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Abstract

We investigate asset-allocation strategies open to members of defined-contribution pension

plans with a model that incorporates asset, salary (labour-income) and interest-rate risk. We

propose a novel form of terminal utility function, incorporating habit formation, that uses the

member’s final salary as a numeraire. The paper discusses various properties and

characteristics of the optimal asset-allocation strategy both with and without the presence

of non-hedgeable salary risk. Finally, we compare the performance of the optimal strategy

with some popular alternatives used by pension providers and we conclude that it significantly

enhances the welfare of a wide range of potential plan members relative to these other

strategies.
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1. Introduction

A popular asset allocation strategy for managing equity risk during the
accumulation phase of a defined contribution (DC) pension plan is deter-

ministic lifestyling. At the beginning of the plan, the contributions are invested
entirely in equities. Then, beginning on a predetermined date (e.g., 10 years)
prior to retirement, the assets are switched gradually into bonds at a rate equal
to the inverse of the length of the switchover period (e.g., 10% per year). By
the date of retirement, all the assets are held in bonds, which are then
sold to purchase a life annuity that provides the pension. The aims of the
strategy are to reduce the impact on the pension of a catastrophic fall in the stock
market just before the plan member retires and to hedge the interest-rate risk
inherent in the annuity-purchase decision. Deterministic lifestyling is a simple
strategy to explain to plan members and to implement, and is widely used as the
default strategy or as one option offered by many UK DC pensions providers.
Similar deterministic strategies have also been recommended in other countries
(for example, in a US context, Malkiel (2003), recommends a mix of bonds and
equities which changes over time in a similar way to the deterministic lifestyle
strategy). However, there is no evidence that it is an optimal strategy in an
objective sense.

The purpose of this paper is to find the optimal dynamic asset allocation
strategy for a defined contribution pension plan, taking into account the stochastic
features of the plan member’s lifetime salary progression as well as the stochastic
properties of the assets held in his accumulating pension fund. Of particular
importance is the fact that salary risk (or labour-income risk: the fluctuation in
the plan member’s earnings in response to economic shocks) is not fully hedgeable
using existing financial assets. To illustrate, wage-indexed bonds could be used to
hedge both productivity and inflation shocks, but such bonds are not widely
traded. The paper builds on Blake et al. (2001) which developed a pension
plan accumulation programme designed to deliver a retirement pension that is
closely related to the salary (and hence standard of living) that the plan member
received immediately prior to retirement. We call the optimal dynamic asset
allocation strategy stochastic lifestyling and compare it against various static
and deterministic lifestyle strategies to calculate the cost of suboptimal strategies.
Moreover, stochastic lifestyling is still a relatively easy strategy to implement in
practice, despite the apparent increase in complexity compared to deterministic
lifestyling.

The solution technique uses the expected present value of future con-
tribution premiums into the plan. This is not a new idea and has been used
by Boulier et al. (2001), Deelstra et al. (2000) and Korn and Krekel (2002) and
others, building on the original work of Merton (1969, 1971). Liu (2005)
examines ways in which the Merton framework can be generalised to include,
for example, stochastic interest rates and stochastic risk premia, but only
for the case where utility is a function of the cash lump sum at the date of
retirement.
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Where our approach differs from these studies is in
�

1

sala

rat
2

cer
3

and

ass

opt

DB

et a

ana

rev
the use of a salary-related numeraire (or utility numeraire) as an argument in the
plan member’s utility function;1 and

�
 assuming that the purpose of the pension plan is to deliver a pension

(i.e. life annuity) in retirement rather than a cash lump sum at the date of
retirement.2

Although these differences do not alter the basic form of the optimal solution
derived in these earlier studies, we find that the optimal proportions invested in each
of the key asset classes, cash, bonds and equities, are very different. More
significantly, we also find that these optimal proportions often differ substantially
from those implied by deterministic lifestyling (which ignores both the plan
member’s attitude to risk and any correlation between his salary and the returns on
assets held in the fund), so that the cost of the latter strategy can be considerable in
terms of the additional premiums into the plan needed to match the expected utility
of the optimal strategy.

However, unlike the case for deterministic lifestyling, the optimal asset allocation
under stochastic lifestyling is sensitive to certain underlying assumptions, e.g.,
concerning the process determining interest rates. To clarify key issues, we therefore
first derive our results using a simple stochastic model in which the interest rate is
deterministic (Section 2). We then extend the model to a more general stochastic
setting (Section 3). This allows us to analyse separately (a) the effect of the salary-
related numeraire in the utility function and (b) the pension purchased at retirement
and its dependence on uncertain interest rates.

We show that in the former case the optimal asset allocation can be replicated
using two efficient mutual funds, whereas the latter case needs three efficient
mutual funds. One mutual fund (which is heavily dominated with equities) is
designed to satisfy the risk appetite of the plan member. The second fund (which
is heavily dominated with cash) is designed to hedge the salary risk within the
pension plan. The third fund (which is heavily dominated with bonds) is designed
to hedge interest rate (and hence annuity) risk in the case where interest rates are
stochastic.3
In the studies of Boulier et al. (2001), and Deelstra et al. (2000), utility is also measured relative to a

ry-related benchmark, but the utility function depends on the monetary surplus over this benchmark,

her than on the surplus as a proportion of final salary as here.

In countries, such as the UK, it is mandatory to use the cash lump sum to purchase a life annuity by a

tain age, while in other countries, such as the US, it is not.

Parts of the problem are related to previous analyses of defined-benefit (DB) pension plans (Sundaresan

Zapatero, 1997; Cairns, 2000). Both the DC and DB problems require the determination of an optimal

et-allocation strategy using stochastic control methods. However, typical DB problems involve

imising the sponsor’s utility, whereas here we are optimising the individual plan member’s utility. The

model of Sundaresan and Zapatero (1997), shares some characteristics with the DC models of Deelstra

l. (2000) and Boulier et al. (2001). These three papers incorporate a DB type of guarantee, and all three

lyses rely upon salary risk being fully hedgeable. However, in the DB plan surplus over the guarantee

erts to the plan sponsor while in the DC plans the full value of the assets goes to the member.
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2. A simple stochastic model

2.1. The structure of the model

This section develops the optimal asset allocation strategy using a simple model
with deterministic nominal interest rates. The aim of the simple model is to highlight
the following features:
�
 the use of the plan member’s salary as a numeraire in the utility function;

�
 the treatment of a stream of contribution premiums linked to salary; and

�
 the consequences of salary not being fully hedgeable.
The first two features are straightforward to deal with and do not cause particular
problems when salary is fully hedgeable (that is, when there is a complete market).
The third feature, however, implies that the market is incomplete and so gives rise to
qualitatively different results from the complete market case.

The structure of the simple model is as follows:
�
 There are two underlying assets in which the pension plan can invest: one risk
free (a cash fund) and one risky (an equity fund). The risk-free asset has a
price R0ðtÞ ¼ R0ð0Þ expðrtÞ at time t, where r is the constant risk-free nominal
rate of interest. The risky asset has price R1ðtÞ at time t and satisfies the
stochastic differential equation (SDE) dR1ðtÞ ¼ R1ðtÞ½ðrþ x1s1Þdtþ s1 dZ1ðtÞ�,
where Z1ðtÞ is a standard Brownian motion and x1 and s1 are constants. The risk
premium on this asset is x1s1; where x1 is the market price of risk. The solution
for R1ðtÞ is

R1ðtÞ ¼ R1ð0Þ exp½ðrþ x1s1 � 1
2
s21Þtþ s1Z1ðtÞ�. (1)
�
 The pension plan member has a salary at time t of Y ðtÞ. Y ðtÞ is governed by the
SDE dY ðtÞ ¼ Y ðtÞ½ðrþ mY Þdtþ sY0 dZ0ðtÞ þ sY1 dZ1ðtÞ�, where mY is a constant
and Z0ðtÞ is a second standard Brownian motion independent of Z1ðtÞ. The sY1

term allows for possible correlation between the salary and equity returns (for
example, salary might be related to the profitability of the company or the general
state of the economy). Y ðtÞ has the solution

Y ðtÞ ¼ Y H ðtÞY N ðtÞ, (2)

where

Y H ðtÞ ¼ Y ð0Þ exp½ðrþ mY �
1
2
s2Y1Þtþ sY1Z1ðtÞ�

and

Y N ðtÞ ¼ exp½�1
2
s2Y0 þ sY0Z0ðtÞ�.

Y H ðtÞ is the hedgeable component of Y ðtÞ and Y N ðtÞ is the non-hedgeable
component.
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Premiums are payable in one of two forms: either (a) as regular premiums, i.e.,
continuously into the plan member’s individual account at the rate of pY ðtÞ, so
that premiums are a constant proportion, p, of salary,4 or (b) as an initial single
premium, in which case p ¼ 0.

�
 The value of the plan member’s account (i.e., his pension wealth) is denoted by

W ðtÞ. If a (possibly time-dependent) proportion pðtÞ of this account is invested in
the risky asset then the dynamics of W ðtÞ are governed by the SDE

dW ðtÞ ¼W ðtÞ½ðrþ pðtÞx1s1Þdtþ pðtÞs1 dZ1ðtÞ� þ pY ðtÞdt.
�
 The plan member will retire at time T , is risk averse, and has a terminal utility
function, uðW ðTÞ;Y ðTÞÞ, that depends both on terminal pension wealth and

terminal income

uðW ðTÞ;Y ðTÞÞ ¼

1

g
W ðTÞ

Y ðTÞ

� �g

where go1 and ga0;

log
W ðTÞ

Y ðTÞ

� �
when g ¼ 0:5

8>>><
>>>:
�
 The plan member’s objective is to find the optimal dynamic asset allocation
strategy, namely the weight in equities, pðtÞ, to maximise his expected terminal
utility.

