
 
 

DISCUSSION PAPER PI-0802 
 
Evaluating the goodness of fit of stochastic 
mortality models 
 
Kevin Dowd, Andrew J.G. Cairns, David Blake, Guy 
D. Coughlan, David Epstein, and Marwa Khalaf-
Allah 
 
December 2010 
 
ISSN 1367-580X  
 
The Pensions Institute  
Cass Business School  
City University  
106 Bunhill Row London  
EC1Y 8TZ  
UNITED KINGDOM  
 
http://www.pensions-institute.org/  



Insurance: Mathematics and Economics 47 (2010) 255–265

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Evaluating the goodness of fit of stochastic mortality models
Kevin Dowd a,∗, Andrew J.G. Cairns b, David Blake a, Guy D. Coughlan c, David Epstein c,
Marwa Khalaf-Allah c

a Pensions Institute, Cass Business School, 106 Bunhill Row, London, EC1Y 8TZ, United Kingdom
b Maxwell Institute for Mathematical Sciences, Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
c Pension ALM Group, JPMorgan Chase Bank, 125 London Wall, London EC2Y 5AJ, United Kingdom

a r t i c l e i n f o

Article history:
Received July 2009
Received in revised form
June 2010
Accepted 18 June 2010

Keywords:
Goodness of fit
Mortality models
Standard normality

a b s t r a c t

This study sets out a framework to evaluate the goodness of fit of stochastic mortality models and applies
it to six different models estimated using English &Welsh male mortality data over ages 64–89 and years
1961–2007. The methodology exploits the structure of each model to obtain various residual series that
are predicted to be iid standard normal under the null hypothesis of model adequacy. Goodness of fit
can then be assessed using conventional tests of the predictions of iid standard normality. The models
considered are: Lee and Carter’s (1992) one-factor model, a version of Renshaw and Haberman’s (2006)
extension of the Lee–Carter model to allow for a cohort-effect, the age-period-cohort model, which is a
simplified version of the Renshaw–Habermanmodel, the 2006 Cairns–Blake–Dowd two-factormodel and
two generalized versions of the latter that allow for a cohort-effect. For the data set considered, there are
some notable differences amongst the different models, but none of the models performs well in all tests
and no model clearly dominates the others.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In an earlier study, Cairns et al. (2009) examined eight different
stochastic mortality models. The models were estimated on both
English & Welsh and US male mortality data (over ages 60–89)
and were assessed for their ability to explain historical patterns
of mortality using both qualitative and quantitative criteria; the
latter consisted primarily of Bayesian Information Criterion (BIC)
rankings complemented by nesting tests in the cases where one
model is a special case of another.

The present study builds on this work in proposing a
more complete and systematic methodology for establishing the
quantitative goodness of fit (GOF) of six of the above models based
on formal hypothesis testing1:

• the one-factor Lee–Carter model (Lee and Carter, 1992),
denoted M1 in Cairns et al. (2009)

• Renshaw and Haberman’s generalization of the Lee–Carter
model to incorporate a cohort-effect (Renshaw and Haberman,
2006), denoted M2

∗ Corresponding author.
E-mail addresses: Kevin.Dowd@hotmail.co.uk (K. Dowd), a.cairns@ma.hw.ac.uk

(A.J.G. Cairns), d.blake@city.ac.uk (D. Blake), guy.coughlan@jpmorgan.com
(G.D. Coughlan), david.epstein@jpmorgan.com (D. Epstein),
marwa.khalafallah@jpmorgan.com (M. Khalaf-Allah).
1 The reason for excluding twoof the eightmodels is explained in Section 7below.

• the age-period-cohort (APC) model which is a simplification
of the Renshaw–Haberman model (Currie, 2006) (see, also Os-
mond, 1985; Jacobsen et al., 2002), denoted M3

• the two-factor Cairns–Blake–Dowd (CBD) model of Cairns et al.
(2006a), denoted M5

• two different generalizations of the CBD model incorporating a
cohort-effect, denoted M6 and M7.
More specifically, we use what we know about the structure

of each model to construct the following series that are predicted
to be (at least approximately) independently and identically
distributed standard normal (hereafter abbreviated to ‘iid N(0, 1)’)
under the null hypothesis:
• Standardized mortality rate residuals or mortality residuals for

short. The mortality residuals are the differences between the
realized (or actual) mortality rates for any given set of ages and
years and theirmodel-generated equivalents (i.e., fitted values).
Once standardized, these are predicted to be approximately iid
N(0, 1) under the null hypothesis.

• Standardized residuals of the model’s unobservable state
variables (SVs) or SV residuals for short. The SVs are the
stochastic factors driving the dynamics of the model, and, once
standardized, are also assumed to be approximately iid N(0, 1).

• Standardized residuals for the prices (or fair values) of
mortality-dependent financial instruments derived from the
model (or price residuals for short), where the residuals
concerned are the differences between these prices and
their model-based equivalents, and these too should be
approximately iid N(0, 1) under the null hypothesis.

0167-6687/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2010.06.006
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Each model was estimated using LifeMetrics data for the
mortality rates of English & Welsh males2 for ages from 64 to
89 and spanning the years 1961 to 2007.3 As such, the results
presented herein are not necessarily representative of what might
be obtained for other data sets. Theydo, however, serve to illustrate
both the methodology and the potential weaknesses in certain
stochastic mortality models.

The paper is organized as follows. Section 2 explains our
notation and Section 3 outlines the models to be considered.
Section 4 outlines and implements the testing framework for
the models’ mortality residuals, while Section 5 does the same
for each model’s SV residuals. Section 6 provides some test
results for the price of an illustrativemortality-dependent financial
contract, namely a period term annuity. Section 7 presents two
comparisons: a comparison with the findings of our own earlier
studies and a comparison with some recent studies by other
researchers testing the out-of-sample performance of stochastic
mortality models. Section 8 concludes.

2. Notation

We begin with some notation, and distinguish between the
following mortality rates:

• q(t, x) = true (and unobserved) mortality rate, i.e., the proba-
bility of death between times t and t + 1 for individuals aged x
at time t;

• q̃(t, x) = crude estimate of year-t mortality rate based on ob-
served deaths and exposures data;

• q̄(t, x) = estimated year-t mortality rate based on data up to
and including year t , and using a specified mortality model
(i.e., the fitted value from the model);

• m̃(t, x) = crude estimate of year-t death rate (i.e. the observed
number of deaths divided by the average population size aged
x last birthday during year t).

The crudemortality rate q̃(t, x) is linked to the crude death rate,
m̃(t, x), via q̃ (t, x) = 1 − exp


−m̃ (t, x)


.

The models that we consider involve the following SVs:

• β
(i)
x , κ

(i)
t and γ

(i)
c are the true (unobserved) age, period and

cohort-effects, given that the relevant specified model is true;
• β̄

(i)
x , κ̄

(i)
t and γ̄

(i)
c are their estimates, given data from years t0 to

t1 and ages x0 to x1, and which are used to calculate the q̄(t, x);
• β̂

(i)
x , κ̂

(i)
t and γ̂

(i)
c are their one-step ahead forecasts given data

from years t0 to t1 − 1 and ages x0 to x1.

