTPRV = αFM + a and κ̃ has P̃-dynamics

dκ̃t = δ̃κ̃dt+ σκ̃dW̃t,

where σκ̃ is different from the volatility coefficient σ of κ (as seen from the estimates), so that

κ̃ and κ are two different processes under P̃. Now, we can also write

µ̃xt = exp
(
αTPRV(x+ t) +

(
βFM(x+ t) + b(x+ t)

)
κt
)

with κ having P̃-dynamics (5.1) and with

b(x+ t) = βFM(x+ t)

(
σκ̃

σ
− 1

)
.

The interpolated point estimates of the functions a = αTPRV − αFM and b are displayed in

Figure B.5. Finally, we can compute η as

η =
δ

σ
−
δ̃κ̃

σκ̃
= 1.33097.

The resulting estimates for the adjustment functions a, b and for the coefficient η can be

employed for the fair valuation of annuity business in the framework of Section 4. They also

quantify the adjustments implied by table TPRV for the different types of mortality risk de-

scribed in Section 4.1. Specifically, let us see how the simple procedure described above has

allowed us to disentangle an adjustment for longevity risk from the other risk margins. Given

the estimate of η, the risk-neutral drift δ̃κ of the time-trend process κ is seen to be equal to

−2.1838272. From this, we can carry out a standard LC projection based on the drift implied

by the TPRV table and compare it to a projection based on real-world estimates. The results

depicted in Figure B.6 tell us that a stronger decrease in the mortality-index κ is incorporated

in the risk-neutral version of the LC model implied by the TPRV table. We note that the width

of the risk-neutral bands (at ±2 standard deviations) is equal to the width of the real-world
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bands, consistently with the fact that the same time-trend process is considered in the real and

risk-neutral world.

< Figure B.4 about here >

< Figure B.5 about here >

< Figure B.6 about here >

6 Conclusion

In this work we have presented a self-contained analysis of stochastic mortality models in contin-

uous time, emphasizing the meaning and implications of some of the key assumptions commonly

used in the literature, and analyzing their stability under equivalent measure changes. As an

example, we have introduced a continuous-time version of the classical model proposed by Lee

and Carter (1992) and examined how the model can be consistently used under equivalent prob-

ability measures. We have provided applications related to the fair valuation of life insurance

liabilities and mortality-indexed securities, including an example on quadratic hedging. Finally,

we have offered an example of model calibration based on the French annuity market.
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A Additional details and proofs

A.1 Section 2

We provide two useful results that are used throughout the paper. We refer the reader to Bielecki

and Rutkowski (2001) for some classical references.
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Proposition A.1. In the setup of Section 2, the following results hold:

(i) For every integrable random variable H ∈ F , we have

E
[
1τ>TH

∣∣∣Ft
]

=
1τ>t

1 − Ft
E
[
1τ>TH

∣∣∣Gt
]
. (A.1)

(ii) For any bounded G-predictable process Z and for each 0 ≤ t ≤ T , we have:

E [1t<τ≤TZτ |Ft] =
1τ>t

1 − Ft
E

[∫ T

t

ZsdFs

∣∣∣Gt
]
.

Proof. See, for example, Bielecki and Rutkowski (2001).

A useful observation that will be employed below is that condition (A2) is not just equivalent

to (A2∗), but also to

(A2⋄) P(τ ≤ t|GT ∗) = Ft for all t.

See Brémaud and Jacod (1978) for a proof. The above emphasizes that the conditional proba-

bility of death happening before time t only depends on the evolution of mortality (and other)

risk factors up to that time. Nothing would change if we were given their entire paths.