The new numeraire is straightforward to justify. At the time of retirement, the plan

member will be concerned about the preservation of his standard of living. So he will
be interested in his retirement income relative to his pre-retirement salary. This is
consistent with consumption-smoothing features of the life-cycle model of Ando and
Modigliani (1963). It is also consistent with the habit-formation model developed by
Ryder and Heal (1973), Sundaresan (1989) and Constantinides (1990). Specifically,
the plan member’s utility at retirement is directly related to his or her recent salary,
Y ðTÞ, or consumption level, given exogenously as ð1� pÞY ðTÞ.

Defining a new state variable X ðtÞ �W ðtÞ=Y ðtÞ allows terminal utility to be
written uðX ðTÞÞ ¼ g�1X ðTÞg. A straightforward application of Ito’s formula shows
that the SDE for X ðtÞ is

dX ðtÞ ¼ ½pþ X ðtÞð�mY þ pðtÞs1ðx1 � sY1Þ þ s2Y0 þ s2Y1Þ�dt

� sY0X ðtÞdZ0ðtÞ þ X ðtÞðpðtÞs1 � sY1ÞdZ1ðtÞ. ð3Þ

From Eq. (3) we can see that X ðtÞ provides us with all the information we require
to solve the problem. Additional information on W ðtÞ and Y ðtÞ will not alter the
The contribution rate p is given exogeneously, as is typical in many occupational DC plans. Also

licit in this model is the assumption that the rate of consumption before retirement is given

genously and is equal to ð1� pÞY ðtÞ; in other words, there are no non-pensions savings in the model.

In the case of log utility, E½logW ðTÞ=Y ðTÞ� ¼ E½logW ðTÞ� � E½logY ðTÞ�. Since E½logY ðTÞ� is fixed,

optimal investment strategy will be the same for this case as for problems where the utility function is

t logW ðTÞ (i.e., the utility function involves just a cash numeraire).
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ultimate distribution for X ðTÞ. In the remainder of this section, therefore we will
focus on X ðtÞ alone.

The optimisation problem can now be stated as: Maximise, over all admissible

asset allocation stategies, the expected terminal utility (that is: maximise, over pðtÞ,
E½uðX ðTÞÞ�).

We will now consider four separate cases:
Case 1: p ¼ 0, sY0 ¼ 0.
Case 2: p ¼ 0, sY0a0.
Case 3: p40, sY0 ¼ 0.
Case 4: p40, sY0a0.
The first two cases indicate zero contributions to the pension fund, and would

apply to a plan member who has accumulated some pension wealth and has chosen
not to save any more towards retirement. The latter two cases indicate positive
ongoing contributions. The first and the third cases indicate zero non-hedgeable
salary risk and the second and fourth cases indicate the existence of non-hedgeable
salary risk.

2.2. Case 1: p ¼ 0, sY0 ¼ 0, and Case 2: p ¼ 0, sY0a0

We will first consider Case 2. Case 1 can then be solved by taking sY0 ¼ 0. In Case
2, the salary numeraire cannot be replicated with existing financial assets, since the
market is incomplete. Nevertheless, we can still derive an analytical solution to the
problem. The optimal expected utility (the value function) is

V ðt;X ðtÞÞ ¼ hðtÞX ðtÞg,

where

hðtÞ ¼
1

g
exp½gy2ðT � tÞ�

and

y2 ¼
gþ 1

2
s2Y0 þ

ðx1 � sY1Þ
2

2ð1� gÞ
þ x1sY1 � mY .

The associated optimal asset allocation strategy involves a constant equity weight

pðt;X ðtÞÞ ¼ p� �
sY1

s1
þ

x1 � sY1

ð1� gÞs1
for all t. (4)

These results indicate that, although sY0 does have an impact on the expected
terminal utility, the optimal asset allocation strategy is unaffected by the size of sY0.
In other words there is nothing that the plan member can do to offset the effect of
unhedgeable volatility in his salary: he just has to accept its existence. At first sight,
this conclusion might appear inconsistent with the theory of background risk. Pratt
and Zeckhauser (1987), Kimball (1993) and Gollier and Pratt (1996) argue that the
introduction of background risk should make risk-averse investors even more risk
averse. However, this does not happen here for two reasons. First, when p ¼ 0, the
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investor’s pension wealth, W ðtÞ, is unaffected by the background risk (here, non-
hedgeable salary risk) since there are no future premiums. In contrast, the key
arguments in background risk theory assume that W ðtÞ is affected by the
background risk. Second, the background risk only appears in the terminal utility
function through the numeraire. From Eq. (2) we recall that Y ðTÞ is the product of
its non-hedgeable (background risk) and hedgeable components. Since these are
independent and since we are using power utility, we can separate the expected utility
into a product of two expectations. It follows that the existence of non-hedgeable
salary risk (when p ¼ 0) has no impact on the optimisation problem. We shall see
below that when p40 the existence of non-hedgeable salary risk does result in a
lower investment in equities.

The optimal value function for Case 1 is found simply by setting sY0 ¼ 0 and the
optimal asset allocation strategy is still given by Eq. (4).

In both these cases, the fact that the optimal equity weight is unchanging
throughout the life of the accumulation programme indicates that lifestyling,
whether deterministic or stochastic, cannot be the optimal strategy.
2.3. Case 3: p40, sY0 ¼ 0

Most DC pension plans involve an ongoing stream of premiums. This leads to a
significant change in the optimal asset allocation strategy. In Case 3, the future
premiums can be fully hedged, that is, a future payment of pY ðtÞ can be replicated
exactly using a combination of cash and equities, as can terminal salary, Y ðTÞ. In
such circumstances, the market is complete and we can attach a unique price to the
stream of future premiums. The market price at time t for the premiums payable
between t and T (i.e., their discounted value) can be written as

EQ

Z T

t

e�rðs�tÞpY ðsÞds

����Ft

� �
¼ pY ðtÞf ðtÞ,

where

f ðtÞ ¼
exp½ðmY � x1sY1ÞðT � tÞ� � 1

mY � x1sY1
.

In this equation, Ft is the filtration (or information) generated by Z0ðuÞ and Z1ðuÞ

up to time t, and EQ implies expectation with respect to the unique risk-neutral
measure Q rather than the real-world measure.6

This market price is the key to the solution of Case 3, because it enables us to treat
the promised future premiums as if they were part of the current assets of the pension
plan

~W ðtÞ �W ðtÞ þ Y ðtÞpf ðtÞ.
6Under Q, dR1ðtÞ ¼ R1ðtÞ½rdtþ s1 d ~Z1ðtÞ� and dY ðtÞ ¼ Y ðtÞ½ðrþ mY � x1sY1Þdtþ sY1 d ~Z1ðtÞ�, where
~Z1ðtÞ is a standard Q-Brownian motion.
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We refer to ~W ðtÞ as the augmented pension wealth (see Boulier et al., 2001; Deelstra
et al., 2000).

Market completeness also allows us to construct a synthetic asset or mutual fund,
R2ðtÞ; whose dynamics are governed by the SDE

dR2ðtÞ ¼ R2ðtÞ½ðrþ x1sY1Þdtþ sY1 dZ1ðtÞ�.

This mutual fund can be used to hedge perfectly the stream of future contribution
premiums, since it is perfectly correlated with salary risk.

Let qðtÞ represent the proportion of augmented pension wealth, ~W ðtÞ, invested at
time t in R1ðtÞ, with the remainder invested in R2ðtÞ. The holding in R2ðtÞ therefore
comprises (a) a short holding of �pf ðtÞY ðtÞ which will be repaid completely from
future premiums, and (b) a positive holding equal to ð1� qðtÞÞ ~W ðtÞ. We can show, by
application of Ito’s formula, that

d ~W ðtÞ ¼ ~W ðtÞ½qðtÞððrþ x1s1Þdtþ s1 dZ1ðtÞÞ

þ ð1� qðtÞÞððrþ x1sY1Þdtþ sY1 dZ1ðtÞÞ�.

Now consider ~X ðtÞ � ~W ðtÞ=Y ðtÞ ¼ X ðtÞ þ pf ðtÞ. Note that the terminal utility can
be expressed in terms of ~X ðTÞ as uð ~X ðTÞÞ ¼ g�1 ~X ðTÞg. We can show that

d ~X ðtÞ ¼ ~X ðtÞ½ðx1sY1 � mY þ qðtÞðx1 � sY1Þðs1 � sY1ÞÞdtþ qðtÞðs1 � sY1ÞdZ1ðtÞ�

and the optimal expected terminal utility is

V ðt;X ðtÞÞ ¼ hðtÞðX ðtÞ þ pf ðtÞÞg,

where

hðtÞ ¼
1

g
exp½gy3ðT � tÞ�

and

y3 ¼
ðx1 � sY1Þ

2

2ð1� gÞ
þ x1sY1 � mY .

It follows that the optimal expected utility differs from Case 1 only because of the
inclusion of the present value of the future premiums.

Using V ðt;X ðtÞÞ, the optimal value for qðtÞ is

q�ðt; ~X ðtÞÞ ¼ q� �
x1 � sY1

ð1� gÞðs1 � sY1Þ
.

Therefore, the amount of pension wealth invested in equities expressed in units of
Y ðtÞ is

X ðtÞ q� þ ð1� q�Þ
sY1

s1

� �
þ pf ðtÞ

ðs1 � sY1Þ

s1
q�, (5)
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and the optimal proportion invested in equities is

p�ðt;X ðtÞÞ ¼ q� þ ð1� q�Þ
sY1

s1

� �
þ

pf ðtÞ

X ðtÞ

ðs1 � sY1Þ

s1
q�. (6)

The relationship between these two time-varying components means that p�ðt;X ðtÞÞ
exhibits what appears to be traditional lifestyle dynamics: that is, it starts high
(provided ðs1 � sY1Þq

�=s140) and gradually drifts lower as f ðtÞ decreases and X ðtÞ

increases. However, this downward drift is stochastic rather than deterministic and
falls to q� þ ð1� q�ÞsY1=s1 rather than to 0 as under traditional deterministic
lifestyling. Hence, the optimal asset-allocation strategy can be described as stochastic
lifestyling.

We note that stochastic lifestyling is easy to implement in this case, since the only
time-varying components of p�ðt;X ðtÞÞ are (a) the deterministic term f ðtÞ and (b) the
stochastic diffusion X ðtÞ.