The cohort-effects are estimated for years of birth c0 to c1,
where the year of birth is equal to c = t − x.

3. The stochastic mortality models

The models examined in this study are the following:
Model M1

Model M1, the original Lee–Carter model, postulates that
the true underlying death rate, m(t, x), satisfies the following
equation:

logm(t, x) = β(1)
x + β(2)

x κ
(2)
t (1)

2 See Coughlan et al. (2007) and www.lifemetrics.com for the data and a
description of LifeMetrics. The original source of the data was the UK Office for
National Statistics.
3 The under-64s were excluded because it is the mortality rates of older people

that are of the greatest financial significance to pension funds and annuity providers
– and this is our main interest in conducting this series of studies on stochastic
mortality models – and the mortality rates of those over age 89 were excluded
because of poor data reliability. We would also emphasise that models M5–M7
were specifically designed for the higher age ranges, whereas the other models
considered in this study were designed to fit younger ages as well.

where the state variable κ
(2)
t follows a one-dimensional random

walk with drift (Lee and Carter, 1992):

κ
(2)
t = κ

(2)
t−1 + µ + CZ (2)

t (2)
in which µ is a constant drift term, C is a constant volatility and
Z (2)
t is a one-dimensional iid N(0, 1) error.

Model M2B4

This model, which is a particular extension of the Lee–Carter
model to allow for a cohort-effect, postulates thatm(t, x) satisfies:

logm(t, x) = β(1)
x + β(2)

x κ
(2)
t + β(3)

x γ (3)
c (3)

where the state variable κ
(2)
t follows (2) and γ

(3)
c is a cohort-effect.

We follow Cairns et al. (2010) and CMI (2007) and model the
cohort-effect, γ (3)

c , as an ARIMA(1,1,0) process that is independent
of κ (2)

t :

∆γ (3)
c = µγ + αγ


∆γ

(3)
c−1 − µγ


+ σγ Z (γ )

c . (4)

Model M3B5

This model is a simplified version of M2B and postulates that
m(t, x) satisfies:

logm(t, x) = β(1)
x + κ

(2)
t + γ (3)

c (5)
where the variables (including the cohort-effect) are the same as
for M2B.
Model M5

M5 is a reparameterized version of the CBD two-factor
mortality model (Cairns et al., 2006a). This model postulates that
the mortality rate q(t, x) satisfies:

logit q(t, x) = κ
(1)
t + κ

(2)
t (x − x̄) (6)

where q(t, x) = 1 − exp(−m(t, x)) and x̄ is the average of the
ages used in the dataset, and where the state variables now follow
a two-dimensional random walk with drift:
κt = κt−1 + µ + CZt (7)
where µ is a constant 2 × 1 drift vector, C is now a constant 2 × 2
upper triangular ‘volatility’matrix (or,more precisely, the Choleski
‘square root’ matrix of the variance–covariance matrix), and Zt is
a two-dimensional standard normal variable, each component of
which is independent of the other.6

Model M6
M6 is a generalized version of M5 with a cohort-effect, i.e.,

logit q(t, x) = κ
(1)
t + κ

(2)
t (x − x̄) + γ (3)

c (8)

where the κt process follows (7) and the γ
(3)
c process follows (4).

Model M7
Our last model, M7, is another generalized version of M5with a

cohort-effect, i.e.,

logit q(t, x) = κ
(1)
t + κ

(2)
t (x − x̄) + κ

(3)
t ((x − x̄)2 − σ 2

x ) + γ (4)
c (9)

where the state variables κt in this case follow a three-dimensional
randomwalk with drift, σ 2

x is the variance of the age range used in
the dataset, and γ

(4)
c is a cohort-effect that is modelled as an AR(1)

process.7

4 M2B is a version of M2 that assumes an ARIMA(1,1,0) process for the cohort-
effect.
5 M3B is also a version of M3 that assumes an ARIMA(1,1,0) process for the

cohort-effect.
6 The reparameterization of the original model is κ

(2)
t = A2 (t) and κ

(1)
t −κ

(2)
t x̄ =

A1 (t), where A1 (t) and A2 (t) are the state variables of the original model. An
additional difference between the original CBD model and the reparameterized
versionM5 is that x in M5 refers to age at time t , whereas in the original CBDmodel
it refers to age at some initial time 0.
7 The generalization, therefore, incorporates an additional quadratic age effect as

well as a cohort-effect.
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4. Assessing the goodness of fit of the mortality residuals

Assessing goodness of fit involves three stages: estimation,
implementation and testing.

4.1. Estimation

We start by selecting a lookback window on which to base our
initial estimates. We choose a rolling 20-year window comprising
the current and previous 19 years’ historical observations.8,9 We
also need a suitable age range on which to fit the model, and we
choose the age range 64–89.

For each model, we then estimate the parameters and obtain
estimates of the unobserved SVs β̄

(i)
x , κ̄ (i)

t and γ̄
(i)
c (as appropriate)

and obtain model-based estimates of the mortality rate q̄(t, x). In
the present context, the sequence of 20-year rollingwindows gives
us estimates for 27 years between 1981 and 2007.

The mortality residual is calculated as the difference between
q̃(t, x) and q̄(t, x). If the underlying random variable, the number
of deaths, follows the assumption of a Poisson distribution (as, for
example, assumed by Brouhns et al., 2002, and Li et al., 2009),
then the distribution of deaths can be approximated by a normal
distribution as the population size and the number of deaths gets
‘large’, as seems reasonable when we consider the size of the male
population of England&Wales. If amodel’s estimates are adequate,
the mortality residuals should also be approximately normal.
The standardized mortality residuals – found by subtracting the
residual mean and dividing the result by the residual standard
deviation – are then predicted to be approximately iid N(0, 1).10

By way of example, and to make our discussion of estimation
issues more concrete, consider the case of model M1 (whose
structure is set out in Eqs. (1) and (2) above):

1. We first take the exposures and deaths data from 1961 to 1981
and fit themodel to obtain estimates for the age effects β̄

(1)
x and

β̄
(2)
x and the period-effect κ̄

(2)
t (see Eq. (1) above).

2. We then insert these into (1) to obtain the model-based death
rate, m̄(t, x), and thence themodel-basedmortality rate, q̄(t, x),
and the mortality residual q̃ (t, x) − q̄ (t, x) for 1981.

3. We repeat this process using data for 1962–1982 to get the
mortality residual for 1982; we repeat again using data for
1963–1983 to obtain the 1983 mortality residual, and carry on
in the same manner until we use data for 1987–2007 to obtain
the 2007 mortality residual.

The other models are estimated in comparable ways.

