Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization

Sameul H. Cox, Yijia Lin and Shaun Wang

Presented at
the 8th Bowles Symposium
and
Second International Longevity Risk and Capital Market Solutions Symposium

Chicago, Illinois

April 24, 2006
The Beauty of Risk Pooling

\[\sigma_{\bar{X}} = \sigma_X / \sqrt{n} \]
The Curse of Risk Pooling

- Law of Large Numbers

\[
\text{Var}(\bar{T}) = \frac{1}{n} \text{Var}(T|\theta) \to 0. \tag{1}
\]

- Events that cause simultaneous effect

\[
\text{Var}(\bar{T}) = \mathbb{E}[\text{Var}(\bar{T}|\theta)] + \text{Var}\mathbb{E}(\bar{T}|\theta)
\]
\[
= \mathbb{E}\left[\frac{1}{n} \text{Var}(T|\theta)\right] + \text{Var}\mathbb{E}(T|\theta)
\]
\[
\to \text{Var}\mathbb{E}(T|\theta) \neq 0.
\]

- Pooling technique breaks down.
Shocks to a Life Insurer

1916–1920 US Female Population q_x

Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (Data downloaded November 1–10, 2004).
Shocks to a Life Insurer (Cont’)

1916–1920 US Male Population q_x
December 2004 Earthquake and Tsunami Death Toll and Percentage Excess Death Rates by Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Confirmed deaths(^a)</th>
<th>Missing(^a)</th>
<th>% Excess Death Rate(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia</td>
<td>127,420</td>
<td>116,368</td>
<td>16.58%</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>38,195</td>
<td>4,924</td>
<td>33.81%</td>
</tr>
<tr>
<td>India</td>
<td>10,779</td>
<td>5,614</td>
<td>0.18%</td>
</tr>
<tr>
<td>Thailand</td>
<td>5,395</td>
<td>2,991</td>
<td>1.90%</td>
</tr>
<tr>
<td>Somalia</td>
<td>298</td>
<td>-</td>
<td>0.21%</td>
</tr>
<tr>
<td>Myanmar</td>
<td>90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maldives</td>
<td>82</td>
<td>-</td>
<td>3.25%</td>
</tr>
<tr>
<td>Malaysia</td>
<td>68</td>
<td>-</td>
<td>0.06%</td>
</tr>
<tr>
<td>Tanzania</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kenya</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>182,340</td>
<td>129,897</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^a\)Source: Associated Press on March 4, 2005; \(^b\)Based on the authors’ calculation.
Shocks to an Annuity Insurer/Pension Plan

- Dramatic mortality improvement
- Increased demand for annuities (Mitchell et al., 2001)
- Private DB pension plans
- Existing social security system in the US
Life Insurance-linked Cat Securitization

- Multiple risks
 - Interest rate risk
 - Policyholder lapse risk
 - Regulatory risk
 - Mortality risk
 - Insurer policy dividend decisions

- Pure mortality or longevity risk
 - Increase transparency (Cowley and Cummins, 2005)
 - Diversification benefit (Lin and Cox, 2005)
Swiss Re Deal

- Issued December 2003, matures January 1, 2007, a three year deal.
- No coupons at risk
- Priced to sell at par with a coupon of LIBOR + 1.35%.
- Principal at risk. q = weighted average population mortality in US (70%), UK (15%), France (7.5%), Italy (5%), and Switzerland (2.5%). $q_0 = 2002$ level and $q = \max(q_{2004}, q_{2005}, q_{2006})$

\[
\text{Maturity value} = \begin{cases}
400,000,000 & \text{if } q \leq 1.3q_0 \\
400,000,000 \frac{1.5q_0 - q}{0.2q_0} & \text{if } 1.3q_0 < q \leq 1.5q_0 \\
0 & \text{if } q > 1.5q_0
\end{cases}
\]
Mortality Securitization Modeling Literature

- Existing mortality securitization pricing theory
 - Ignore mortality jumps
 - Itô–type stochastic process (Dahl, 2003; Milevsky and Promislow, 2001; Cairns et al., 2004)
 - Econometric methods (Renshaw et al., 1996; Sithole et al., 2000; Lee and Carter, 1992; Lee, 2000)
1900 – 1998 US Population Death Rate per 100,000
Mortality Securitization Modeling Literature