If we employ the optimal asset allocation strategy then

X ðTÞ ¼ ~X ðTÞ

¼ ~X ð0Þ exp x1sY1 � mY þ
ðx1 � sY1Þ

2
ð1� 2gÞ

2ð1� gÞ2

� �
T þ
ðx1 � sY1Þ

ð1� gÞ
Z1ðTÞ

� �

with ~X ð0Þ � X ð0Þ þ pf ð0Þ.
To illustrate, consider the following set of parameters (which are broadly

compatible with UK data over the last century)7

mY ¼ 0; x1 ¼ 0:2; s1 ¼ 0:2; sY1 ¼ 0:05; p ¼ 0:1; T ¼ 20. (7)

The optimal equity mix is illustrated in Fig. 1 which shows the dependence
of the optimal equity proportion and amount, respectively, on X when T � t ¼ 20.
We can see for low values of X ð0Þ that the optimal equity mix is far from its
asymptotic value of q� þ ð1� q�ÞsY1=s1. For completeness, Fig. 1 also shows
the optimal strategy if net wealth, W ðtÞ, is allowed to become negative. In
practice, negative net wealth might not be an interesting case to consider. However,
within the context of the present model (complete market, no constraints on short
selling), many strategies can be followed (including the optimal one) that could allow
net wealth to fall to as low as �pf ðtÞ. The completeness of the market means that we
can always follow a strategy that will guarantee that the fund will be positive by
time T . In reality most sample paths will be positive for all but the earliest years of
the plan.8
7Setting mY ¼ 0 was considered reasonable since long-term average salary increases are similar to

average long-run interest rates. A reasonable value for r would be 0.06 (nominal), but its value is, in the

present model, irrelevant. p can be set to 0.1 without loss of generality because we are using power utility.

Any other value could be used for p but there would be no impact on the optimal strategy or on how it

compares with other strategies.
8Just after commencement of the plan, when X ¼ 0, if the fund has gone short in some assets, the

Brownian motion will cause sample paths for X ðtÞ to dip slightly below 0 for short periods of time.
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Fig. 2 shows p�ðt;X ðtÞÞ in two simulations.9 In path B, values are higher because
X ðtÞ is lower and close to 0 for the first few years, causing greater volatility. Both
paths clearly show the operation of stochastic lifestyling: the optimal equity
proportion varies in a stochastic way from year to year, although it will gradually
decline because both t and (in general) X ðtÞ will be increasing. This is why we refer to
the optimal strategy as stochastic lifestyling. In contrast, deterministic lifestyling
9The basic shapes of these paths are consistent with the intuition provided by Malkiel (2003) who states

that older plan members ‘‘have fewer years of labor income ahead of them. Thus they cannot count on

salary income to sustain them should the stock market have a period of negative returns. . . . Hence, stocks

should comprise a smaller proportion of their assets.’’ What is new here is the stochastic nature of

p�ðt;X ðtÞÞ.
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adopts a more risky asset allocation to begin with before shifting in a pre-determined

way over, say, the final 10 years out of equities into bonds. Further, with stochastic
lifestyling, the equity proportion declines to a non-zero level which depends on both
the plan member’s degree of risk aversion and the degree of correlation with the plan
member’s salary. By comparison, the equity proportion falls to zero with
deterministic lifestyling, irrespective of the plan member’s degree of risk aversion
or salary dynamics (see path C in Fig. 2).
2.4. Case 4: p40, sY0a0

Qualitatively Case 4 is very different from Case 3. In Case 3, we were able to treat
future premiums as a quantifiable part of the current assets of the pension fund. In
the present case, the market is incomplete so that we are unable to borrow explicitly
against future premiums. In particular, if W ðtÞ is allowed to become negative then
there is a strictly positive probability that W ðTÞ will also be negative (i.e., the plan
becomes insolvent). This forces us to exclude asset allocation strategies that will
allow wealth to become negative. This means that the optimal strategy for Case 3 is
not only suboptimal but it is now inadmissible.

We define the general value function Jðt;x; pÞ ¼ E½uðX pðTÞÞjX ðtÞ ¼ x�, where X pðtÞ

is the path of X given the asset allocation strategy p ¼ pðt; xÞ. Define P to be the set
of all admissible asset allocation strategies,10 and define

V ðt;xÞ ¼ sup
p2P

E½uðX pðTÞÞjX ðtÞ ¼ x� ¼ sup
p2P

Jðt;x; pÞ.

Then V ðt; xÞ satisfies the Hamilton–Jacobi–Bellman equation11

Vt þ sup
p2P
fmp

X Vx þ
1
2
ðsp

X Þ
2Vxxg ¼ 0

subject to V ðT ;xÞ ¼
1

g
xg.

In this equation V t, V x, etc. are partial derivatives of V with respect to t, x etc.,

mp
X ¼ mp

X ðt;xÞ

¼ pþ xð�mY þ pðtÞs1ðx1 � sY1Þ þ s2Y0 þ s2Y1Þ

and

ðsp
X Þ

2
¼ sp

X ðt; xÞ
2

¼ x2ðs2Y0 þ ðpðtÞs1 � sY1Þ
2
Þ.
10For a discussion of admissible strategies see, for example, Korn (1997).
11In the complete market cases (1 and 3) we could use the alternative martingale approach of Karatzas

et al. (1987) and Cox and Huang (1991). This can offer a more direct route to the solution for Cases 1 and

3 but is much less easy to apply in the incomplete market case (Cases 2 and 4). For consistency, then, we

focus on the HJB approach.
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For a given ðt;xÞ, we now solve the static supremum problem which results in

p�ðt;xÞ � p�ðt;x;V Þ ¼
1

s1
sY1 �

V x

xV xx

ðx1 � sY1Þ

� �
. (8)

The optimal solution for p thus depends on the optimal value function V ðt; xÞ, which
is found by solving numerically the PDE

Vt þ mp�

X V x þ
1
2
ðsp�

X Þ
2Vxx ¼ 0 (9)

subject to V ðT ;xÞ ¼
1

g
xg,

where

mp�

X ¼ pþ xð�mY þ p�ðt;x;V Þs1ðx1 � sY1Þ þ s2Y0 þ s2Y1Þ

and

ðsp�

X Þ
2
¼ x2ðs2Y0 þ fp

�ðt; x;V Þs1 � sY1g
2Þ.

(Recall that mp�

X and sp�

X are the drift and volatility of X ðtÞ given strategy p�.)

Remark 2.4.1. Eq. (8) shows that the optimal risky portfolio p�ðt;xÞ can be expressed
as a combination of two fixed portfolios, sY1=s1 and ðx1 � sY1Þ=s1, with the balance
between the two depending on t and x only through V ðt;xÞ.

Fig. 3 presents numerical results for g ¼ �5 (RRA ¼ 6) and the following
parameter set:

mY ¼ 0; x1 ¼ 0:2; s1 ¼ 0:2; sY1 ¼ 0:05; sY0 ¼ 0:05; p ¼ 0:1; T ¼ 20. (10)

In each plot, we give the optimal value function (solid lines) for the terminal utility
function V ðt;xÞ for T � t ¼ 10 and 20 years to maturity. We note from this plot that
V ðt;xÞ (for toT) has a finite limit as x! 0þ. (In contrast, V ðT ;xÞ ! �1 as
x! 0þ.) This happens because when X ðtÞ ¼ 0, we will always have X ðTÞ40 due to
future premiums and the finite limit for V ðt;xÞ as x! 0þ indicates that X ðTÞ is not
concentrated too close to 0.12

Fig. 3 also plots the suboptimal value function (dashed line) Jðt;x; pÞ when p ¼

0:375 for all ðt;xÞ (the limiting value for p�ðt; xÞ as x!1). This figure suggests that
the differences between the optimal and suboptimal value functions are not too great
and diminish as x increases. However, a comparison of expected terminal utilities
only tells us that one strategy is better than another and does not allow us to
quantify the cost of suboptimality to the plan member. This is an issue that we will
come back to in Section 3.4.1.

The corresponding optimal dynamic asset allocation strategies p�ðt; xÞ are plotted
in Fig. 4 for T � t ¼ 0, 10 and 20 years to maturity. We note that p�ðt;xÞ ! 1 as
x! 0þ (top graph). However, when we look at the amount invested, we observe
(particularly from the bottom graph) that p�ðt; xÞx converges to 0 at the same rate
12Equivalently, the left-hand tail of the distribution of logX ðTÞjX ðtÞ ¼ 0 is not too dense.
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Fig. 3. Value functions for 10 and 20 years to maturity when relative risk aversion is 6 (g ¼ �5) and
p ¼ 0:1. Solid lines show the optimal V ðt;xÞ, while dashed lines show the suboptimal value function

Jðt;x; pÞ where p ¼ 0:375 for all t;x. Both value functions are calculated using the finite difference method.
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as
ffiffiffi
x
p

.13 This is in clear contrast to Case 3 where limx!0 pðt; xÞx40. The behaviour
of p�ðt; xÞx close to x means that in Case 4 X ðtÞ can never become negative (in
contrast to Case 3).14 It follows that the Case 4 asset allocation strategy is rather
more conservative than that of Case 3 when the fund size is low; this is to avoid the
risk of bankrupting the fund.

Individual realisations of p�ðt;xÞ against t would look similar to the stochastic
lifestyling in Fig. 2. However, the square-root convergence property means that the
sample paths have slightly lower equity weightings on average. This relationship is
consistent with the theory of background risk discussed in Section 2.2.
13That is, ðp�ðt;xÞxÞ=
ffiffiffi
x
p
¼ p�ðt; xÞ

ffiffiffi
x
p
! c, for some constant cX0, as x! 0.

14In fact, square root convergence is a necessary condition for X ðtÞ to avoid becoming negative (see, for

example, Duffie et al., 1997). If limx!0 p�ðt; xÞ
ffiffiffi
x
p
¼1 then X ðtÞ could become negative.
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Fig. 4. Optimal asset-allocation strategies when relative risk aversion is 6 (g ¼ �5), p ¼ 0:1 and T ¼ 20.