8 We chose a 20-year lookback window for estimating the models as a
compromise between having a longer lookbackwhichwould increase the efficiency
of the estimated parameters and a shorter lookback which would reduce any
potential bias in the parameter estimates that would arise if themortality data used
for estimation incorporated one ormore breaks in trend. Booth et al. (2002a) favour
using a lookbackwindow that extends back to themost recent break in trend, while
Hyndman and Ullah (2007, p. 4953) recognize that there is a case for modifying the
lookback window ‘‘due to the presence of substantial outliers in the fitting period’’.
We experimentedwith both 10-year and 20-year lookbackwindows and concluded
that a 20-year lookback window provided the best compromise.
9 We could also have a chosen a window that expands over time to take account

of the fact that our data accumulate over time. Having started with 20 observations
to obtain our estimates for 1981, we might have used 21 observations to obtain
estimates for 1982, and so forth. However, an expandingwindowwould complicate
the underlying statistics. A rolling fixed-length window is more straightforward to
deal with.
10 For convenience, we use the term ‘tested for iid N(0, 1)’ as shorthand for ‘tested
for the predictions of iid N(0, 1)’, where these predictions are those of a zero mean,
a unit variance, a zero skewness, a kurtosis equal to 3, and, of course, independent
and identically distributed.

4.2. Implementation

Let D(t, x) be the number of deaths between t and t +1 at age x
last birthday, and let E(t, x) be the corresponding exposures. From
these, we calculate the crude death rates m̃(t, x) = D(t, x)/E(t, x).
Given the Poisson assumption about deaths and given that the
expected number of deaths is large, the number of deaths is
approximately normal with mean and variance both equal to
m̄(t, x)E(t, x). It follows that for each model, the standardized
mortality residuals

ε(t, x) =
m̃(t, x) − m̄(t, x)
√
m̄(t, x)/E(t, x)

(10)

should be approximately iid N(0, 1) under the null hypothesis.11,12

Moreover, we would expect this prediction to hold both when
we follow any given age from one year to the next and when we
compare the death rates for different ages during the same year.
Thus, the matrix of ε(t, x) terms should be approximately iid N(0,
1) in both dimensions.

We then have 26× 27 = 702 observations in the ε(t, x) matrix
(i.e., we have observations for each of 26 different ages spanning
64–89, over 27 different years spanning 1981–2007).

4.3. Test results

Thehypothesis tests used in this section aim to identifywhether
themortality residuals described above are consistentwith iid N(0,
1) as predicted under the null hypothesis. We then carry out the
following tests on the matrix of mortality residuals:
• A t-test of the prediction that their mean should be 0;
• A variance ratio (VR) test of the prediction that the variance

should be 1 (see Cochrane, 1988; Lo and MacKinley, 1988,
1989); and

• A Jarque–Bera normality test based on the skewness and
kurtosis predictions (see Jarque and Bera, 1980).

In addition, we also test the prediction that the residuals have
zero correlation both across adjacent ages and across adjacent
years. These tests are based on the test statistic ρ

√
N − 2/(1−ρ2),

where ρ is the relevant correlation coefficient, which is distributed
under the null hypothesis as a t-distribution with N − 2 degrees
of freedom. Note that we have 26 cross-age correlations (that
between ages 64 and 65, that between ages 65 and 66, and so on)
and 27 cross-year correlations (that between 1981 and 1982, that
between 1982 and 1983, and so on).

Our test results are presented in Table 1. The upper section
of this Table shows the sample moments and size. The middle
section shows the p-values associated with mean, variance and
normality predictions. The third shows the percentages of cross-
age and cross-year correlation test results that are significant at
the 1% level. If the null hypothesis of zero correlation held in each
case, then we would expect these percentages to be ‘close’ to 1%.

The results in Table 1 suggest that the models perform quite
poorly: the normality prediction is always decisively rejected and,
with the exception of M2B, so too are the variance predictions. The
correlation predictions are also rejectedmore frequently than they
should be under the null, but there are notable differences:M7 and
M2B perform best on this test and M1 and M3B worst.

11 We say ‘approximately’, in part, because we are using estimates of the SVs
rather than their true values, in part, because there are likely to be measurement
errors in the data (e.g., estimates of exposures are likely to be subject to errors) and,
in part, because the assumed Poisson process with a fixed ‘arrival’ or mortality rate
at any point in time is likely to be an over-simplification of reality.
12 The reader will also note that (10) strictly refers to death-rate rather than
mortality-rate residuals. However, the former will have the same distribution as
the latter, so, for expositional purposes, it is convenient to ignore the difference
between them.
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Table 1
Test results for standardized mortality residuals ε(t, x): five stochastic mortality models.

M1 M2B M3B M5 M6 M7

Sample moments

Mean −0.0315 −0.0094 −0.0014 −0.0801 0.0221 −0.0084
Variance 3.5194 0.9286 3.1179 3.7529 2.3690 1.9829
Skewness −1.0394 −0.4919 −0.6346 −1.0394 −1.0394 −1.0394
Kurtosis 9.2363 4.8350 6.7453 9.2363 9.2363 9.2363
N 702 702 702 702 702 702

P-values of sample moments

Mean 0.6566 0.7962 0.9828 0.2736 0.7036 0.8741
Variance 0.0000 0.1764 0.0000 0.0000 0.0000 0.0000
Normality 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Percentages of correlation results significant at 1% level

By adjacent ages 30.8 3.8 26.9 11.5 15.4 0.0
By adjacent years 22.2 7.4 37.0 22.2 3.7 7.4

Notes: Based on 27 annual observations spanning 1981–2007 for ages 64–89.

5. Assessing the goodness of fit of the state variable residuals

5.1. Estimation

The derivation of the test results for the SV residuals is
complicated by the fact that the SVs are unobservable. We
therefore need to obtain estimates of the unobserved state
variables (κ̄ (i)

t and γ̄
(i)
c ) using 20 years of data up to and including

year t . If we had direct observations of the state variables (κ̃ (i)
t

and γ̃
(i)
c ) in the same way that we have direct observations of the

mortality rates, q̃(t, x), we could have proceeded in the same way
as in the previous section: we would have obtained the period-
effect residuals as κ̃

(i)
t − κ̄

(i)
t and the cohort-effect residuals as

γ̃
(i)
c − γ̄

(i)
c . However, this is not possible because κ̃

(i)
t and γ̃

(i)
c

are not directly observable. We therefore need proxies for these
observations, and we obtain these proxies using 1-step ahead
forecasts based on a model estimated using 20 years of data up
to and including year t − 1. If we denote these forecasts by κ̂

(i)
t

and γ̂
(i)
c , the estimated period-effect residuals become κ̂

(i)
t − κ̄

(i)
t

and the estimated cohort-effect residuals become γ̂
(i)
c − γ̄

(i)
c . We

now standardize each of these series by subtracting its estimated
mean and dividing the result by its estimated one-period-ahead
standard deviation. The resulting standardized SV residual series
are then each predicted to be approximately iid N(0, 1) under the
null hypothesis.