Proof of Proposition 2.1. To find the F-compensator of τ , i.e. the unique predictable process

A such that N−A is an F-martingale, we fix t > 0 and let πn be a sequence of refining partitions

of [0, t] such that limn→∞ mesh(πn) = 0. We then set Ant :=
∑

πn E[Nti+1 −Nti |Fti ] and observe

that, since {τ > ti} is an atom for Hti , we can write

E[Nti+1 |Fti ] =E[Nti+1(1τ≤ti + 1τ>ti)|Fti ] = 1τ≤tiNti+1 + 1τ>tiE[Nti+1 |Fti ]

=Nti + 1τ>ti
E[Nti+11τ>ti |Gti ]

P(τ > ti|Gti)
= Nti + 1τ>ti

P(ti < τ ≤ ti+1|Gti)

P(τ > ti|Gti)
,

where we have used Proposition A.1(i) and the fact that Nti+11τ≤ti = 1τ≤ti and 1τ>tiNti+1 =

1ti<τ≤ti+1 . Now, we note that by (A2⋄) the process Ft = P(τ ≤ t|Gt) is increasing. (Indeed, for
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all s ≤ t we have {τ ≤ s} ⊆ {τ ≤ t} and hence P(τ ≤ s|GT ∗) ≤ P(τ ≤ t|GT ∗). (A2⋄) finally

yields Fs ≤ Ft.) We can then write

E[Nti+1 −Nti |Fti ] = 1τ>ti
P(ti < τ ≤ ti+1|Gti)

P(τ > ti|Gti)
= 1τ>ti

E
[
Fti+1

∣∣Gti
]
− Fti

1 − Fti
,

to obtain

Ant =
∑

πn

1τ>ti
E
[
Fti+1

∣∣Gti
]
− Fti

1 − Fti
−→
n→∞

∫ t∧τ

0

dFu
1 − Fu−

.

Now, since F is continuous by (A1), we have At = − ln(1−Ft∧τ ). The G-predictable increasing

process − ln(1 − F ) = Γ then coincides with the martingale hazard process Λ. By the Doob-

Meyer decomposition, Λ is unique, in the sense that if two increasing processes Λ1 and Λ2 are

martingale hazard processes, they are modifications up to τ .

A.2 Section 3

To simplify exposition, we prove the factorization (3.3)-(3.4) in the single policyholder case

(i.e., we set m = 1 in Section 3). A suitable martingale decomposition theorem (see Kusuoka,

1999, Thm. 3.2) yields that, under the assumptions of Section 2, and (A2) in particular, any

F-square-integrable martingale ξ can be expressed as

ξt = 1 −

∫ t

0
ςs · dWs +

∫ t

0
ζsdMs,

where Mt = Nt − Λt∧τ and ς, ζ are F-predictable processes satisfying E[
∫ T ∗

0 ||ςt||
2dt] < ∞ and

E[
∫ T ∗

0 |ζt|
2µtdt] <∞. In view of the strict positivity of ξ, we have that its left continuous version

ξ− is strictly positive as well. We can then set ς = ξ−1
− η and ζ = ξ−1

− φ for some F-predictable

processes η, φ and get the alternative representation:

ξt = 1 −

∫ t

0
ξs−ηs · dWs +

∫ t

0
ξs−φsdMs, (A.2)

31



with φ > −1 to ensure that ξ is strictly positive. It is a standard result that (A.2) admits

a unique solution ξ = E(Z) given by the stochastic exponential of the semimartingale Zt =

−
∫ t
0 ηs · dWs +

∫ t
0 φsdMs started at 0 (e.g. Protter, 2004, p. 84):

E(Z)t = exp

(
Zt −

1

2
[Z]ct

) ∏

0<s≤t

(1 + ∆Zs) exp (−∆Zs) . (A.3)

Here [Z]ct is the continuous part of the quadratic variation process [Z]
.
= [Z,Z] (i.e., the process

making Z2−[Z] a local martingale) and ∆Zs = Zs−Zs−. By employing (A.2) and the properties

of the quadratic variation process (e.g. Protter, 2004, p. 75), we see that:

[Z]t = [−

∫ t

0
ηs · dWs +

∫ t

0
φsdMs] =

∫ t

0
||ηs||

2d[W ]s +

∫ t

0
φ2
sd[M ]s =

∫ t

0
||ηs||

2ds+

∫ t

0
φ2
sdNs,

since [W ]t = t by Lévy’s theorem (Protter, 2004, Thm. 39, Ch. II), and ∆M = ∆N because

M is continuous except for a jump of size 1 at τ (recall that in our setup the compensator

Λ·∧τ is continuous; equivalently, τ is a totally inaccessible F-stopping time: see Protter, 2004,

p. 106). Hence, [Z]ct =
∫ t
0 ||ηs||

2ds. Moving on to the discontinuous part of (A.3), we have

∆Zt = φt∆Mt =
∫ t
0 φsdNs and the factorization ξ = ξ′ξ′′ holds, with ξ′ given by (3.3) and ξ′′

by (3.4).