Top: equity proportions p�ðt;xÞ for t ¼ 0 (solid line), t ¼ 10 (dashed) and t ¼ 20 (dotted). Middle:

amounts invested in equities, p�ðt;xÞx, for t ¼ 0 (solid line), t ¼ 10 (dashed) and t ¼ 20 (dotted). Bottom:

box A in the middle graph magnified.
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3. A more general stochastic model

3.1. The structure of the model

We will now incorporate three extensions to the problem:
�

1

the introduction of a stochastic risk-free nominal rate of interest, rðtÞ;

�
 the extension of the investment opportunity set to N risky assets rather than 1;

�
 the introduction of the replacement ratio15 as an argument in the terminal utility

function.
5The ratio of the initial pension at retirement to the final salary before retirement.
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The components of the model are as follows:
�

1

The risk-free rate of interest is a one-factor diffusion process governed by the
time-homogeneous SDE

drðtÞ ¼ mrðrðtÞÞdtþ
XN

j¼1

srjðrðtÞÞdZjðtÞ,

where the ZiðtÞ are independent, standard Brownian motions. We define
srðrÞ ¼ ðsr1ðrÞ; . . . ;srN ðrÞÞ

0. The value of units in the cash fund at t is then
R0ðtÞ ¼ R0ð0Þ exp½

R t

0 rðsÞds�.

�
 There are N risky assets. Let RiðtÞ be the total return

16 on an investment solely in
asset i with

dRiðtÞ ¼ RiðtÞ rðtÞ þ
XN

j¼1

sijxj

 !
dtþ

XN

j¼1

sij dZjðtÞ

" #

for i ¼ 1; . . . ;N. The volatility matrix C ¼ ðsijÞ
N
i;j¼1 is assumed to be constant as

are the market prices of risk, the x ¼ ðx1; . . . ; xNÞ
0. The risk premium on asset i isPN

j¼1sijxj.

�
 The plan member’s salary, Y ðtÞ, evolves according to the SDE

dY ðtÞ ¼ Y ðtÞ ðrðtÞ þ mY ðtÞÞdtþ sY0 dZ0ðtÞ þ
XN

j¼1

sYj dZjðtÞ

" #
,

where mY ðtÞ is a deterministic function of time, the sYj ’s are constants and Z0ðtÞ is
a standard Brownian motion, independent of Z1ðtÞ; . . . ;ZNðtÞ. We define the
vector sY ¼ ðsY1; . . . ;sYN Þ

0.

�
 The value of the plan member’s pension fund (pension wealth) is denoted by W ðtÞ

and has the SDE

dW ðtÞ ¼W ðtÞ½ðrðtÞ þ pðtÞ0CxÞdtþ pðtÞ0C dZðtÞ� þ pY ðtÞdt,

where ZðtÞ ¼ ðZ1ðtÞ; . . . ;ZNðtÞÞ
0 and pðtÞ ¼ ðp1ðtÞ; . . . ; pNðtÞÞ

0 are the proportions
of the fund invested in the various risky assets.
In this problem, the control variable is pðtÞ, which we will initially take to be
unconstrained. The set P will be used to denote the set of all admissible controls,
pðtÞ.

�
 At the time of retirement at age z, the fund is used to purchase a pension at the
prevailing market rate for life annuities, aðT ; rðTÞÞ. For example, for a level
annuity of 1 unit per annum payable continuously we have (for a general
retirement date t)

aðt; rðtÞÞ ¼

Z 1
0

bðt; tþ s; rðtÞÞfzðt; sÞds. (11)
6That is, the value of a single premium investment in asset i with reinvestment of dividend income.
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Here
� bðt; t; rÞ is the price at time t of a zero-coupon bond maturing at time t when
the risk-free rate of interest at time t is r.
� fzðt; sÞ is the probability of survival from time t to tþ s for a life aged z at time

t. We assume that fzðt; sÞ is known at time 0.
7M

es j

pÞ
pÞ

r th
The rate per annum of the continuously-paid pension purchased at T is

PðTÞ ¼
W ðTÞ

aðT ; rðTÞÞ
.

�
 We assume the plan member’s terminal utility depends on both his final salary
and his pension wealth at retirement. We will focus on two special cases: (a) the
ratio of terminal pension wealth to final salary, X ðTÞ ¼W ðTÞ=Y ðTÞ, and (b) the
replacement ratio, HðTÞ ¼ PðTÞ=Y ðTÞ ¼ X ðTÞ=aðT ; rðTÞÞ. Thus terminal utility
will be of the form

uðX ðTÞ; rðTÞÞ � uðX ðTÞÞ or uðX ðTÞ=aðT ; rðTÞÞÞ.

If utility is some function of PðTÞ=Y ðTÞ17the effect of habit formation is more
apparent (in the sense proposed by Ryder and Heal, 1973; Sundaresan, 1989;
Constantinides, 1990), since we are comparing consumption after retirement with
the rate of consumption just before retirement.
Expected terminal utility is then given by

Jðt;x; r; pÞ ¼ E½uðX pðTÞ; rðTÞÞjX ðtÞ ¼ x; rðtÞ ¼ r�,

where X pðtÞ is the path of X ðtÞ given the strategy p.

Our aims are twofold. The first is to determine the plan member’s optimal
expected terminal utility, that is, to find

V ðt;x; rÞ ¼ sup
p2P

Jðt;x; r; pÞ, (12)

and to determine the strategy p that attains this maximum. In addition, we wish to
evaluate the performance of a variety of popular asset allocation strategies relative to
this theoretical benchmark.

Given the wealth to salary ratio, X ðtÞ ¼W ðtÞ=Y ðtÞ, a straightforward application
of the product rule gives us the SDE

dX ðtÞ ¼ X ðtÞ½ð�mY ðtÞ þ pðtÞ0Cðx� sY Þ þ s2Y0 þ s0YsY Þdt

� sY0 dZ0ðtÞ þ ðpðtÞ
0C � s0Y ÞdZðtÞ� þ pdt.
ore precisely, we could look at PðTÞ=ð1� pÞY ðTÞ since ð1� pÞY ðTÞ and PðTÞ are the consumption

ust before and just after retirement. However, it is not necessary for us to include explicitly the

factor. First, p is an exogenously specified parameter. Second, since we are using power utility the

factor results in a constant multiplier in the utility that has no impact on the optimisation problem.

ese reasons we prefer to leave out the ð1� pÞ.
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3.2. The Hamilton– Jacobi– Bellman equation

Our approach to solving the optimisation problem (Eq. (12)) is to use the
Hamilton–Jacobi–Bellman (HJB) equation. The HJB equation for this problem is
(see, for example, Merton, 1969, 1971, 1990; Korn, 1997; Øksendal, 1998; or Björk,
1998)

Vt þ sup
p2P
fApVg ¼ 0, (13)

where

Ap ¼ mrðrÞ
q
qr
þ mp

X

q
qx
þ

1

2
nrr

q2

qr2
þ np

rx

q2

qrqx
þ

1

2
np

xx

q2

qx2
,

mp
X ¼ xð� ~mY ðtÞ þ p0Cðx� sY ÞÞ þ p,

~mY ðtÞ ¼ mY ðtÞ � s2Y0 � s0YsY ,

nrr ¼ srðrÞ
0srðrÞ,

np
rx ¼ ðp

0C � s0Y ÞsrðrÞx

and

np
xx ¼ ðs

2
Y0 þ ðp

0C � s0Y ÞðC
0p� sY ÞÞx

2.

If we follow the usual steps (see, for example, Björk, 1998) we find that the optimal
asset allocation strategy takes the form

p�ðt;x; r;V Þ ¼ C0�1 sY � ðx� sY Þ
Vx

xV xx

� srðrÞ
V xr

xV xx

� �
. (14)

If we now insert this expression for p�ðt;x; r;V Þ into Eq. (13) and simplify we get the
PDE for V ðt; x; rÞ

Vt þ mrðrÞVr þ ðp� ~mY ðtÞxþ s0Y ðx� sY ÞxÞV x þ
1

2
srðrÞ

0srðrÞVrr þ
1

2
s2Y0x

2V xx

�
1

2
ðx� sY Þ

0
ðx� sY Þ

V 2
x

V xx

� ðx� sY Þ
0srðrÞ

VxV xr

V xx

�
1

2
srðrÞ

0srðrÞ
V 2

xr

V xx

¼ 0.

ð15Þ

Before we go on to look at the solution of the PDE (15) we will make some
observations about the composition of the optimal portfolio p�ðt;x; r;V Þ in Eq. (14).

Theorem 3.2.1 (Three-fund theorem). The optimal asset mix, p�ðt;x; r;V Þ (Eq. (14)),
at any given time, consists of investments in three efficient mutual funds as follows:

p�ðt;x; r;V Þ ¼ yApA þ yBpB þ yCpC , (16)
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where

yA ¼ yAðt;x; rÞ ¼ 1�
V xr � daðrÞV x

daðrÞxV xx

,

yB ¼ yBðt; x; rÞ ¼
Vxr

daðrÞxV xx

and

yC ¼ yCðt;x; rÞ ¼ 1� yAðt;x; rÞ � yBðt;x; rÞ ¼ �
Vx

xV xx

with

pA ¼ C0
�1sY

pB ¼ C0
�1
ðsY � daðrÞsrðrÞÞ

and

pC ¼ C0�1x. (17)

Proof. See Appendix A.