For each model, we have one or more sets of standardized SV
residuals. The number of standardized SV residual series depends
on the model – it is equal to the number of period-effects (which
varies from 1 to 3) and the number of cohort-effects (which is
either 0 or 1) in each model. The number of standardized SV
residual series in each model therefore varies from 1 to 4.

As an aside, the fact that themodel is re-estimated for each year
in our sample periodmeans thatwe areworkingwith estimates for
µ and C that are regularly updated. Accordingly, in the discussion
below, we let µ̄t and C̄t denote their estimates based on data up to
and including year t .

5.2. Implementation

We now consider each model in turn.
Model M1

For M1, we use (2) to obtain estimated values of κ
(2)
t (i.e., κ̄ (2)

t )
and 1-step ahead forecasts of κ (2)

t (i.e., κ̂ (2)
t ), viz.: 13

13 When we use the 20-year window to obtain the κ̂
(2)
t forecasts, we need

to ensure that any constraints in the estimation process are used in a fashion

κ̄
(2)
t = κ̄

(2)
t−1 + µ̄t−1 + C̄t−1Z̄

(2)
t (11)

κ̂
(2)
t = κ̄

(2)
t−1 + µ̄t−1. (12)

Substituting (12) into (11) and rearranging gives the standardized
SV residuals:

Z̄ (2)
t = C̄−1

t−1(κ̄
(2)
t − κ̂

(2)
t ). (13)

In (13), κ̄ (2)
t is the estimated value of κ (2)

t based on data from t−20
up to and including time t , and κ̂

(2)
t is the 1-step ahead forecasted

value of κ
(2)
t based on data from t − 20 up to and including time

t −1. This gives us 27 values of Z̄ (2)
t and, under the null hypothesis,

these are predicted to be iid N(0, 1).
Model M2B

For M2B, we obtain the standardized SV residuals Z̄ (2)
t

using (13), and we model the cohort-effect γ
(3)
c and recover

the standardized cohort-effect residuals Z̄ (γ )
c using (4). Both

standardized residual series Z̄ (2)
t and Z̄ (γ )

c are predicted to be iid
N(0, 1).

We can also test the properties of both sets of estimated
residuals simultaneously. Since Z̄ (2)

t and Z̄ (γ )
c should each be iidN(0,

1) and independent of each other, statistical theory tells us that the
sum of squares of 2 independent N(0, 1) variates is distributed as a
chi-squared with 2 degrees of freedom. It therefore follows that:

Ȳt = [Z̄ (2)
t ]

2
+ [Z̄ (γ )

c ]
2

∼ χ2
2

p̄t = F

Ȳt


∼ iid U(0, 1) (14)

where F(.) is the distribution function for a chi-squared with
2 degrees of freedom. Under the null, the series p̄t should be
distributed as iid standard uniform (or iid U(0, 1)). If we wished to,
we could then test this series using standard uniformity tests such
as Kolmogorov–Smirnov, Kuiper, Lilliefors, etc.14 However, testing
is easier (and we have more tests available) if we put p̄t through
the following transformation:

h̄t = Φ−1 (p̄t) ∼ iid N(0, 1) (15)

where Φ(.) is the distribution function for a standard normal
variable. This transformation gives us an ‘observed’ series h̄t that is
distributed as iid N(0, 1) under the null. We can then test whether
h̄t is iid N(0, 1).

consistent with the way in which the κ̄
(2)
t estimates were obtained. Thus, for M1,

we use the constraints
∑1980

t=1961 κ
(2)
t = 0 and

∑x1
x=x0

β
(2)
x = 1 for both κ̄

(2)
t and κ̂

(2)
t .

14 For more on these tests, see, e.g., Dowd (2005, chapter 15 appendix).
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Model M3B
The standardized SV residuals for M3B are obtained in exactly

the same way as for M2B.

Model M5
For model M5, we use (7) to obtain the 2 × 1 vector κ̄t and the

1-step ahead forecasts κ̂t :

κ̄t = κ̄t−1 + µ̄t−1 + C̄t−1Z̄t (16)

κ̂t = κ̄t−1 + µ̄t−1 (17)

Z̄t = C̄−1
t−1(κ̄t − κ̂t). (18)

Under the null, each standardized SV residual series, Z (1)
t and Z (2)

t ,
is iid N(0, 1) and independent of the other.

We now test Z (1)
t and Z (2)

t for iid standard normality using
conventional tests, and additionally apply a standard correlation
test to check the prediction that these have a zero correlation.

As with M2B and M3B, we can also test the properties of both
sets of standardized residuals simultaneously. In this case, under
the null hypothesis,

Ȳt = [Z̄ (1)
t ]

2
+ [Z̄ (2)

t ]
2

∼ χ2
2

p̄t = F

Ȳt


∼ iid U(0, 1) (19)

h̄t = Φ−1 (p̄t) ∼ iid N(0, 1). (20)

We now test h̄t for iid N(0, 1).

Model M6
Following the same logic, for M6 we obtain

Z̄t = C̄−1
t−1(κ̄t − κ̂t) (21)

which gives us two sets of standardized SV residuals Z (1)
t and Z (2)

t
that are predicted to be iid N(0, 1) and independent of each other.
As with the previous model, we test Z (1)

t and Z (2)
t for iid zero

correlation standard normality.
As with M2B and M3B, we also obtain the corresponding

standardized cohort-effect residuals that are also predicted to be
iid N(0, 1). It then follows that

Ȳt = [Z̄ (1)
t ]

2
+ [Z̄ (2)

t ]
2
+ [Z̄γ

c ]
2

∼ χ2
3

p̄t = F

Ȳt


∼ iid U(0, 1) (22)

h̄t = Φ−1 (p̄t) ∼ iid N(0, 1) (23)

which we then test for iid N(0, 1).

Model M7
M7 is similar but involves three sets of standardized SV

residuals, Z (1)
t , Z (2)

t and Z (3)
t , which are predicted to be iid N(0,

1) and to have zero correlations. M7 also involves standardized
cohort-effect residuals Z̄ (γ )

c .15 Applying the same logic as before
then gives us:

Ȳt = [Z (1)
t ]

2
+ [Z (2)

t ]
2
+ [Z (3)

t ]
2
+ [Z (γ )

c ]
2

∼ χ2
4

p̄t = F

Ȳt


∼ iid U(0, 1) (24)

h̄t = Φ−1 (p̄t) ∼ iid N(0, 1) (25)

15 Note, however, that Z̄ (γ )
c now refers to the standardized residual of the γ

(4)
c

process rather than that of the γ
(3)
c . The context makes it clear which gamma

process Z̄ (γ )
c is referring to.

Table 2
Results for the standardized residuals of the state variable Z̄ (2)

t : model M1.