- Existing mortality securitization pricing theory
 - Ignore mortality jumps
 - Itô–type stochastic process (Dahl, 2003; Milevsky and Promislow, 2001; Cairns et al., 2004)
 - Econometric methods (Renshaw et al., 1996; Sithole et al., 2000; Lee and Carter, 1992; Lee, 2000)
 - Ignore mortality correlation
1900 – 1998 US and UK Population Death Rate per 100,000
Mortality Securitization Modeling Literature

- Existing mortality securitization pricing theory
 - Ignore mortality jumps
 - Itô–type stochastic process (Dahl, 2003; Milevsky and Promislow, 2001; Cairns et al., 2004)
 - Econometric methods (Renshaw et al., 1996; Sithole et al., 2000; Lee and Carter, 1992; Lee, 2000)
 - Ignore mortality correlation

- Improve existing mortality securitization models
 - Pricing the Swiss Re bond by multivariate exponential tilting with jump processes
Consider n variables X_1, X_2, \ldots, X_n and k references Y_1, Y_2, \ldots, Y_k on a probability space (Ω, P).

Definition 1. For each scenario ω in the probability space (Ω, P), the exponential tilting of X_1, X_2, \ldots, X_n with respect to references Y_1, Y_2, \ldots, Y_k is defined by the following p.d.f.:

$$
\frac{f^*(x_1(\omega), x_2(\omega), \ldots, x_n(\omega))}{f(x_1(\omega), x_2(\omega), \ldots, x_n(\omega))} = c \left[\exp \left(\sum_{j=1}^{k} \lambda_j Y_j(\omega) \right) \right],
$$

(3)

where $\lambda_1, \lambda_2, \ldots, \lambda_k$ are real-valued parameters that control the magnitude of risk-adjustment, and c is a normalizing coefficient.
Definition 2. Assume that there exist standard normal variables Z_1, Z_2, \ldots, Z_k such that

$$Y_1 = F_{Y_1}^{-1} (\Phi(Z_1)), \ Y_2 = F_{Y_2}^{-1} (\Phi(Z_2)), \ldots, Y_k = F_{Y_k}^{-1} (\Phi(Z_k)).$$

(4)

Equation (4) can be obtained by percentile mapping.

$$\frac{f^*(x_1, x_2, \ldots, x_n)}{f(x_1, x_2, \ldots, x_n)} = c \mathbb{E} \left[\exp \left(\sum_{j=1}^{k} \lambda_j Z_j \right) | X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n \right].$$

(5)
Theorem 1.

Assume that \(\{X_1, X_2, \ldots, X_n; Y_1, Y_2, \ldots, Y_k\} \) follow a normal copula with correlation matrix:

\[
\Sigma = \begin{pmatrix}
\Sigma_{xx} & \Sigma_{xy} \\
\Sigma_{xy} & \Sigma_{yy}
\end{pmatrix}.
\]
Theorem 1. (Cont’d)

The multivariate exponential tilting of \(\{X_1, \ldots, X_n\} \) with respect to themselves \((Y_j = X_j, j = 1, \ldots, n) \) is equivalent to the multivariate Wang transform (Wang, 2006) with

\[
F^*_{X_i}(x_i) = \Phi[\Phi^{-1}(F_{X_i}(x_i)) + \beta_i],
\]

and \(\beta_i = \sum_{j=1}^{n} \rho_{X_i,Y_j} \cdot \lambda_j, \) (for \(i = 1, 2, \ldots, n \)). \hspace{1cm} (7)

The correlation matrix between \(X_1, X_2, \ldots, X_n \) is unchanged after the normalized multivariate exponential tilting, \(\Sigma^*_xx = \Sigma_{xx} \). Kijima (2006) reaches the same conclusion as equation (7) by using a multi-period equilibrium argument.
US and UK Population Index Dynamics

\[q_{t+h}^{us} | \mathcal{F}_t = q_t^{us} \exp \left[\left(\alpha^{us} - \frac{1}{2} \sigma^{us} 2 - \Lambda^{us} k^{us} - \Lambda^{intl} k^{intl} \right) h + \sigma^{us} \Delta W_t^{us} \right] \]

\[\cdot \prod_{j > N_t^{us}} Y_j^{us} \prod_{i > N_t^{intl}} Y_i^{intl}, \quad \text{and} \]

\[q_{t+h}^{uk} | \mathcal{F}_t = q_t^{uk} \exp \left[\left(\alpha^{uk} - \frac{1}{2} \sigma^{uk} 2 - \Lambda^{uk} k^{uk} - \Lambda^{intl} k^{intl} \right) h + \sigma^{uk} \Delta W_t^{uk} \right] \]

\[\cdot \prod_{j > N_t^{uk}} Y_j^{uk} \prod_{i > N_t^{intl}} Y_i^{intl}, \quad \text{where} \quad \text{Cov} (W_t^{us}, W_t^{uk}) = \rho \sigma^{us} \sigma^{uk}. \]
Maximum Likelihood Parameter Estimates