We interpret (16) and (17) as follows. The optimal weight in risky assets is
equivalent to investing in three efficient mutual funds denoted A, B and C. The three
mutual funds can be interpreted as follows:
(A)
 Fund A is the minimum-risk portfolio measured relative to the salary numeraire,
Y ðtÞ, and its purpose is to hedge salary risk. Asset proportions are given by the
vector pA (with pA0 ¼ 1�

PN
i¼1 pAi). Since this fund will be dominated by cash

(and contain 100% cash if salary growth and asset returns are uncorrelated, but
also contain other assets if salary growth is correlated with their returns), we will
refer to Fund A for convenience as the ‘cash’ fund.
(B)
 Fund B is the minimum-risk portfolio measured relative to Y ðtÞ=aðt; rðtÞÞ and its
purpose is to hedge annuity risk. Asset proportions are given by the vector pB

(with pB0 ¼ 1�
PN

i¼1 pBi). Since this fund will be dominated by bonds whose
returns are highly correlated with annuity yields, we will refer to Fund B as the
‘bond’ fund.
(C)
 Fund C is a risky portfolio which is efficient when measured relative to both Y ðtÞ

and Y ðtÞ=aðt; rðtÞÞ: Asset proportions are given by the vector pC (with
pC0 ¼ 1�

PN
i¼1 pCi). The fund will be dominated by equities and so we will

refer to it as the ‘equity’ fund: its purpose is to satisfy the risk appetite of the
plan member.
Mutual funds A and C (Eq. (17)) maintain constant proportions in each of the
N þ 1 assets. The equivalent proportions in fund B will vary over time, but only in
response to changes in rðtÞ rather than, separately, to changes in t or X ðtÞ. However,
the proportions of the overall pension fund invested in each of the three mutual



ARTICLE IN PRESS

A.J.G. Cairns et al. / Journal of Economic Dynamics & Control 30 (2006) 843–877 861
funds (that is, yAðt;x; rÞ; yBðt;x; rÞ; yCðt;x; rÞ) depend on all of t;X ðtÞ and rðtÞ,
according to Eqs. (17). As in Section 2 the stochastic nature of the paths of yAðt; x; rÞ,
yBðt; x; rÞ and yCðt;x; rÞ over time means that the optimal asset allocation strategy
can usefully be described as stochastic lifestyling.

Remark 3.2.2. The term yC is equal to the reciprocal of the degree of relative risk
aversion.

It follows that, since relative risk aversion is positive (but possibly dependent upon
t and x), then the investment in portfolio C is necessarily positive. In addition, if
relative risk aversion is constant, it will be optimal to invest a constant proportion in
the risky portfolio C0�1x over time.

Remark 3.2.3. The three portfolios, pA, pB and pC , do not depend upon the level of
non-hedgeable salary risk, sY0. However, the precise mix18 will depend upon sY0

through its effect on V ðt; x; rÞ.

Provided that all members have the same values for sY , the same three funds can
be used for all plan members no matter what their idiosyncratic risk (sY0), age,
wealth or attitude to risk. This has the important practical consequence that pension
providers can use these three general funds to satisfy the needs of many plan
members instead of having to provide tailor-made portfolios for each individual.

Corollary 3.2.4. Suppose that V ðT ;x; rÞ ¼ Kðx=aðT ; rÞÞ, that is, the terminal utility is

a function of the pension as a proportion of final salary (replacement ratio) achieved at

time T . Then yAðT ; x; rÞ ¼ 0 for all x, r.

Proof. At t ¼ T ; we find that

Vx ¼
1

aðT ; rÞ
K 0ðx=aðT ; rÞÞ,

Vxr ¼
daðrÞ

aðT ; rÞ
K 0ðx=aðT ; rÞÞ þ

xdaðrÞ

aðT ; rÞ2
K 00ðx=aðT ; rÞÞ,

Vxx ¼
1

aðT ; rÞ2
K 00ðx=aðT ; rÞÞ.

It is then straightforward to confirm that yAðT ; x; rÞ ¼ 0. &

This result shows what happens to the asset allocation when the plan member is
concerned about receiving a pension at retirement, rather than a cash lump sum.
Although part of the pension wealth will generally be invested in fund A prior to
retirement, as the retirement date approaches, the weight in fund A is reduced to
zero. The exception to this result occurs if the pension plan is funding for a cash
lump sum at retirement rather than a pension. In this case daðrÞ ¼ 0 for all r and
portfolios A and B are identical.
18We will see how this mix varies stochastically in the numerical example later in this section.
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Conjecture 3.2.5. As T � t tends to infinity yBðt;x; rÞ tends to zero.

We make this conjecture on the following basis. The further we are from
retirement the less able are we to predict what interest rates will be at the
time of retirement. This means that V r and V xr are likely to tend to 0 as T � t

increases. For a specific example where the conjecture is true, see Section 3.4.1 and
Eq. (26).

3.2.1. Boundary conditions for the PDE

So far we have derived general results which do not depend upon a specific form
for uðx; rÞ. However, if we wish to obtain further results, we need to be more specific
about the terminal utility, uðx; rÞ. This will give us the boundary condition for the
PDE (Eq. (15): V ðT ;x; rÞ ¼ uðx; rÞ). In the sections that follow, we will narrow our
analysis to terminal utilities which are power utilities in x, while keeping a more
general functional form in r: that is,

uðx; rÞ ¼
1

g
gðT ; rÞ1�gxg

for some general function gðT ; rÞ. A full power utility function will be employed in
the numerical example in Section 3.4.1.

We are now in a position to discuss two of the four cases analysed previously in
Section 2. Case 2 (p ¼ 0, sY0a0) and Case 4 (p40, sY0a0Þ involve a type of
computational analysis that is sufficiently different and sufficiently extended to
justify a separate paper.19

3.3. Case 1: p ¼ 0, sY0 ¼ 0

Let us first consider the solution for (15) for the single-premium Case 1 where
p ¼ 0 and sY0 ¼ 0. While this case is not particularly interesting in itself, it leads us
directly to the solution for Case 3 where p40 and sY0 ¼ 0.

Theorem 3.3.1. V ðt;x; rÞ is of the form g�1gðt; rÞ1�gxg where gðt; rÞ satisfies the

PDE:

gt þ
1

2
srðrÞ

0srðrÞgrr þ mrðrÞ þ
g

ð1� gÞ
ðx� sY Þ

0srðrÞ

� �
gr

þ
g

ð1� gÞ
�mY ðtÞ þ s0Yx�

1

2ðg� 1Þ
ðx� sY Þ

0
ðx� sY Þ

� �
g ¼ 0. ð18Þ

The boundary condition for gðT ; rÞ is defined as fgV ðT ; x; rÞx�gg1=ð1�gÞ or

fguðx; rÞx�gg1=ð1�gÞ.

Proof. See Appendix.
19However, we conjecture that the outcomes would be a combination of what we have already observed

in both the deterministic and stochastic rðtÞ models.
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Corollary 3.3.2. By the Feynman– Kac formula (see, for example, Björk, 1998) there

exists a probability measure20 QðgÞ such that

gðt; rðtÞÞ ¼ EQðgÞ½gðT ; ~rðTÞÞDðt;TÞjFt�,

where ~rðsÞ is governed by the SDE

d~rðsÞ ¼ ~mrð~rðsÞÞdsþ jsrð~rðsÞÞjd ~ZðsÞ,

~mrðrÞ ¼ mrðrÞ þ
g

1� g
ðx� sY Þ

0srðrÞ,

~rðtÞ ¼ rðtÞ,

where jsrð~rðsÞÞj is the modulus of srð~rðsÞÞ, ~ZðsÞ is a standard, one-dimensional Brownian

motion under the artificial measure QðgÞ,

Dðt;TÞ ¼ exp
g

1� g

Z T

t

yðsÞds

� �
,

yðsÞ ¼ �mY ðsÞ þ s0Yx�
1

2ðg� 1Þ
ðx� sY Þ

0
ðx� sY Þ

) Dðt;TÞ ¼ exp
g

1� g
f�MY ðt;TÞ þ cðgÞðT � tÞg

� �
,

MY ðt;TÞ ¼

Z T

t

mY ðsÞds

and

cðgÞ ¼ s0Yx�
1

2ðg� 1Þ
ðx� sY Þ

0
ðx� sY Þ. (19)

Consider the optimal asset mix. The general form for V ðt;x; rÞ reveals immediately
that the proportion of the fund invested in portfolio pC is constant: that is,
yCðt;x; rÞ ¼ 1=ð1� gÞ for all ðt; x; rÞ. The proportions yA and yB invested in pA and
pB, respectively, will depend upon t and r but not upon x. In particular, we note that
since EQðgÞ½gðT ; ~rðTÞÞjFt� depends upon the particular model chosen for rðtÞ, so will
yAðt;x; rÞ and yBðt;x; rÞ.

Suppose also that rðtÞ is stationary and ergodic under QðgÞ and that
EQðgÞ½gðT ; ~rðtÞÞjFt� ! constant and is finite as T � t!1. Then, as T � t!1,
gðt; rðtÞÞ=Dðt;TÞ ! constant for all rðtÞ. It follows that the proportion, yBðt;x; rÞ,
invested in pB tends to 0 as T � t!1 (Conjecture 3.2.5).

On the other hand, if the plan is funding for a cash lump sum at T , rather than a
pension, then gðT ; rÞ � 1 and yBðt;x; rÞ � 0 for all ðt;x; rÞ (see Eq. (17)).
20The measure QðgÞ is (like the risk-neutral measure in derivative pricing) an artificial probability

measure which provides us with a convenient computational tool. It does not imply that investors with

different levels of risk aversion use different probabilities.
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3.4. Case 3: p40, sY0 ¼ 0

Since salaries are hedgeable, we can attach a unique price to future pension
contributions. Let Q be the risk-neutral pricing measure under which the N risky
assets have the dynamics

dRiðtÞ ¼ RiðtÞ rðtÞdtþ
XN

j¼1

sij d ~ZjðtÞ

" #

and where the ~ZjðtÞ are independent standard Q-Brownian motions. Also we have
under Q

dY ðtÞ ¼ Y ðtÞ rðtÞ þ mY ðtÞ �
XN

j¼1

sYjxj

 !
dtþ

XN

j¼1

sYj d ~ZjðtÞ

" #

) Y ðtÞ ¼ Y ðtÞ exp

Z t

t

ðrðsÞ þ mY ðsÞÞds�
XN

j¼1

sYj xj þ
1

2
sYj

� �
ðt� tÞ

(

þ
XN

j¼1

sYjð ~ZjðtÞ � ~ZjðtÞÞ

)
.