Sample moments

Mean −0.375
Variance 0.955
Skewness 0.033
Kurtosis 2.916
N 27

Test of mean prediction

P-value mean t-test statistic 0.057

Test of variance ratio prediction

P-value variance ratio test statistic 0.944

Test of normality prediction

P-value Jarque–Bera test statistic 0.994

Test of temporal independence

Pearson correlation (t + 1, t) −0.545
P-value correlation 0.001*

Notes: Based on 27 annual observations spanning 1981–2007 for ages 64–89. All
tests are two-sided except for the JB test which is inherently one-sided. If ρ is
the correlation coefficient, ρ

√
N − 2/(1 − ρ2) is distributed under the null as a

t-distribution with N − 2 degrees of freedom.
* Indicates significance at the 1% level.

where F(.) is now the distribution function for a chi-squared with
4 degrees of freedom. As in earlier cases, we then test h̄t for iid
N(0, 1).

5.2.1. Test results

ModelM1 Table 2 presents the samplemoments and the test results
for M1’s standardized SV residual series, Z̄ (2)

t , and these results
are compatible with the null hypothesis of standard normality.
However, the null hypothesis of temporal independence is strongly
rejected. Altogether, there are four p-values reported for M1, and,
of these, one is significant at well under the 1% level. If we treat
any p-values below 1% as a ‘fail’, then, by this criterion, M1 has a
‘failure’ rate of 25%.
Model M2B Table 3 presents the sample moments and test results
for each of Z̄ (2)

t and Z̄ (γ )
c for model M2B. This model performs

very poorly by these tests: both series score p-values of 0 for the
variance and normality tests – and the samplemoments of the Z̄ (γ )

c
bear no resemblance to the predictions. Similarly, the h̄t test results
in Table 4 lead us to reject the null hypothesis that the standardized
residuals are jointly iid N(0, 1).

Note that there are 12 p-values reported for M2B, and of these
six are below 1%, implying a ‘failure’ rate of 50%.

To investigate further, Figs. 1 and 2 give the QQ plots16 for the
model’s two standardized SV residual series, Z̄ (2)

t and Z̄ (γ )
c , and

Fig. 3 gives a plot of empirical vs. predicted p̄t . We can see that
all three Figures show extremely poor fits: the two QQ plots have
one or more very extreme outliers (especially for the cohort-effect
plot in Fig. 8) and do not lie close to the 45° line; the p̄t plot in Fig. 9
clearly does not lie anywhere close to its predicted 45° line either.
There are therefore very clear problems with both this model’s
standardized residuals series.

16 A QQ plot is a plot of the empirical quantiles of a distribution against their
predicted counterparts, where the latter in this case are based on the prediction of
standard normality. QQ plots give a useful visual indicator of whether the empirical
quantiles are consistent with the predicted ones: under the null, we would expect
the plots to lie fairly close to the 45° line. Note that we do not report the QQ
and associated plots for models other than M2B, as these are all compatible with
the underlying null hypotheses. The plots for M2B, on the other hand, are more
informative.
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Table 3
Results for the standardized residuals of the state variables Z̄ (2)

t and Z̄ (γ )
c : model

M2B.

Sample moments

Z̄ (2)
t Z̄ (γ )

c

Mean −0.198 −10.866
Variance 11.454 1001.433
Skewness −1.768 −2.910
Kurtosis 13.068 10.666
N 27 27

Test of mean prediction1

P-value mean t-test statistic 0.764 0.086

Test of variance ratio prediction

P-value variance ratio test statistic 0.000* 0.000*

Test of normality prediction

P-value Jarque–Bera test statistic 0.000* 0.000*

Test of temporal independence2

Pearson correlation (t + 1, t) 0.029 0.637
P-value correlation 0.886 0.000*

Notes: As per notes to Table 2.

Fig. 1. QQ plot for Z̄ (2)
t : model M2B. Note: Based on 27 annual Z̄ (2)

t observations of
model M2B over the period 1981–2007 and ages 64–89.

Fig. 2. QQ plot for Z̄ (γ )
c : model M2B. Note: Based on 27 annual Z̄ (γ )

c observations of
model M2B over the period 1981–2007 and ages 64–89.

It isworth pausing for amoment to considerwhyM2Bproduces
such poor results. If the model and fitting procedure were robust,
then adding in one year’s data should only have a small impact
on the estimated age, period and cohort-effects. However, it was
foundwithM2B – but not with any of the other models considered
in this study – that adding one extra year of data could lead the
model to jump from one set of fitted values for the cohort-effect to

Predicted p(t)

E
m

pi
ri

ca
l p

(t
)

Fig. 3. Plot of empirical vs. predicted p̄t : model M2B. Note: Based on 27
annual p̄t observations of model M2B over 1981–2007 and ages 64–89. p̄t =

F

[Z̄ (1)

t ]
2
+ [Z̄ (γ )

c ]
2

, where F(.) is χ2

2 .

Table 4
Results for the predicted standard normal variate h̄t : model M2B.

Sample moments

Mean 1.056
Variance 4.934
Skewness 0.055
Kurtosis 1.435
N 27

Test of mean prediction

P-value mean t-test statistic 0.020

Test of variance ratio prediction

P-value variance ratio test statistic 0.000*

Test of normality prediction

P-value Jarque–Bera test statistic 0.250

Test of temporal independence

Pearson correlation (t + 1, t) 0.142
P-value correlation 0.477

Notes: h̄t = Φ−1 (p̄t ), where p̄t = F

[Z̄ (2)

t ]
2
+ [Z̄ (γ )

c ]
2

, F(.) is the χ2

2 distribution
function, and Φ(.) is the standard normal distribution function. Note, however,
that in 10 cases, the estimated value of h̄t was 1. Since the normal inverse of 1 is
undefined, these values were reduced to 0.9999 for the purposes of computing the
results in this Table. Otherwise as per notes to Table 2.

a completely different set.17 This problem is most likely explained
by the likelihood function havingmultiplemaxima. The changes in
parameter values then reflect a jump in the fitting algorithm from
one maximum to another.18

Model M3B
Table 5 presents the moments and test results for the

standardized residuals for M3B. As withM2B, we have 12 reported
p-values, but in this case only three are significant at the 1% level.
M3B therefore has a ‘failure’ rate of 25%.

17 These claims are borne out by graphs of fitted parameter values (not included
here), which show considerable instability for M2B. By contrast, graphs of the
fitted parameter values for other models are all stable. For further discussion of
the stability problem, see Cairns et al. (2009). The authors of CMI Working Paper
25 encountered similar problems. To quote from their study: ‘‘the fitted cohort
parameters do not appear to be stable as the age range fitted is changed’’ (CMI,
2007, p. 18, para 7.18); ‘‘when backtesting a dataset or fitting a different age range,
we were unable to find a set of starting parameter values that consistently worked
for different subsets of the data. Where a number of sets of starting parameter
values worked for a particular dataset, we also found that the fitted values could
differ materially’’ (CMI, 2007, p. 19, para 7.21).
18 These jumps, in turn, lead to the fitted standardized residuals having some very
extreme values as shown in Figs. 1–3 and Tables 3 and 4.
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Table 5
Results for the standardized residuals of the state variables Z̄ (2)

t and Z̄ (γ )
c : model

M3B.