Proof of Proposition 3.2. We recall that by (A4) we have ξ′t ∈ Gt all t. By (A3) we also

know that under P the process ξ′′ admits the factorization ξ′′t =
∏m
i=1 ξ

′′(i)
t , where for each t the

r.v.’s ξ
′′(1)
t , . . . , ξ

′′(m)
t are conditionally independent, given Gt. Furthermore, by (A4) we have

E[ξ
′′(i)
t |Gt] = 1. We can then show that (A1) holds by computing, for each i,

1 − F̃ it =Ẽ [1τ i>t|Gt] =
E [ξt1τ i>t|Gt]

E
[
ξt

∣∣∣Gt
] =

ξ′tE
[∏

j 6=i ξ
′′(j)
t

∣∣∣Gt
]
E
[
ξ
′′(i)
t 1τ i>t

∣∣∣Gt
]

ξ′tE
[∏

j 6=i ξ
′′(j)
t

∣∣∣Gt
]
E
[
ξ
′′(i)
t

∣∣∣Gt
]

=E
[
ξ
′′(i)
t 1τ i>t

∣∣∣Gt
]

= exp

(
−

∫ t

0
φisdΛis

)
(1 − F it ) = exp

(
−

∫ t

0
(1 + φis)dΛis

)
,
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which is clearly continuous. Moving on to (A2), for each i we can compute

P̃(τ i ≤ t|GT ∗) =
E
[
ξ′T ∗ξ

′′(i)
T ∗ 1τ i≤t

∣∣∣GT ∗

]

E
[
ξ′T ∗ξ

′′(i)
T ∗

∣∣∣GT ∗

] =
E
[
ξ
′′(i)
T ∗ 1τ i≤t

∣∣∣GT ∗

]

E
[
ξ
′′(i)
T ∗

∣∣∣GT ∗

]

=E
[
ξ
′′(i)
t 1τ i≤t

∣∣∣GT ∗

]
= E

[
ξ
′′(i)
t 1τ i≤t

∣∣∣Gt
]

= P̃(τ i ≤ t|Gt),

showing that the equivalent property (A2⋄) holds under P̃. Finally, we can show that for each

t, s and i 6= j we have

Ẽ
[
1τ i>s1τ j>s

∣∣∣Gt
]

= E
[
1τ i>s1τ j>sξ

′′(i)
s ξ′′(j)s

∣∣∣Gt
]

= E
[
1τ i>sξ

′′(i)
s

∣∣∣Gt
]
E
[
1τ j>sξ

′′(j)
s

∣∣∣Gt
]

= P̃(τ i > s|Gt)P̃(τ j > s|Gt),

so that (A3) holds under P̃.

A.3 Example 3.3

The dynamics given in (3.7) can be obtained under the following assumptions (see Lipster and

Shiryaev, 2001): E
[
ψ4
]
<∞;

∫ T ∗

0

(
|a(t)| + |b(t)Yt| + σ2(t, Yt)

)
dt <∞,

∫ T ∗

0

(
a2(t) + b2(t)Y 2

t

)
dt <

∞ a.s.; for each t, σ2(t, Yt) ≤ z1
∫ t
0 (1 + Y 2

s )dl(s) + z2(1 + Y 2
t ) a.s., where z1, z2 > 0 and l(·) is

a nondecreasing right-continuous function taking values in [0, 1]; for each t, σ(t, ·) is bounded

away from zero; c(·) is bounded. Then, the a posteriori mean process Ψt := E
[
ψ|FY

t

]
is given

by

Ψt =
Ψ0 + Ψ

(2)
0 +

∫ t
0

c(s)
σ2(s,Ys)