The market value at time t for future premiums payable between t and T is then

EQ

Z T

t

exp �

Z t

t

rðsÞds

� �
pY ðtÞdt

����Ft

� �

¼ pEQ

Z T

t

Y ðtÞ exp

Z t

t

mY ðsÞds� s0Yxðt� tÞ

��

�
1

2
jsY j

2ðt� tÞ þ s0Y ð ~ZðtÞ � ~ZðtÞÞ

�
dt
����Ft

�

¼ pY ðtÞ

Z T

t

expfMY ðt; tÞ � s0Yxðt� tÞgdt ðby ð19ÞÞ

¼ pY ðtÞf ðtÞ; say. ð20Þ

Theorem 3.4.1. V ðt;x; rÞ is of the form g�1gðt; rÞ1�gðxþ pf ðtÞÞg where gðt; rÞ satisfies

the PDE (18) with boundary condition gðT ; rÞ ¼ gV ðT ; x; rÞx�g.

Proof. We only need to note that the optimal strategy is composed of two parts. At
time t:
(A)
 hold �pY ðtÞf ðtÞ in the replicating portfolio which will be paid off exactly by
future premiums;
(B)
 invest the surplus ~W ðtÞ ¼W ðtÞ þ pY ðtÞf ðtÞ in portfolios pA, pB and pC in the
same proportions yA, yB and yC as in Case 1 where p ¼ 0 and sY0 ¼ 0.
This will produce the same expected terminal utility as the single premium Case 1.
Any other strategy will generate a lower value. &
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3.4.1. A numerical example using the Vasicek model

Let us now illustrate how the optimal asset allocation strategy varies with ðt;x; rÞ
for a specific example. In this example we will assume that plan members contribute
to their pension plan at the rate of 10% of salary per annum: that is, p ¼ 0:1.

We will now use the Vasicek (1977) model for rðtÞ, which will allow us to derive
tractable results. Further, bearing in mind the three-fund theorem above, we can
restrict the asset allocation to three mutual funds, a cash fund, a bond fund and an
equity fund. Thus we will take

drðtÞ ¼ arðmr � rðtÞÞdtþ sr1 dZ1ðtÞ

with sr2 ¼ 0. The parameter values in our model will be

ar ¼ 0:25; mr ¼ 0:06; sr1 ¼ �0:02,

C ¼
0:1 0

0:1 0:2

 !
; x ¼

0:2

0:3

 !
; sY ¼

0:02

0:02

 !
. ð21Þ

From the structure of C and sr we see that R1ðtÞ is the bond fund and that R2ðtÞ is
the equity fund.

For simplicity, we will assume that aðt; rðtÞÞ is of the form exp½d0 � d1rðtÞ�. This
will keep things tractable without seriously altering the qualitative observations in
our example. We will assume that d0 ¼ 3 and d1 ¼ 3:5 (which implies that aðt; rðtÞÞ
behaves like a zero-coupon bond with 8.318 years to maturity).

It follows that

pA ¼ C0�1sY ¼
0:1

0:1

� �
; pC ¼ C0�1x ¼

0:5

1:5

� �
,

and

pB ¼ C0�1ðsY � d1srÞ ¼
0:8

0:1

� �
. (22)

Now, under the artificial measure QðgÞ

d~rðsÞ ¼ ~mrð~rðsÞÞdsþ sr1 d ~ZðsÞ,

where

~mrðrÞ ¼ arð ~mr � rÞ

and

~mr ¼ mr þ
gðx1 � sY1Þsr1

ð1� gÞar

¼ 0:06� 0:0144
g

1� g
.

We will now take the terminal utility function

uðx; rÞ ¼ V ðT ;x; rÞ ¼
1

g
x

aðT ; rÞ

� �g

¼
1

g
e�gd0þgd1rxg
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) gðT ; rÞ ¼ exp
g

1� g
ð�d0 þ d1rÞ

� �
.

We will make the final parameter choices as follows:

g ¼ �5; mY � 0.

Having defined gðT ; rÞ we can now use Corollary 3.3.2 to derive a functional form for
gðt; rÞ. The various quantities defined in Eq. (19) are cðgÞ ¼ 0:1092333 (as required
for Dðt;TÞ), ~mr ¼ 0:072, and MY ðt;TÞ � 0. Under QðgÞ, ~rðTÞ, given rðtÞ, is normally
distributed with

EQðgÞ½~rðTÞjrðtÞ� ¼ ~mr þ ðrðtÞ � ~mrÞe
�arðT�tÞ

and

VarQðgÞ½~rðTÞjrðtÞ� ¼ s2r1
ð1� e�2arðT�tÞÞ

2ar

) EQðgÞ½gðT ; ~rðTÞÞjrðtÞ� ¼ exp
Aðg;T � tÞ þ Bðg;T � tÞrðtÞ

1� g

� �
,

where

Aðg; tÞ ¼ �gd0 þ gd1 ~mrð1� e�artÞ þ
1

2

g2d2
1s

2
r1

ð1� gÞ
ð1� e�2artÞ

2ar

and

Bðg; tÞ ¼ gd1e
�art.

Hence

gðt; rðtÞÞ1�g ¼ exp½Aðg;T � tÞ þ Bðg;T � tÞrðtÞ þ gcðgÞðT � tÞ�. (23)

This implies that

V ðt;x; rÞ ¼
1

g
eAðg;T�tÞþgcðgÞðT�tÞeBðg;T�tÞrðxþ pf ðtÞÞg (24)

) yAðt; x; rÞ ¼ �
pf ðtÞ

x
þ
ðxþ pf ðtÞÞ

x

g
ðg� 1Þ

ð1� e�arðT�tÞÞ,

yBðt;x; rÞ ¼
ðxþ pf ðtÞÞ

x

ge�arðT�tÞ

ðg� 1Þ

and

yCðt;x; rÞ ¼
ðxþ pf ðtÞÞ

x

1

ð1� gÞ
. (25)

These equations give us explicit formulae for the stochastic lifestyle strategy. In (25),
yAðt;x; rÞ has been written in a way which highlights the two components of
investments in pA. First, we have a short holding of �pf ðtÞ which will be paid off
precisely by the future premiums (since we have a complete market). Second, we
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have the augmented wealth X ðtÞ þ pf ðtÞ which is invested in fixed proportions in pA,
pB and pC which vary with the term to maturity only.21 22

To complete the numerical example we note from Eq. (20) that:

f ðtÞ ¼

Z T

t

expf�s0Yxðs� tÞgds ¼

Z T

t

exp½�0:01ðs� tÞ�ds

¼
1� e�0:01ðT�tÞ

0:01
.

Examples of five scenarios are plotted in Fig. 5 for this parameter set, together
with p ¼ 0:1 and g ¼ �5 ðRRA ¼ 6Þ: The top graph in this figure shows the wealth-
income ratio, X ðtÞ, while the middle graph shows the replacement ratio that could be
achieved with the current fund, current income and current annuity rates (that is,
X ðtÞ=aðt; rðtÞÞ). The five paths in the top two graphs give us an indication of the
general spread of results. The minimum admissible fund size for the avoidance of
insolvency (�pf ðtÞ) is also plotted for reference and we can see that the actual fund
size is always comfortably above this at all times on all sample paths. Compared with
the top graph, the five paths in the middle graph are less spread out and smoother as
the maturity date approaches because annuity risk is being hedged.

This observation is clearer in Fig. 6 where we consider an extremely risk averse
plan member. Since the market is complete in this case, the plan member is both
willing and able to target a specific replacement ratio with certainty. This means that
in the middle graph the sample replacement ratios, X ðtÞ=aðt; rðtÞÞ, all converge to the
same point at T ¼ 20. At intermediate times, t, they are more spread out because the
investment strategy is targeting for certainty at T ¼ 20 rather than toT . This plot
demonstrates the importance of ‘seeing the strategy through to its conclusion’. In the
top graph in Fig. 6 the tightness of the sample paths up to t ¼ 10 reflects the
dominance of Fund A in the asset allocation strategy (as shown in the bottom
graph). It is only when the strategy switches to Fund B that X ðtÞ starts to show
significant variability. This is because Fund B is risky relative to the salary
numeraire, Y ðtÞ. In contrast, when risk aversion is low, then X ðtÞ=aðt; rðtÞÞ does not
converge as t! T (Fig. 5 middle graph).

In the bottom graph in Fig. 5 we have selected the bold scenario in the upper
graphs in order to show how the asset allocation strategy varies over time. The
stochastic-lifestyling nature of the strategy is evident. Initially, when X ðtÞ is small
there is considerable short-selling of the cash fund A (in other words borrowing cash)
21We note that none of the portfolio weights yAðt; x; rÞ, yBðt;x; rÞ and yCðt;x; rÞ depends upon r. This is a

consequence of the choice of the Vasicek model and the simple form for aðt; rðtÞÞ. In other cases the y’s will
depend upon r as well as on t.

22We can note here a similarity to the concept of portfolio insurance (see, for example, Black and Jones,

1988; Black and Perold, 1992; Cairns, 2000). Portfolio insurance is an investment strategy that aims to

ensure that the value of a pension plan never falls below a specified floor. Here the floor of 0 at time T

imposes a floor of �pf ðtÞ at time t. Furthermore, the form of the utility function at T dictates the way that

we invest the surplus over the floor. Since the value of the floor is negative, in contrast to the traditional

positive floor in portfolio insurance, greater net pension wealth implies a lower proportion invested in

equities.
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Fig. 5. Dynamics of a plan member’s pension wealth over 0otoT ¼ 20 for relative risk aversion of 6

(g ¼ �5), and p ¼ 0:1. Top: X ðtÞ ¼W ðtÞ=Y ðtÞ; 5 scenarios (solid lines) with the minimum �pf ðtÞ (dashed

line). Middle: X ðtÞ=aðt; rðtÞÞ ¼W ðtÞ=Y ðtÞaðt; rðtÞÞ; same 5 scenarios (solid lines). Bottom: proportions

invested in portfolios pA, pB and pC : yAðtÞ (solid line), yBðtÞ (dashed line) and yC ðtÞ (dotted line)

corresponding to the bold scenario in the top and middle graphs.
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in anticipation of future premiums. Also for small t the asset mix shows a fair degree
of randomness (which is different for each of the 5 scenarios). This is because the
asset mix is most sensitive to changes in x when x is small, which will usually be when
t is also small. Later on the asset mix seems to follow a relatively smooth path, when
X ðtÞ is larger. For clarity, only one sample path has been plotted in the bottom
graph. When we plot several sample paths, say, for yCðtÞ we would find that the
individual paths can be quite different early on in the contract.23 However, the
sample paths yCðtÞ all converge to the same limiting value.