Sample moments

Z̄ (2)
t Z̄ (γ )

c

Mean 0.139 −0.189
Variance 0.798 2.201
Skewness 0.179 −0.085
Kurtosis 2.821 4.050
N 27 27

Test of mean prediction1

P-value mean t-test statistic 0.426 0.513

Test of variance ratio prediction

P-value variance ratio test statistic 0.490 0.001*

Test of normality prediction

P-value Jarque–Bera test statistic 0.914 0.529

Test of temporal independence2

Pearson correlation (t + 1, t) −0.608 −0.055
P-value correlation 0.000* 0.785

Notes: As per notes to Table 2.

Table 6
Results for the predicted standard normal variate h̄t : model M3B.

Sample moments

Mean 0.168
Variance 2.030
Skewness 0.408
Kurtosis 3.251
N 27

Test of mean prediction

P-value mean t-test statistic 0.546

Test of variance ratio prediction

P-value variance ratio test statistic 0.003*

Test of normality prediction

P-value Jarque–Bera test statistic 0.664

Test of temporal independence

Pearson correlation (t + 1, t) 0.000
P-value correlation 0.998

Notes: h̄t = Φ−1 (p̄t ), where p̄t = F

[Z̄ (2)

t ]
2
+ [Z̄ (γ )

c ]
2

, F(.) is the χ2

2 distribution
function, and Φ(.) is the standard normal distribution function.

* Indicates significance at the 1% level.

Model M5
Table 7 presents the sample moments and the test results

for Z̄ (1)
t and Z̄ (2)

t based on M5, and Table 8 presents the sample
moments and test results for M5’s h̄t series. M5 has 13 p-values
of which only 1 is significant at the 1% level: M5 therefore has a
‘failure rate’ of 7.7%.
Model M6

Tables 9 and 10 present the comparable results for M6. This
model has 17 p-values of which two are significant at the 1% level:
M6 therefore has a ‘failure rate’ equal to 11.7%.
Model M7

Tables 11 and 12 present the corresponding results for M7. For
this model we have 23 p-values, of which 2 are significant. Hence,
M7 has a failure rate equal to 8.7%.

5.3. Summary of Section 5 results

The results of applying the state variable GOF tests to the six
models are summarized in Table 13, which shows the proportions
of test results for each model that are significant at the 1% level. It

Table 7
Results for the standardized residuals of the state variables Z̄ (1)

t and Z̄ (2)
t : model M5.

Sample moments

Z̄ (1)
t Z̄ (2)

t

Mean −0.337 0.555
Variance 0.720 1.301
Skewness 0.163 −0.036
Kurtosis 3.039 2.257
N 27 27

Test of mean prediction

P-value mean t-test statistic 0.049 0.018

Test of variance ratio prediction

P-value variance ratio test statistic 0.305 0.278

Test of normality prediction

P-value Jarque–Bera test statistic 0.941 0.731

Test of temporal independence

Pearson correlation (t + 1, t) −0.539 0.124
P-value correlation 0.001* 0.533

Correlation between Z̄ (1)
t and Z̄ (2)2

t

Pearson correlation −0.028
P-value correlation 0.890

Notes: As per notes to Table 2.

Table 8
Results for the predicted standard normal variate h̄t : Model M5.

Sample moments

Mean 0.083
Variance 1.422
Skewness −0.135
Kurtosis 2.623
N 27

Test of mean prediction

P-value mean t-test statistic 0.721

Test of variance ratio prediction

P-value variance ratio test statistic 0.150

Test of normality prediction

P-value Jarque–Bera test statistic 0.886

Test of temporal independence

Pearson correlation (t + 1, t) 0.114
P-value correlation 0.570

Notes: As per notes to Table 6.

also shows the implied ranking by this criterion: M5 comes a little
ahead ofM7, which in turn comes a little ahead ofM6.M1 andM3B
then follow as equal second to last, and M3B comes last.

6. Assessing the goodness of fit of model-based annuity price
residuals

Our final test of the adequacy of the models is to test the
goodness of fit of the prices (or fair values) of financial assets
that depend on model-based mortality forecasts. To illustrate,
we consider the case of a period term annuity for males aged
65, payable until age 90.19 We will assume the cashflows on

19 A period term annuity is one that has a fixed term and ignores future mortality
improvements. That is, for valuation purposes the annuity’s future cash flows are
calculated purely from the latest periodmortality rates.We consider term annuities
ceasing at age 90 because models M1, M2B and M3B, having been fitted to data
from ages 60 to 89, apply to mortality rates from ages 60 to 89 only. Their semi-
parametric structure means that there is no natural way to use them to extrapolate
mortality rates beyond age 89.
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Table 9
Results for the standardized residuals of the state variables Z̄ (1)

t , Z̄ (2)
t and Z̄ (γ )

c :model
M6.

Sample moments

Z̄ (1)
t Z̄ (2)

t Z̄ (γ )
c

Mean −0.121 0.516 −0.393
Variance 0.755 1.090 2.572
Skewness 0.359 0.361 −0.134
Kurtosis 3.225 2.229 5.549
N 27 27 27

Test of mean prediction1

P-value mean t-test statistic 0.475 0.016 0.214

Test of variance ratio prediction

P-value variance ratio test statistic 0.383 0.684 0.000*

Test of normality prediction

P-value Jarque–Bera test statistic 0.728 0.533 0.025

Test of temporal independence2

Pearson correlation (t + 1, t) −0.503 −0.138 −0.059
P-value correlation 0.002* 0.487 0.770
Correlation between Z̄ (1)

t and Z̄ (2)
t −0.090

P-value of correlation between Z̄ (1)
t and Z̄ (2)

t 0.652

Notes: As per notes to Table 2.

Table 10
Results for the predicted standard normal variate h̄t : model M6.

Sample moments

Mean 0.292
Variance 1.336
Skewness −0.196
Kurtosis 2.092
N 27

Test of mean prediction

P-value mean t-test statistic 0.201

Test of variance ratio prediction

P-value variance ratio test statistic 0.235

Test of normality prediction

P-value Jarque–Bera test statistic 0.577

Test of temporal independence

Pearson correlation (t + 1, t) −0.073
P-value correlation 0.716

Notes: h̄t = Φ−1 (p̄t ), where p̄t = F

[Z̄ (1)

t ]
2
+ [Z̄ (2)

t ]
2
+ [Z̄ (γ )

c ]
2

, F(.) is the χ2

2

distribution function, and Φ(.) is the standard normal distribution function. Note,
however, that in 1 case, the estimated value of h̄t was 1, which was reduced to
0.9999 for the purposes of computing the results in this Table. Otherwise as per
notes to Table 6.

the annuity are discounted using a fixed discount rate of 4%.
We adopt procedures similar to those employed for testing the
goodness of fit of the state variables. Take the first 20-year window
covering 1961–1980. For this period, each model is used to obtain
estimates of the underlying state variables: β̄

(i)
x , κ̄ (i)

t and γ̄
(i)
c . We

then generate 1000 one-period ahead simulations of κ
(i)
t and γ

(i)
c

(i.e., for 1981). For each simulation and each model, we generate
model-based mortality rates, q(t, x), for ages between 65 and 90,
and the corresponding period annuity prices, a(t, x).20 The 1000

20 Period annuity prices are calculated as follows. We define, first, the model-
simulated period survival function S(t, x, y) = {1 − q(t, x)} × {1 − q(t, x + 1)} ×

· · · × {1 − q(t, y − 1)}. The simulated period annuity price is then defined as
a(t, x) =

∑90
y=x+1 S(t, x, y)(1 + r)−(y−x) where we assume r = 0.04. Crude period

annuity prices, ã(t, x), are calculated in the same way, replacing q(t, x) by q̃(t, x).