(dYs − (a(s) + b(s)Ys) ds)

1 + Ψ
(2)
0

∫ t
0

(
c(s)

σ(s,Ys)

)2
ds

,

where the a posteriori variance Ψ
(2)
t := E

[
(ψ − Ψt)

2 |FY
t

]
takes the form

Ψ
(2)
t = Ψ

(2)
0

(
1 + Ψ

(2)
0

∫ t

0

(
c(s)

σ(s, Ys)

)2

ds

)−1

.
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A.4 Example 4.2

The dynamics of the wealth process X = Xx,π associated with the strategy π = (π1, π2)′ is





dXt = rtXtdt+
(
π1
t (δ

1
t − rt)) + π2

t (δ
2
t − rt)

)
dt+ π1

t σ
1
t dW

1
t + π2

t σ
2
t dW

2
t + π2

t

∑m
i=1 ϑ

i
tdN

i
t

X0 = x > 0.

The F-predictable process K appearing in (4.7) has dynamics given by the backward stochastic

differential equation (BSDE)





dKt = Kt

(
−2rt +

(
δ1t −rt
σ1

t

+
R1

t

Kt

)2
+

(Kt(δ2t +ntθtµt−rt)+σ2
tR

2
t )

2

(Ktσ
2
t )2+nt(Ktθt)2µt

)
dt+R1

tdW
1
t +R2

tdW
2
t

KT = 1,

(A.4)

where R1 and R2 are square integrable F-predictable processes. (For the example with liability

H
(k)
T , nt is replaced by n

(m−k)
t .) We note that no differentials dN or dN (m−k) appear in (A.4)

because all the coefficients in the dynamics of P 1, P 2 are assumed to be F-predictable. As

opposed to usual stochastic differential equations, in (A.4) the terminal, rather than initial,

condition is given. However, no time reversal can be used, since a solution (K,R1, R2) to (A.4)

needs to satisfy measurability conditions with respect to the (forward) filtration F. For existence

and uniqueness of solutions to (A.4), we refer to Lim (2005) and references therein. We note

that when all coefficients are deterministic, R1 and R2 are the null process and BSDE (A.4)

admits an explicit solution (see Yong and Zhou, 1999). The quadratic hedging strategy for

HT ∈ FT makes wealth evolve under P̃ according to the following BSDE:





dXt = rtXtdt+ σXt · dW̃t +
∑m

i=1 ϑ
X,i
t dM̃ i

t

XT = HT ,

(A.5)

where the random coefficients σX , ϑX,i are square-integrable and F-predictable, and W̃ = W +
∫ ·

0 ηsds, M̃
i = M i −

∫ ·∧τ i

0 φisds are respectively a two-dimensional Brownian motion and a
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compensated doubly stochastic process (up to its first jump) with intensity µ̃i = (1 + φi)µi

under P̃. Existence and uniqueness of solutions to (A.5) are proved in Lim (2005) for the case

of bounded HT .
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Figure B.1: Mortality surface for the French males, general population: plot of the empirical
death rates m̂x(t) on the logarithmic scale, as a function of age x and calendar
year t.

35



Tim
e

1960

1970

1980

1990

2000

Age

50

60

70

80

90

100

Log death rate

−6

−5

−4

−3

−2

−1

Figure B.2: Mortality surface corresponding to the TPRV life table: plot of the death rates
derived from the regulatory life table on the logarithmic scale, as a function of
age x and calendar year t.
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Figure B.3: Estimated Lee-Carter parameters αx (top panel) and βx (middle panel) for
French males, general population, and comparison between the estimated Lee-
Carter parameters κt for French males, general population, and estimated Lee-
Carter parameters κt derived from the TPRV life table keeping the general
population αx and βx (bottom panel).
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Figure B.4: Comparison between the estimated Lee-Carter parameters αx (top panel) and
κt (bottom panel) for French males, general population, and those dervived from
the TPRV life table keeping the population βx’s.
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Figure B.5: Estimated functions a (top panel) and b (bottom panel).
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Figure B.6: Real-world and risk-neutral (TPRV-implied) mortality projection.
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