3.4.2. The cost of suboptimality

Up until now we have focused on the derivation and analysis of the optimal
stochastic asset-allocation strategy. So we have worked our way through the theory.
Now we have to ask ourselves: is it worth our whiles trying to implement such a

strategy in practice? Rephrasing this question: does the use of the optimal stochastic
lifestyle strategy significantly improve the welfare of a plan member relative to the
23For example, for the 5 sample paths plotted in Fig. 5 (top and middle) yCð5Þ ranged from 0.44 to 0.78.
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line) corresponding to the bold scenario in the top and middle graphs.
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more commonly used DC strategies? If it turns out that stochastic lifestyling does not
improve welfare significantly then the effort of trying to implement it might not be
worthwhile. In contrast, if we find that stochastic lifestyling does add significant
value then we should be trying to persuade pension providers to consider alternative
strategies that are closer to stochastic lifestyling than the current range of strategies
that are typically offered.

In Table 1 we give numerical results for different levels of risk aversion
(RRA ¼ 1; 6; 12 corresponding to g ¼ 024, �5; �11) and policy durations
(T ¼ 20; 40 years). For each ðg;TÞ combination we have considered seven asset
allocation strategies:
�

2

mo
Optimal stochastic lifestyle strategy, p�ðt;X ðtÞ; rðtÞÞ.

�
 Salary-hedged static strategy (S). This is the strategy

pðt;X ðtÞ; rðtÞÞ ¼
�g
1� g

pB þ
g

1� g
pC for all ðt;X ðtÞ; rðtÞÞ.
4We actually set g ¼ þ0:01 which gives essentially the same results as for g ¼ 0, but is computationally

re convenient.
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Table 1

Relative expected terminal utility for different values of g and duration of contract, T

Strategy: Optimal stochastic Static Deterministic lifestyle

S M B-10 B-5 A-10 A-5

(a) g ¼ 0 ðRRA ¼ 1Þ; T ¼ 20

V ð0; 0Þ 100 99.68 99.68 99.30 99.38 99.24 99.35

Cost 0% 37.9% 37.8% 101.8% 86.7% 113.9% 92.3%

(b) g ¼ 0 ðRRA ¼ 1Þ; T ¼ 40

V ð0; 0Þ 100 99.45 99.45 98.84 98.92 98.77 98.89

Cost 0% 73.7% 73.6% 222.1% 196.7% 243.3% 206.4%

(c) g ¼ �5 ðRRA ¼ 6Þ; T ¼ 20

V ð0; 0Þ �100 �134.58 �205.42 �141.00 �194.01 �191.47 �236.86

Cost 0% 6.1% 15.5% 7.1% 14.2% 13.9% 18.8%

(d) g ¼ �5 ðRRA ¼ 6Þ; T ¼ 40

V ð0; 0Þ �100 �202.92 �314.64 �351.06 �545.40 �477.53 �682.83

Cost 0% 15.2% 25.8% 28.6% 40.4% 36.7% 46.8%

(e) g ¼ �11 ðRRA ¼ 12Þ; T ¼ 20

V ð0; 0Þ �100 �192.4 �800.9 �562.1 �3379.7 �1326.5 �5519.4

Cost 0% 6.1% 20.8% 17% 37.7% 26.5% 44%

(f) g ¼ �11 ðRRA ¼ 12Þ; T ¼ 40

V ð0; 0Þ �100 �1048 �2066 �25 860 �175 732 �57 602 �309 662

Cost 0% 23.8% 31.7% 65.7% 97.2% 78.2% 107.7%

Expected terminal utilities have been normalised so that the optimal stochastic lifestyle strategy is +100 or

�100 (for gX0 or go0, respectively). Cost is the cost of suboptimality: the relative increase required in the

contribution rate to match the optimal expected terminal utility assuming a contribution rate of 10% of

salary.
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This is the limiting value of p�ðt;X ðtÞ; rðtÞÞ as t! T and takes account of the
correlation between salaries and the risky assets as well as the conversion of
pension wealth into an annuity at T .

�
 Merton-static strategy ðMÞ. This is the static strategy

pðt;X ðtÞ; rðtÞÞ ¼
g

1� g
pC for all ðt;X ðtÞ; rðtÞÞ.

This is the classical Merton strategy which does take account of relative risk
aversion, RRA ¼ 1� g, but does not make allowance for correlation between
salary and the asset returns, or the pension conversion.

�
 Deterministic lifestyle strategy. The general lifestyle strategy invests 100% in

equities (Fund C) until t ¼ 10 or 5 years before retirement. Over the final
t years the equity investments are gradually switched wholly into bonds (Fund B)
or wholly into cash (Fund A). The four strategies are labelled B for a switch
into Fund B or A for Fund A; and by the length of the switching period (5 or
10 years).
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In each sub-table ((a)–(f)) there are two rows of numbers. In the first row,
we give the expected terminal utility. For convenience these have been rescaled so
that the optimal value is +100 or �100 (depending on whether the raw value is
positive or negative). This row only allows us to rank the different strategies. The
numbers give us no indication of how much of an improvement in welfare a plan
member will get as a result of using the optimal stochastic strategy. In the second
row, therefore, we give a more concrete measure of the cost of adopting the
suboptimal strategy relative to the optimal one. For example, in Table 1(a) the static
strategy S has a cost of 37.9% of the original contribution rate of 10% of salary: that
is, the plan member would have to pay a contribution rate of p0 ¼ p� 1:379 or
13.79% of salary to get the same expected terminal utility as the theoretical
optimum.25

We can make the following observations:
�

2

sala

the

ð1�
2

inv

mig
The cost is higher for 40-year time horizons than for 20-year horizons. This
reflects various interacting factors. However, the main reason is simply that the
longer the duration of suboptimal investment the greater the costs of
suboptimality.

�
 The costs of suboptimality vary substantially as we move from one level of risk

aversion to another but often vary in a non-monotonic way. For example,
strategy B-5 with T ¼ 40 has costs of 196.7%, 40.4% and 97.2% of the original
contribution rate for members with RRAs of 1, 6 and 12, respectively. There are
two reasons for this variation with the RRA. First, the deterministic strategy
might give a reasonably good approximation to p�ðt;xÞ for certain values (e.g.
medium) of g. The more accurate the approximation the lower the cost of
suboptimality. (For example, static strategy S always gives a better approximation
than the determinstic lifestyle strategies.) Second, the general increases in the cost
of suboptimality for members with RRA ¼ 12 reflect the more severe penalties
that apply when there is even a small deviation from the optimal strategy.

�
 When members have RRA ¼ 1, the static strategies S and M are almost identical,

so that the costs are almost equal.

�
 When members have RRA ¼ 1, the costs of suboptimality are highly significant.

One reason for this is that the stochastic lifestyling strategy varies substantially
over time, so that even the best, unconstrained static strategy looks very poor.
Moreover, the low RRA implies that it is optimal most of the time to be very
short in cash (even strategies S and M are �100% of the net pension wealth in
cash). Deterministic lifestyle strategies are therefore very costly because they
implicitly have a no-short-selling constraint.26
5To place this on a more theoretical foundation: the plan sponsor would have to increase this member’s

ry from Y ðtÞ to Ȳ ðtÞ ¼ 1:0379Y ðtÞ and the contribution rate would be p̄ ¼ 0:1379=1:0379 or 13.29% of

revised salary, Ȳ ðtÞ. Under this revised scheme the pre-retirement consumption rate ð1� p̄ÞȲ ðtÞ ¼
pÞY ðtÞ is unaltered.

6This constraint can be mitigated somewhat by permitting the use of highly geared mutual funds: an

estment of 200% of net pension wealth in equities (which is not permissible) (and �100% in cash)

ht then be equivalent, say, to a 100% investment in a highly-geared fund (which is permissible).



ARTICLE IN PRESS

A.J.G. Cairns et al. / Journal of Economic Dynamics & Control 30 (2006) 843–877872
�
 When members have RRA ¼ 12, determinstic lifestyle strategies are also very
poor. The reason is that the initial 100% equity investment is far too high for such
highly risk-averse individuals.

�
 When members have the intermediate value of RRA ¼ 6, we see that the costs of

suboptimality are not so great, although they are not negligible either. This is not
because of any special characteristic of such members. It is simply that the reasons
discussed above explaining why the sub-optimal strategies are so costly for
members with both lower and higher RRAs do not apply so strongly for members
with RRA ¼ 6.

�
 The salary-hedged static strategy, S, always outperforms significantly the

deterministic lifestyle strategies. This indicates the importance of taking into
account the plan member’s personal salary profile rather than selling a standard
‘one-size-fits-all’ asset allocation strategy.

�
 The B-5 and B-10 strategies are all superior to the corresponding A-5 and A-10

strategies. This indicates that the plan member’s preference for a pension at
retirement over a cash lump sum needs to be matched by a switch into long-dated
bonds before retirement (B strategies) rather than cash (A strategies).

�
 Finally, we note that the determinstic lifestyle strategies are the worst strategies of

all.