- Maximum likelihood estimates:

<table>
<thead>
<tr>
<th></th>
<th>α<sup>us</sup></th>
<th>α<sup>uk</sup></th>
<th>σ<sup>us</sup></th>
<th>σ<sup>uk</sup></th>
<th>ρ</th>
<th>Λ<sup>us</sup></th>
<th>Λ<sup>uk</sup></th>
<th>Λ<sup>intl</sup></th>
<th>m<sup>us</sup></th>
<th>m<sup>uk</sup></th>
<th>m<sup>intl</sup></th>
<th>s<sup>us</sup></th>
<th>s<sup>uk</sup></th>
<th>s<sup>intl</sup></th>
<th>k<sup>us</sup></th>
<th>k<sup>uk</sup></th>
<th>k<sup>intl</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0100</td>
<td>-0.0033</td>
<td>0.0308</td>
<td>0.0237</td>
<td>0.5299</td>
<td>10⁻⁶</td>
<td>0.8533</td>
<td>0.0309</td>
<td>-0.0050</td>
<td>-0.0114</td>
<td>-0.0295</td>
<td>10⁻⁶</td>
<td>0.0600</td>
<td>0.1412</td>
<td>-0.0050</td>
<td>-0.0096</td>
<td>-0.0193</td>
</tr>
</tbody>
</table>

Table: Maximum Likelihood Parameter Estimates Based on the US and UK Population Mortality Index 1900 –1998. The model without jumps is rejected at the significance level of 0.1%.
Correlation Matrix of US and UK Population Mortality Indices

- The correlation between W^{us} and W^{uk} is ρ.
- The jump sizes Y^{us}, Y^{uk} and Y^{intl} are independent of each other and of W^{us} and W^{uk}.
- Assume that $\{W^{us}, W^{uk}, Y^{us}, Y^{uk}, Y^{intl}\}$ use themselves as references.

According to Theorem 1,

$$\Sigma^* = \Sigma = \begin{pmatrix}
1 & \rho & 0 & 0 & 0 \\
\rho & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0.5299 & 0 & 0 & 0 \\
0.5299 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.$$ (8)
Market Price of Risk of Swiss Re Bond

\[
\begin{pmatrix}
\beta_{W_{us}} \\
\beta_{W_{uk}} \\
\beta_{Y_{us}} \\
\beta_{Y_{uk}} \\
\beta_{Y_{intl}}
\end{pmatrix} =
\begin{pmatrix}
1 & \rho & 0 & 0 & 0 \\
\rho & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\lambda_{W_{us}} \\
\lambda_{W_{uk}} \\
\lambda_{Y_{us}} \\
\lambda_{Y_{uk}} \\
\lambda_{Y_{intl}}
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & \rho & 0 & 0 & 0 \\
\rho & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\lambda \\
\lambda \\
\lambda \\
\lambda \\
\lambda
\end{pmatrix} =
\begin{pmatrix}
\lambda + \lambda \rho \\
\lambda + \lambda \rho \\
\lambda \\
\lambda \\
\lambda
\end{pmatrix}.
\]
Assume 80% on the US population mortality index and 20% on the UK Population mortality index.
Market Price of Risk of the Swiss Re Bond

<table>
<thead>
<tr>
<th></th>
<th>β_Y</th>
<th>β_W</th>
<th>Par Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swiss Re Bond</td>
<td>0.83</td>
<td>1.27</td>
<td>1.35%</td>
</tr>
</tbody>
</table>

- Market price of risk for the property-linked catastrophe bond $\lambda = 0.45$ with $k = 6$ degrees of freedom.
- The Swiss Re overcompensates the investors for their taking its mortality risks.
 - Minton et al. (2004) conclude that securitization of financial institutions is a contracting innovation aimed at lowering financial distress costs.
 - MorganStanley (2003) concludes that “Swiss Re must be taking a view that the cost of capital that is relieved via this transaction exceeds the effective net cost of servicing the bond”.
- To develop mortality securitization markets
Conclusions

- Insurers develop mortality securitization market to manage catastrophic mortality risks.
- Improve existing mortality securitization models
 - Include jump process
 - Use multivariate exponential tilting
 - Correlation
 - Incomplete market pricing method
- Swiss Re bond seems a good deal for investors.