Table 11
Results for the standardized residuals of the state variables Z̄ (1)

t , Z̄ (2)
t , Z̄ (3)

t and Z̄ (γ )
c :

model M7.

Sample moments

Z̄ (1)
t Z̄ (2)

t Z̄ (3)
t Z̄ (γ )

c

Mean −0.330 0.302 0.007 0.098
Variance 0.771 0.863 1.601 2.554
Skewness 0.195 0.793 0.059 −0.126
Kurtosis 2.965 3.044 2.728 5.747
N 27 27 27 27

Test of mean prediction

P-value mean t-test statistic 0.062 0.103 0.978 0.753

Test of variance ratio prediction

P-value variance ratio test
statistic

0.421 0.671 0.054 0.000*

Test of normality prediction

P-value Jarque–Bera test statistic 0.917 0.243 0.952 0.014

Test of temporal independence

Pearson correlation (t + 1, t) −0.600 −0.075 0.081 −0.332
P-value correlation 0.000* 0.708 0.687 0.074

Correlations

Z̄ (1)
t Z̄ (2)

t Z̄ (3)
t

Z̄ (1)
t 1

Z̄ (2)
t −0.232 1

Z̄ (3)
t 0.172 −0.131 1

P-values of correlations2

Z̄ (1)
t Z̄ (2)

t Z̄ (3)
t

Z̄ (1)
t 1

Z̄ (2)
t 0.230 1

Z̄ (3)
t 0.383 0.512 1

Notes: As per notes to Table 2.

Table 12
Results for the predicted standard normal variate h̄t : model M7.

Sample moments

Mean 0.397
Variance 1.858
Skewness 0.963
Kurtosis 3.926
N 27

Test of mean prediction

P-value mean t-test statistic 0.142

Test of variance ratio prediction

P-value variance ratio test statistic 0.010

Test of normality prediction

P-value Jarque–Bera test statistic 0.077

Test of temporal independence

Pearson correlation (t + 1, t) −0.177
P-value correlation 0.369

Notes: h̄t = Φ−1 (p̄t ), where p̄t = F

[Z̄ (1)

t ]
2
+ [Z̄ (2)

t ]
2
+ [Z̄ (3)

t ]
2
+ [Z̄ (γ )

c ]
2

, F(.) is

the χ2
2 distribution function, and Φ(.) is the standard normal distribution function.

Otherwise as per notes to Table 6.

simulated values give us an estimate of the one-period-ahead
forecast distribution of a(t, x) for each model, and we use this
to estimate the mean, ā(t, x), and the corresponding standard
deviation. We then use the crude mortality rates, q̃(t, x), for
1981 to calculate the ‘crude’ period annuity price, ã(t, x). The
annuity residual for each model is then ã(t, x) − ā(t, x) and this
is standardized by dividing by the standard deviation of the one-
period-ahead forecast distribution of the period annuity price for
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Table 13
Summary of main standardized residual results for the state variables.

Model Proportion of test results
significant at the 1% level

Implied ranking

M1 25.0% = 5
M2B 50.0% 6
M3B 25.0% = 5
M5 7.7% 1
M6 10.5% 3
M7 8.7% 2

Notes: Based on the results in Tables 2–12.

that year. This procedure is repeated for the remaining 20-year
windows covering 1962–1981, 1963–1982, etc.

The sample moments and moment-based test statistics for the
standardized annuity residuals are given in Table 14, and the main
highlights are:

• All models give fairly reasonable sample moments for the
residuals.

• M2B,M3B,M5 andM6 each fail the iid test at the 1% significance
level.

• M1 and M7 pass all tests at the 1% significance level.

These results suggest that there is little to choose between
M1 and M7, and the others come afterwards with little to choose
between them.

7. Comparisons

7.1. A comparison with the findings of our own earlier studies

The present paper is the fourth in a series of studies that we
have conducted whose aim has been to examine different features
of a set of stochastic mortality models with the ultimate objective
of identifying which, if any, of these models might make suitable
candidates for forecasting future mortality rates at high ages. In
this section, we briefly compare and summarize the findings from
these earlier studies.

The original study, Cairns et al. (2009), examined eight models,
the six models considered here plus:

• the P-splines model (Currie et al., 2004; Currie, 2006; CMI,
2006), denoted M4

• a further generalization of the CBD model incorporating a
cohort-effect, denoted M8.

The purpose of that study, as mentioned in the introduction,
was to use a set of quantitative and qualitative criteria to assess
each model’s ability to explain historical patterns of mortality:
quality of fit, as measured by the BIC; ease of implementation;
parsimony; transparency; incorporation of cohort-effects; ability
to produce a non-trivial correlation structure between ages; and
robustness of parameter estimates relative to the period of data
employed.

Using English & Welsh male mortality data, the BIC rankings
were as follows: 1 = M8, 2 = M7, 3 = M2, 4 = M6, 5 = M3,
6 = M1, 7 = M4and 8 = M5.We decided to dropM4 from further
analysis, in part, because of its low ranking, but more importantly,
because of its inability to produce fully-stochastic projections of
future mortality rates. We then went on to obtain the following
ranking of the remaining models on US male data: 1 = M2, 2 =

M7, 3 = M3, 4 = M8, 5 = M6, 6 = M1, 7 = M5. M7 was found to
have the most robust and stable parameter estimates over time on
both data sets.