4. Conclusions

Stochastic lifestyling has at least two advantages over deterministic lifestyling in
respect of defined contribution pension plans: it takes into account both the plan
member’s attitude to risk and the correlation between his salary and asset returns. It
is implemented using three efficient mutual funds, resembling investment in cash,
bonds and equities, respectively. The equity fund is regarded as high risk and its
purpose is to satisfy the risk appetite of the plan member. The cash and bond funds
are regarded as low risk, but serve different purposes: in particular, the former can be
interpreted as a default low-risk investment, whereas the latter is a hedge against
annuity-rate risk. In the early stages of the plan, the cash fund is therefore the
dominant low-risk component of the investment strategy, but as the retirement date
approaches, there is a gradual switch from cash into bonds. This switching between
mutual funds superficially resembles deterministic lifestyling. However, instead of
switching from high-risk assets to low-risk assets, as in the case of deterministic
lifestyling, the optimal stochastic lifestyle strategy involves a switch between different
types of low-risk assets.

Our results have important practical relevance, since they suggest that the costs of
suboptimal policies can be considerable: plan members can (typically) expect to be
substantially better off if they adopt a stochastic lifestyling strategy rather than a
either a static or a deterministic-lifestyling asset-allocation strategy. Our results also
suggest that many commercial pension plans could be significantly improved by
making appropriate use of cash and bond investments along stochastic-lifestyling
lines. If the investment opportunity set and the plan member’s attitude to risk are
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unchanging, all but two of the parameters needed to operate the strategy are
predetermined and the values of the two stochastic variables required (namely the
ratio of current pension wealth to the plan member’s current salary and the risk-free
rate of interest) are easy to measure.

Finally, the following extensions to the current study suggest themselves: (a)
developing numerical results for Case 4 with stochastic interest rates, although we
conjecture that the results will be similar to those reported in Table 1, (b) allowing
for a more general model determining salary growth, e.g., letting mY ðtÞ be stochastic,
and (c) considering more general utility functions, such as Epstein and Zin (1989).
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Appendix A. Proof of Theorem 3.2.1

Let us consider the composition of p�ðt; x; r;V Þ in Eq. (14) in terms of three
efficient portfolios or mutual funds which we denote pA, pB, and pC .

Suppose that p ¼ 0. Then dX ðtÞ=X ðtÞ has an expected value of mðpÞ ¼ p0Cðx�
sY Þ � ~mY ðtÞ and an instantaneous variance of vðpÞ ¼ s2Y0 þ s0YsY þ p0Dp� 2p0CsY ,
where D ¼ CC0. Now minimise vðpÞ over p:

) 2Dp� 2CsY ¼ 0

) p�ð0Þ ¼ D�1CsY ¼ C0
�1sY � pA; say.

Then

mðpAÞ ¼ s0Y ðr� sY Þ � ~mY ðtÞ � mA; say.

Next, minimise vðpÞ over p subject to mðpÞ ¼ m, using the method of Lagrange
multipliers, with Lðp;cÞ ¼ vðpÞ þ 2cðmðpÞ �mÞ. Therefore,

qL

qp
¼ 2Dp� 2CsY þ 2cCðx� sY Þ ¼ 0

) p�ðm�mAÞ ¼ C0�1½ð1þ cÞsY � cx�,

qL

qc
¼ 2ðmðpÞ �mÞ ¼ 0
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) 0 ¼ ½CsY � cCðx� sY Þ�
0D�1Cðx� sY Þ � ~mY ðtÞ �m

) c ¼ cðmÞ ¼
mA �m

ðx� sY Þ
0
ðx� sY Þ

.

The important point to note is that the optimal portfolio p�ðm�mAÞ is a weighted
average of the minimum-variance portfolio pA ¼ C0

�1sY (with weight 1þ c) and
another efficient portfolio pC ¼ C0�1x (with weight �c).

Now consider HðtÞ ¼ X ðtÞ=aðt; rðtÞÞ where aðt; rðtÞÞ is defined in Eq. (11). Since
aðt; rðtÞÞ is a function of rðtÞ only, we can write (using Ito’s formula) daðt; rðtÞÞ as
aðt; rðtÞÞ½�daðrÞdrðtÞ þ 1

2 caðrÞðdrðtÞÞ2�, where daðrÞ is the duration of the annuity
function and caðrÞ is its convexity,

daðrÞ ¼ �
1

aðt; rÞ

qaðt; rÞ

qr

and

caðrÞ ¼
1

aðt; rÞ

q2aðt; rÞ

qr2
.

Therefore,

dHðtÞ ¼ HðtÞ½ðp0Cðx� sY Þ � ~mY ðtÞÞdt� sY0 dZ0ðtÞ þ ðp
0C � s0Y ÞdZðtÞ

þ daðrÞfmrðrÞdtþ srðrÞ
0 dZðtÞg þ ðdaðrÞ

2
� 1

2
caðrÞÞsrðrÞ

0srðrÞdt

þ daðrÞðp
0C � s0Y ÞsrðrÞdt�

¼
D

HðtÞ mðp; rÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffi
vðp; rÞ

p
d ~Z

	 

,

where ~ZðtÞ is a Brownian motion, ¼
D

means ‘equivalent in distribution’,

mðp; rÞ ¼ p0Cðx� sY Þ � ~mY ðtÞ þ daðrÞmrðrÞ þ daðrÞðp
0C � s0Y ÞsrðrÞ

þ ðdaðrÞ
2
� 1

2
caðrÞÞsrðrÞ

0srðrÞ

and

vðp; rÞ ¼ s2Y0 þ s0YsY þ p0Dp� 2p0CsY þ 2daðrÞp
0CsrðrÞ

� 2daðrÞs0YsrðrÞ þ daðrÞ
2srðrÞ

0srðrÞ.

Now, minimise vðp; rÞ over p:27

) 2Dp� 2CsY þ 2daðrÞCsrðrÞ ¼ 0

) p ¼ C0�1ðsY � daðrÞsrðrÞÞ ¼ pB; say.

Let mB ¼ mðpB; rÞ. Next, minimise vðp; rÞ over p subject to mðp; rÞ ¼ m. Let
pBðm�mBÞ be the optimal p for this problem. Let

Lðp;cÞ ¼ vðp; rÞ þ 2cðmðp; rÞ �mÞ.
27Note that pB ¼ pA if daðrÞ ¼ 0 (that is, if we are funding for a cash lump sum rather than a pension at

retirement).
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Therefore,

qL

qp
¼ 2Dp� 2CsY þ 2daðrÞCsrðrÞ þ 2cCðx� sY þ daðrÞsrðrÞÞ ¼ 0

) p ¼ C0�1ðsY � daðrÞsrðrÞ � cðx� sY þ daðrÞsrðrÞÞÞ

¼ ð1þ cÞC0�1ðsY � daðrÞsrðrÞÞ � cC0�1x

¼ ð1þ cÞpB � cpC ,

qL

qc
¼ 0

) c ¼
mB �m

ðx� sY þ daðrÞsrðrÞÞ
0
ðx� sY þ daðrÞsrðrÞÞ

.

As before we see that the optimal asset allocation strategy, pBðmB �m; rÞ, is a
weighted average of the minimum variance portfolio, pB, and the more risky, but still
efficient, portfolio, pC , derived earlier.
Appendix B. Proof of Theorem 3.3.1

That V ðt;x; rÞ is proportional to xg is clear. For example, suppose we replace
x by kx but follow the same asset allocation strategy pðtÞ. We see that Jðt; kx; r; pÞ ¼
kgJðt;x; r; pÞ since X ðTÞ is replaced by kX ðTÞ if we follow the same strategy.

Now try V ¼ g�1g1�gxg in Eq. (18). First note that

Vt ¼
ð1� gÞ

g
g�ggtx

g,

Vx ¼ g1�gxg�1,

Vxx ¼ ðg� 1Þg1�gxg�2,

Vr ¼
ð1� gÞ

g
g�ggrx

g,

Vrr ¼ ðg� 1Þg�g�1g2
r xg þ

ð1� gÞ
g

g�ggrrx
g

and

Vxr ¼ ð1� gÞg�ggrx
g�1.
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Then (15) becomes

ð1� gÞ
g

g�ggtx
g þ mrðrÞ

ð1� gÞ
g

g�ggrx
g

þ ð� ~mY ðtÞ þ s0Y ðx� sY ÞÞg
1�gxg

þ
1

2
srðrÞ

0srðrÞ ðg� 1Þg�g�1g2
r xg þ

ð1� gÞ
g

g�ggrrx
g

� �

�
1

2
ðx� sY Þ

0
ðx� sY Þ

g2�2gx2g�2

ðg� 1Þg1�gxg�2

� ðx� sY ÞsrðrÞ
g1�gxg�1ð1� gÞg�ggrx

g�1

ðg� 1Þg1�gxg�2

�
1

2
srðrÞ

0srðrÞ
ð1� gÞ2g�2gg2

r x2g�2

ðg� 1Þg1�gxg�2 ¼ 0.

Now take out g�g�1xg as a common factor. Then

ð1� gÞ
g

ggt þ mrðrÞ
ð1� gÞ

g
ggr þ ð� ~mY ðtÞ þ s0Y ðx� sY ÞÞg

2

þ
1

2
srðrÞ

0srðrÞ ðg� 1Þg2
r þ
ð1� gÞ

g
ggrr

� �
�

1

2
ðx� sY Þ

0
ðx� sY Þ

1

ðg� 1Þ
g2

þ ðx� sY Þ
0srðrÞggr �

1

2
ðg� 1ÞsrðrÞ

0srðrÞg
2
r ¼ 0.

The g2
r terms cancel, and, with further simplification and division by g, we get

ð1� gÞ
g

gt þ
1

2

ð1� gÞ
g

srðrÞ
0srðrÞgrr þ

ð1� gÞ
g

mrðrÞ þ ðx� sY Þ
0srðrÞ

� �
gr

þ � ~mY ðtÞ þ s0Y ðx� sY Þ �
1

2
ðx� sY Þ

0
ðx� sY Þ

1

ðg� 1Þ

� �
g ¼ 0.

In the final step we replace ~mY ðtÞ by mY ðtÞ � s0YsY and multiply by g=ð1� gÞ to get
the PDE for g in Eq. (18) in the theorem.
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