The second study, Cairns et al. (2010), focused on the qualitative
forecasting properties of these models by evaluating the ex-ante
plausibility of the models’ probability density forecasts in terms
of the following qualitative criteria (see also Cairns et al., 2006b):

biological reasonableness; the plausibility of predicted levels of
uncertainty in forecasts at different ages; and the robustness
of the forecasts relative to the sample period used to fit the
models. We found that while a good fit to historical data, as
measured by the BIC, is a good starting point, it does not guarantee
sensible forecasts. In particular, we found that M8 produced such
implausible forecasts of US male mortality rates that it could be
dismissed as a suitable forecasting model. M2 lacked robustness in
its forecasts, while M1 produced forecasts at higher ages that were
‘too precise’, in the sense of having too little uncertainty relative
to historical volatility.21 The problems with these three models
were not evident from simply estimating their parameters: they
only became apparent when themodels were used for forecasting.
M3, M5 andM7 performed well, producing robust and biologically
plausible forecasts.22

It is also important to examine the ex post forecasting
performance of themodels i.e., to backtest them. This is the subject
of our third study, Dowd et al. (forthcoming). Backtesting is based
on the idea that forecast distributions should be compared against
subsequently realized mortality outcomes and if the realized
outcomes are compatible with their forecasted distributions, then
this would suggest that the models that generated them are good
ones, and vice versa. That study discussed four different classes
of backtest: those based on the convergence of forecasts through
time towards the mortality rate(s) in a given year; those based on
the accuracy of forecasts over multiple horizons; those based on
the accuracy of forecasts over rolling fixed-length horizons; and
those based on formal hypothesis tests that involve comparisons of
realized outcomes against forecasts of the relevant densities over
specified horizons. We found that models M1, M3B, M5, M6 and
M7 perform well most of the time and there is relatively little to
choose between them.ModelM2B, by contrast, repeatedly showed
evidence of instability.

7.2. A comparison with some recent studies testing the out-of-sample
performance of stochastic mortality models

Anumber of other authors have, in recent years, also tackled the
question of the forecasting accuracy of various stochasticmortality
models.

Booth et al. (2006) consider five variants or extensions of the
Lee–Carter model, M1. The models are fitted to both male and
female data in 10 countries up to 1985, and then used to project
the death rate, m(t, x), and period life expectancy up to 2000.
These projections are then compared to the actual death rates
between 1986 and 2000 and the forecasting errors are combined in
a variety of ways to assess the relative accuracy of the five models.
This study, therefore, uses the same expanding horizon procedure
(from a fixed starting point (1985)) as used in our backtesting
study (Dowd et al., forthcoming). Although more formal statistical
tests are also performed by Booth et al. (2006), it is unclear
whether or not the assumptions underpinning these tests (such as
independence of errors) have been verified, and this undermines
the validity of the study’s findings somewhat. In contrast, the
present study focuses on a sequence of one-year-ahead forecasts
allowing us to conduct a series of formal statistical tests in which
the assumptions underlying the null hypothesis are known to be
valid.

Huang et al. (2008) and Yang et al. (2010) develop a new
approach to mortality forecasting using principal component

21 This has also been noticed by other researchers, e.g., Li et al. (2009).
22 M6 was dropped from this study because it was a special case of M7, and M7
was found to be stable and to deliver consistently better and more plausible results
than M6.



264 K. Dowd et al. / Insurance: Mathematics and Economics 47 (2010) 255–265

Table 14
Sample moments and P-values for standardized annuity price residuals.

M1 M2B M3B M5 M6 M7

Sample moments

Mean 0.406 −0.272 0.328 0.350 0.151 0.397
Variance 0.889 0.753 0.708 0.680 0.747 1.858
Skewness −0.010 −0.665 0.047 −0.227 −0.282 0.963
Kurtosis 3.199 3.678 2.970 3.436 3.422 3.926

P-values of tests

Mean test statistic 0.034 0.116 0.053 0.037 0.373 0.142
VR test statistic 0.748 0.377 0.280 0.225 0.365 0.010
JB test statistic 0.9777 0.286 0.994 0.800 0.756 0.077
Corr(t + 1, t) 0.0163 0.008* 0.000* 0.002* 0.001* 0.369

Notes: Results for males aged 65, payable until age 90, a discount rate of 4% and a sample size of 27, estimated over 1981–2007 and ages 64–89. See also notes to Table 1.

analysis (PCA), which is similar in spirit to the multi-factor
extensions of the Lee–Carter model proposed by Booth et al.
(2002b). They compare both the in-sample goodness of fit and
the out-of-sample forecasting properties of their new PCA model
against a number of established models (such as M1, M3 and
M5) for a number of countries. Out-of-sample forecasting accuracy
is measured along similar lines to Booth et al. (2006). In terms
of mean absolute percentage error, the PCA model ranks second
after M5 when tested on both male and female mortality rates
for Taiwan, Japan, the USA, Canada, the UK and France across ages
60–99 over the period 1970–2005 (Yang et al., 2010).

Sweeting (2009) examines the two state variables κ
(1)
t and κ

(2)
t

in M5 and concludes that they do not follow the random walk
assumption proposed by Cairns et al. (2006a,b), but should instead
be modelled as a random fluctuation around a trend, where the
trend changes periodically. As a consequence, Sweeting shows that
projected mortality rates embody much greater uncertainty than
previously understood.

8. Conclusions

The present study sets out a framework for systematically
evaluating the goodness of fit of stochastic mortality models, and
applies it to a set of mortality models estimated using England &
Wales male mortality data. If a model fits the data well, certain
key residual series – those relating to mortality rates themselves,
to the unobserved state variables that drive the dynamics of the
model (including the cohort-effect where appropriate), and to
the residuals of mortality-dependent financial prices – will, once
standardized, be approximately iid N(0, 1). We then test whether
the relevant series are compatible with iid N(0, 1).

We find that none of the models considered in this paper
performs well in all sets of tests, and no model performs
consistently better than the others. For the particular data set used
in this analysis, however, we find that:

• For GOF tests of mortality residuals, model M2B performs best,
M7 comes second andM6 third, andM1,M3 andM5 come some
way behind.

• For the GOF tests of the state variables, M5, M6 andM7 perform
best, in that order, although there is not much to choose
between them. The other three models somewhat worse, and
the worst performer is M2B.

• For the GOF tests of the annuity price residuals, M1 and M7
emerge as the best models and the other models come some
way behind.

When we combine these findings with those from our earlier
studies, we conclude that somemodels perform better under some
assessment criteria than others, but that no singlemodel can claim
to be the victor. Further, different mortality patterns in different

countries means that great care must be taken when selecting the
best forecasting model for each country.

Three avenues for further work naturally suggest themselves.
The first is to examine the dynamic properties of the state variables
in more depth – and in particular, to test whether they follow the
random walks which they are assumed to follow, and a start in
that direction has been made by Sweeting (2009). The second is
to test these findings on other mortality data sets. A third avenue
of research, which is much more ambitious, is to build a mortality
model that is able to take account of the impact of exogenous
factors (such as biomedical, environmental, and socio-economic
factors) onmortality rates (as per, e.g. Hanewald, 2009) or to apply
a mortality model to cause-of-death data (as per Wilmoth, 1998).

Disclaimer

Additional information is available upon request. This report
has been partially prepared by the Pension Advisory group, and
not by any research department, of JPMorgan Chase & Co. and
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its completeness or accuracy. Opinions and estimates constitute
JPMorgan’s judgment and are subject to change without notice.
Past performance is not indicative of future results. This material is
provided for informational purposes only and is not intended as a
recommendation or an offer or solicitation for the purchase or sale
of any security or financial instrument.
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